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Motivations & Objectives



Classical Examples of Bandits Problems

– Size of data: n patients with some proba of getting cured
– Choose one of two treatments to prescribe

or
– Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patients as possible
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Classical Examples of Bandits Problems

– Size of data: n banners with some proba of click
– Choose one of two ads to display

or
– Banner clicked or ignored

1) Inference: Find the best ad between the red and blue
2) Cumul: Get as many clicks as possible
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Classical Examples of Bandits Problems

– Size of data: n auctions with some expected revenue
– Choose one of two strategies(bid/opt out) to follow

or
– Auction won or lost

1) Inference: Find the best strategy between the red and blue
2) Cumul: Win as many profitable auctions as possible
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Classical Examples of Bandits Problems

– Size of data: n mails with some proba of spam
– Choose one of two actions: spam or ham

or
– Mail correctly or incorrectly classified

1) Inference: Find the best strategy between the red and blue
2) Cumul: Minimize number of errors as possible
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Classical Examples of Bandits Problems

– Size of data: n patients with some proba of getting cured
– Choose one of two treatments to prescribe

or
– Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patients as possible
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Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.
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Two-Armed Bandit

– Patients arrive and are treated sequentially.
– Save as many as possible.
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A bit of theory
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Stochastic Multi-Armed Bandit



K-Armed Stochastic Bandit Problems

– K actions i ∈ {1, . . . , K}, outcome Xit ∈ R (sub-)Gaussian,
bounded

Xi1, Xi2, . . . ,∼ N
(
µi, 1

)
i.i.d.

– Non-Anticipative Policy: πt
(
Xπ11 , Xπ22 , . . . , Xπt−1

t−1

)
∈ {1, . . . , K}

– Goal: Maximize expected reward
∑T

t=1EX
πt
t =

∑T
t=1 µ

πt

– Performance: Cumulative Regret

RT = max
i∈{1,2}

T∑
t=1

µi −
T∑
t=1

µπt = ∆i

T∑
t=1

1
{
πt = i ̸= ⋆

}
with ∆i = µ⋆ − µi, the “gap” or cost of error i.
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Most Famous algorithm [Auer, Cesa-Bianchi, Fisher, ’02]

• UCB - “Upper Confidence Bound”

πt+1 = argmax
i

{
Xit +

√
2 log(t)
Ti(t)

}
,

where Ti(t) =
∑t

t=1 1{πt = i} and Xit = 1
Tit

∑
s:is=i X

i
s.

Regret:

ERT ≲
∑

k
log(T)
∆k

Worst-Case:

ERT ≲ sup
∆
K log(T)

∆
∧ T∆

≂
√
KT log(T)
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Ideas of proof πt+1 = argmaxi
{
Xit +

√
2 log(t)
Ti(t)

}
• 2-lines proof:

πt+1 = i ̸= ⋆ ⇐⇒ X⋆t +

√
2 log(t)
T⋆(t) ≤ Xit +

√
2 log(t)
Ti(t)

“ =⇒ ”∆i ≤

√
2 log(t)
Ti(t)

=⇒ Ti(t) ≲ log(t)
∆2
i

• Number of mistakes grows as log(t)
∆2
i
; each mistake costs ∆i.

Regret at stage T ≲
∑

i
log(T)
∆2
i

×∆i ≂
∑

i
log(T)
∆i

• “ =⇒ ” actually happens with overwhelming proba
• “optimal”: no algo can always have a regret smaller than∑

i
log(T)
∆i
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Other Algos

• Other algo, ETC [Perchet,Rigollet], pulls in round robin then
eliminates

RT ≲
∑

k
log(T∆k)

∆k , worst case RT ≤
√
T log(K)K

• Other algo, MOSS [Audibert, Bubeck], variants of UCB

RT ≲ K log(T∆
min/K)

∆min , worst case RT ≤
√
TK

• Infinite number of actions x ∈ [0, 1]d with ∆(x) 1 Lipschitz.
Discretize + UCB gives

RT ≲ Tε+
√

T
ε ≤ T2/3
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Very interesting....
useful ?
no...

Here is a list of reasons
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On the basic assumptions

1. Stochastic: Data are not iid, patients are different
ill-posedness, feature selection/model selection

2. Different Timing: several actions for one reward
pomdp, learn trade bias/variance

3. Delays: Rewards not received instantaneously
grouping, evaluations

4. Combinatorial: Several decisions at each stage
combinatorial optimization, cascading

5. Non-linearity: concave gain, diminishing returns, etc
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Investigating (past/present/futur) them
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Patients are different

• We assumed (implicitly ?) that all patients/users are identical
• Treatments efficiency 9proba of clicks) depend on age, gender...
• Those covariates or contexts are observed/known before taking
the decision of blue/red pill
The decision (and regret...) should ultimately depend on it
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General Model of Contextual Bandits

• Covariates: ωt ∈ Ω = [0, 1]d, i.i.d., law µ (equivalent to) λ
The cookies of a user, the medical history, etc.

