New Perspectives for Multi-Armed Bandits and Their Applications

Vianney Perchet

Workshop Learning & Statistics IHES, January 19 2017

CMLA, ENS Paris-Saclay

Motivations & Objectives

- Size of data: n patients with some proba of getting cured
- Choose one of two treatments to prescribe

Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patients as possible

2) **Cumul:** Save as many patients as possible

- Size of data: *n* banners with some proba of click
- Choose one of two ads to display

- Banner clicked or ignored

1) Inference: Find the best ad between the red and blue

2) Cumul: Get as many clicks as possible

- Size of data: *n* auctions with some expected revenue
- Choose one of two strategies(bid/opt out) to follow

01

Auction won or lost

- 1) Inference: Find the best strategy between the red and blue
- 2) Cumul: Win as many profitable auctions as possible

- Size of data: *n* mails with some proba of spam
- Choose one of two actions: spam or ham

10

Mail correctly or incorrectly classified

- 1) Inference: Find the best strategy between the red and blue
- 2) Cumul: Minimize number of errors as possible

- Size of data: n patients with some proba of getting cured
- Choose one of two treatments to prescribe

Patients cured ♥ or dead ♀

1) Inference: Find the best treatment between the red and blue

2) **Cumul:** Save as many patients as possible

- Patients arrive and are treated sequentially.
- Save as many as possible.

Stochastic Multi-Armed Bandit

K-Armed Stochastic Bandit Problems

– K actions $i \in \{1, ..., K\}$, outcome $X_t^i \in \mathbb{R}$ (sub-)Gaussian, bounded

$$X_1^i, X_2^i, \ldots, \sim \mathcal{N}(\mu^i, 1)$$
 i.i.d.

- Non-Anticipative Policy: $\pi_t(X_1^{\pi_1}, X_2^{\pi_2}, \dots, X_{t-1}^{\pi_{t-1}}) \in \{1, \dots, K\}$
- Goal: Maximize expected reward $\sum_{t=1}^{T} \mathbb{E} X_t^{\pi_t} = \sum_{t=1}^{T} \mu^{\pi_t}$
- Performance: Cumulative Regret

$$R_T = \max_{i \in \{1,2\}} \sum_{t=1}^T \mu^i - \sum_{t=1}^T \mu^{\pi_t} = \Delta_i \sum_{t=1}^T \mathbb{1} \{ \pi_t = i \neq \star \}$$

with $\Delta_i = \mu^* - \mu^i$, the "gap" or cost of error i.

7

Most Famous algorithm [Auer, Cesa-Bianchi, Fisher, '02]

• UCB - "Upper Confidence Bound"

$$\pi_{t+1} = \arg\max_{i} \left\{ \overline{X}_{t}^{i} + \sqrt{\frac{2\log(t)}{T^{i}(t)}} \right\},$$

where
$$T^i(t) = \sum_{t=1}^t \mathbb{1}\{\pi_t = i\}$$
 and $\overline{X}_t^i = \frac{1}{T_t^i} \sum_{s:i_s=i} X_s^i$.

Regret:

$$\mathbb{E} R_T \lesssim \sum_k \frac{\log(T)}{\Delta_k}$$

Worst-Case:

$$\mathbb{E} R_T \lesssim \sup_{\Delta} \kappa \frac{\log(T)}{\Delta} \wedge T\Delta$$
$$\approx \sqrt{\kappa T \log(T)}$$

Ideas of proof $\pi_{t+1} = rg \max_i \left\{ \overline{X}_t^i + \sqrt{\frac{2 \log(t)}{T^i(t)}} \right\}$

· 2-lines proof:

$$\pi_{t+1} = i \neq \star \iff \overline{X}_t^{\star} + \sqrt{\frac{2\log(t)}{T^{\star}(t)}} \leq \overline{X}_t^i + \sqrt{\frac{2\log(t)}{T^i(t)}}$$

$$"\implies \Delta_i \leq \sqrt{\frac{2\log(t)}{T^i(t)}} \implies T^i(t) \lesssim \frac{\log(t)}{\Delta_i^2}$$

• Number of mistakes grows as $\frac{\log(t)}{\Delta_i^2}$; each mistake costs Δ_i .

Regret at stage T
$$\lesssim \sum_i \frac{\log(7)}{\Delta_i^2} \times \Delta_i \approx \sum_i \frac{\log(7)}{\Delta_i}$$

- " \Longrightarrow " actually happens with overwhelming proba
- "optimal": no algo can always have a regret smaller than $\sum_i \frac{\log(T)}{\Delta_i}$

9

Other Algos

 Other algo, ETC [Perchet, Rigollet], pulls in round robin then eliminates

$$R_T \lesssim \sum_k \frac{\log(T\Delta^k)}{\Delta^k}$$
, worst case $R_T \leq \sqrt{T\log(K)K}$

Other algo, MOSS [Audibert, Bubeck], variants of UCB

$$R_T \lesssim K \frac{\log(T\Delta^{\min}/K)}{\Delta^{\min}}$$
, worst case $R_T \leq \sqrt{TK}$

• Infinite number of actions $x \in [0,1]^d$ with $\Delta(x)$ 1 Lipschitz. Discretize + UCB gives

$$R_T \lesssim T\varepsilon + \sqrt{\frac{T}{\varepsilon}} \leq T^{2/3}$$

Very interesting....

useful?

no...

Here is a list of reasons

On the basic assumptions

- Stochastic: Data are not iid, patients are different ill-posedness, feature selection/model selection
- 2. Different Timing: several actions for one reward pomdp, learn trade bias/variance
- Delays: Rewards not received instantaneously grouping, evaluations
- Combinatorial: Several decisions at each stage combinatorial optimization, cascading
- 5. Non-linearity: concave gain, diminishing returns, etc

Investigating (past/present/futur) them

Patients are different

- · We assumed (implicitly?) that all patients/users are identical
- Treatments efficiency 9proba of clicks) depend on age, gender...
- Those covariates or contexts are observed/known before taking the decision of blue/red pill

The decision (and regret...) should ultimately depend on it

General Model of Contextual Bandits

- Covariates: $\omega_t \in \Omega = [0, 1]^d$, i.i.d., law μ (equivalent to) λ The cookies of a user, the medical history, etc.
- Decisions: $\pi_t \in \{1,..,K\}$ The decision can (should) depend on the context ω_t
- Reward: $X_t^k \in [0,1] \sim \nu^k(\omega_t)$, $\mathbb{E}[X^k|\omega] = \mu^k(\omega)$ The expected reward of action k depend on the context ω
- Objectives: Find the best decision given the request Minimize regret $R_T := \sum_{t=1}^T \mu^{\pi^*(\omega_t)}(\omega_t) \mu^{\pi_t}(\omega_t)$

Regularity assumptions

1. Smoothness of the pb: Every μ^k is β -hölder, with $\beta \in (0,1]$:

$$\exists L > 0, \ \forall \omega, \omega' \in \mathcal{X}, \ \|\mu(\omega) - \mu(\omega')\| \le L\|\omega - \omega'\|^{\beta}$$

2. Complexity of the pb: (α -margin condition) $\exists C_0 > 0$,

$$\mathbb{P}_{X}\left[0<\left|\mu^{1}(\omega)-\mu^{2}(\omega)\right|<\delta\right] \,\leq\, C_{0}\delta^{\alpha}$$

Regularity assumptions

1. Smoothness of the pb: Every μ^k is β -hölder, with $\beta \in (0,1]$:

$$\exists L > 0, \ \forall \omega, \omega' \in \mathcal{X}, \ \|\mu(\omega) - \mu(\omega')\| \le L \|\omega - \omega'\|^{\beta}$$

2. Complexity of the pb: (α -margin condition) $\exists C_0 > 0$,

$$\mathbb{P}_{X}\left[0<\left|\mu^{\star}(\omega)-\mu^{\sharp}(\omega)\right|<\delta\right]\,\leq\,C_{0}\delta^{\alpha}$$

where $\mu^*(\omega) = \max_k \mu^k(\omega)$ is the maximal μ^k and $\mu^{\sharp}(\omega) = \max \left\{ \mu^k(\omega) \text{ s.t. } \mu^k(\omega) < \mu^*(\omega) \right\}$ is the second max.

With K > 2: μ^* is β -Hölder but μ^{\sharp} is not continuous.