• Decisions: πt ∈ {1, .., K}
The decision can (should) depend on the context ωt

• Reward: Xkt ∈ [0, 1] ∼ νk(ωt), E[Xk|ω] = µk(ω)

The expected reward of action k depend on the context ω
• Objectives: Find the best decision given the request

Minimize regret RT :=
∑T

t=1 µ
π⋆(ωt)(ωt)− µπt(ωt)
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Regularity assumptions

1. Smoothness of the pb: Every µk is β-hölder, with β ∈ (0, 1]:

∃ L > 0, ∀ω, ω′ ∈ X , ∥µ(ω)− µ(ω′)∥ ≤ L∥ω − ω′∥β

2. Complexity of the pb: (α-margin condition) ∃C0 > 0,

PX

[
0 <

∣∣∣µ1(ω)− µ2(ω)
∣∣∣ < δ

]
≤ C0δα

where µ⋆(ω) = maxk µk(ω) is the maximal µk and
µ♯(ω) = max

{
µk(ω) s.t. µk(ω) < µ⋆(ω)

}
is the second max.

With K > 2: µ⋆ is β-Hölder but µ♯ is not continuous.
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Regularity: an easy example (α big)

µ1(ω)
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Regularity: a hard example (α small)

µ1(ω)
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Binned policy
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Binned Successive Elimination (BSE)

Theorem [P. and Rigollet (’13)]

If α < 1, E[RT(BSE)] ≲ T
(
K log(K)

T

) β(1+α)
2β+d , bin side

(
K log(K)

T

) 1
2β+d .

For K = 2, matches lower bound: minimax optimal w.r.t. T.

• Same bound with full monit [Audibert and Tsybakov, ’07]

• No log(T): difficulty of nonparametric estimation washes away
the effects of exploration/exploitation.

• α < 1: cannot attain fast rates for easy problems.
• Adaptive partitioning ! 
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Suboptimality of (BSE) for α ≥ 1

µ1(ω)

µ2(ω)

µ3(ω)
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Adaptive BSE (ABSE)

Theorem [P. and Rigollet (’13)]

For all α, E[RT(ABSE)] ≲ T
(
K log(K)

T

) β(1+α)
2β+d .

For K = 2, matches lower bound: minimax optimal w.r.t. T.

• Same bound than (BSE) even for easy problems α ≥ 1.
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This is not the solution

1. dimensions dependent bound: T1−
β

2β+d

d = +∞ and β = 0, lots of contexts, no regularity
Online selection of models ?
Ill-posed pb µ(·) not β-holder

Estimation/Approx errors
Performance = Approx Error + Regret(β, d, T)

2. Non-stationarity of arms: Value are not i.i.d., evolve with time.
Ex. ads for movies.

Cumulative objectives clearly not the solution.
Discount ? How, why, at which speeds ?

3. Non-stationarity of sets of arms:
Arms arrive and disappears

How incorporate a new arm ? which index ?
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This was really not the solution

1. Non-stationarity of sets of arms:
Arms arrive and disappears

How incorporate a new arm ? which index ?
2. Contexts (covariates) are not in Rd

Rather descriptions, texts, id, images...How to embed ?
training set is influenced by algorithms...
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Different Timing
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Example of Repeated Auctions

Ad slot sold by lemonde.fr. 2nd-price auctions

• Several (marketing) companies places bids
• Highest bid wins (...), say criteo, pays to lemonde 2nd bid (...)
• criteo chooses ad of a client, fnac or singapore airlines
• criteo paid by the client if the user clicks on the ad

Main Problem: Repeated auctions with unknown private valuation
Learn valuations, find which ad to display & good strategies
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Repeated auctions

1. Can be modeled as a bandit pb with Extra Structure
2. Actually, Criteo (Google, Facebook) paid if the user buys
something after the click

Needs several ”costly” auctions to seal a deal
Auctions lost can also help to seal deal (competitor

displays ad for free)
Optimal strategy in repeated auctions, learn it ? (POMDP ?)

Reward timing per user,
decision timing by opportunities
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Other examples - repeated A/B tests

• Companies test new technologies (algo, hardware, etc.) before
putting in productions. Sequences of AB tests
Timing of Decisions: each day, continue, stop or validate the
current AB test
Timing of Rewards: Total improvements of implemented techno.

• The longer AB test are, the more confident (reduces variance)
but less and less implementation

Online tradeoff risks/performances
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Delays
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Rewards are not observed immediately

• Clinical trials: have to wait 6 months to see results.
A trial length is 3 year : 6 phases
Regret is still

√
T

• Marketing (ad displays), only see if users buy
No feedback is either no sale (forever) or no sale yet
Build estimators with censured/missing data

Feasible with iid data... but they are not!
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Combinatorial Structure
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Large Decision spaces

• Choose not to display 1 ad, but 4, 6, 10...
• Paid if sales after click (even if unrelated)

Lots of correlations (between products, positions,
colors/style of banner, time, etc.)

Some products are seen, other are not (carrousels...)
• Too many possibilities of (almost) equal performances

Compete with the best RT ≤
√
KT

but at least top 5%, RT ≤
√
log(K) 1

5%T ??
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Bandit theory is quite neat

To be ”applied”, or relevant, need LOTS of work

Anybody is welcome to join & collaborate!

Model selection, Feature extractions, Missing Data, Censured Data,

Combinatorial Optimization, New techniques estimators..
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