Regularity: an easy example (α big)

Regularity: an easy example (α big)

Regularity: an easy example (α big)

Regularity: an easy example (α big)

Regularity: an easy example (α big)

Regularity: an easy example (α big)

Binned policy

Binned policy

Binned policy

Binned Successive Elimination (BSE)

Theorem [P. and Rigollet ('13)]

If
$$\alpha < 1$$
, $\mathbb{E}[R_T(\mathrm{BSE})] \lesssim T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$, bin side $\left(\frac{K\log(K)}{T}\right)^{\frac{1}{2\beta+d}}$.

For K = 2, matches lower bound: minimax optimal w.r.t. T.

- Same bound with full monit [Audibert and Tsybakov, '07]
- No log(*T*): difficulty of nonparametric estimation washes away the effects of exploration/exploitation.
- α < 1: cannot attain fast rates for easy problems.
- Adaptive partitioning!

Suboptimality of (BSE) for $\alpha \geq 1$

Suboptimality of (BSE) for $\alpha \geq 1$

Adaptive BSE (ABSE)

Theorem [P. and Rigollet ('13)]

For all
$$\alpha$$
, $\mathbb{E}[R_T(\mathrm{ABSE})] \lesssim T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$.

For K = 2, matches lower bound: minimax optimal w.r.t. T.

• Same bound than (BSE) even for easy problems $\alpha \geq$ 1.

This is not the solution

1. **dimensions** dependent bound: $T^{1-\frac{\beta}{2\beta+d}}$

 $d=+\infty$ and $\beta=0$, lots of contexts, no regularity Online selection of models ? Ill-posed pb $\mu(\cdot)$ not β -holder

Estimation/Approx errors

Performance = Approx Error + Regret(β , d, T)

2. Non-stationarity of arms: Value are not i.i.d., evolve with time. Ex. ads for movies.

Cumulative objectives clearly not the solution.

Discount? How, why, at which speeds?

3. Non-stationarity of sets of arms:

Arms arrive and disappears

How incorporate a new arm? which index?

This was really not the solution

1. Non-stationarity of **sets** of arms:

Arms arrive and disappears

How incorporate a new arm? which index?

2. Contexts (covariates) are not in \mathbb{R}^d

Rather descriptions, texts, id, images...How to embed? training set is influenced by algorithms...

Example of Repeated Auctions

Ad slot sold by lemonde.fr. 2nd-price auctions

- · Several (marketing) companies places bids
- · Highest bid wins (...), say criteo, pays to lemonde 2nd bid (...)
- criteo chooses ad of a client, fnac or singapore airlines
- criteo paid by the client if the user clicks on the ad

Main Problem: Repeated auctions with unknown private valuation Learn valuations, find which ad to display & good strategies

Repeated auctions

- 1. Can be modeled as a bandit pb with Extra Structure
- Actually, Criteo (Google, Facebook) paid if the user buys something after the click

Needs several "costly" auctions to seal a deal

Auctions lost can also help to seal deal (competitor displays ad for free)

Optimal strategy in repeated auctions, learn it? (POMDP?)

Reward timing per user, decision timing by opportunities

Other examples - repeated A/B tests

 Companies test new technologies (algo, hardware, etc.) before putting in productions. Sequences of AB tests

Timing of Decisions: each day, continue, stop or validate the current AB test

Timing of Rewards: Total improvements of implemented techno.

 The longer AB test are, the more confident (reduces variance) but less and less implementation

Online tradeoff risks/performances

Rewards are not observed immediately

- Clinical trials: have to wait 6 months to see results.
 - A trial length is 3 year : 6 phases Regret is still \sqrt{T}
- Marketing (ad displays), only see if users buy
 - No feedback is either no sale (forever) or no sale **yet**
 - Build estimators with censured/missing data
 - Feasible with iid data... but they are not!

Combinatorial Structure

Large Decision spaces

- · Choose not to display 1 ad, but 4, 6, 10...
- Paid if sales after click (even if unrelated)
 - Lots of correlations (between products, positions, colors/style of banner, **time**, etc.)

Some products are seen, other are not (carrousels...)

Too many possibilities of (almost) equal performances

Compete with the best
$$R_T \leq \sqrt{KT}$$

but at least top 5%, $R_T \leq \sqrt{\log(K)\frac{1}{5\%}T}$??

Bandit theory is quite neat

To be "applied", or relevant, need LOTS of work

Anybody is welcome to join & collaborate!

Model selection, Feature extractions, Missing Data, Censured Data,

Combinatorial Optimization, New techniques estimators..