IHES, Jan. 19, 2017

Statistics/Learning at Paris-Saclay

Persistent homology for data: stability properties and statistical aspects

Frédéric Chazal DataShape group INRIA Saclay - Ile-de-France frederic.chazal@inria.fr

Introduction

- Data often come as (sampling of) metric spaces or sets/spaces endowed with a similarity measure with, possibly complex, topological/geometric structure.
- Topological Data Analysis (TDA):
 - infer relevant topological and geometric features of these spaces.
 - take advantage of topol./geom. information for further processing of data (classification, recognition, learning, clustering,...).

Examples:

- Build a geometric filtered simplicial complex on top of $\widehat{\mathbb{X}}_m \to$ multiscale topol. structure.
- Compute the persistent homology of the complex \rightarrow multiscale topol. signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures (connections with stability properties).

Filtered simplicial complexes

A multiscale topological structure on top of the data:

a filtered simplicial complex S built on top of a set X is a family $(S_a \mid a \in \mathbf{R})$ of subcomplexes of some fixed simplicial complex \overline{S} with vertex set X s. t. $S_a \subseteq S_b$ for any $a \leq b$.

Example: Let $(\mathbb{X}, d_{\mathbb{X}})$ be a metric space.

• The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for $a \in \mathbf{R}$,

 $[x_0, x_1, \cdots, x_k] \in \operatorname{Rips}(X, a) \Leftrightarrow d_X(x_i, x_j) \leq a$, for all i, j.

 $\widehat{\mathbb{X}}_m$: metric data set

- Build a geometric filtered simplicial complex on top of $\widehat{\mathbb{X}}_m \to$ multiscale topol. structure.
- Compute the persistent homology of the complex \rightarrow multiscale topol. signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures

- Build a geometric filtered simplicial complex on top of $\widehat{\mathbb{X}}_m \to$ multiscale topol. structure.
- Compute the persistent homology of the complex \rightarrow multiscale topol. signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures

• $\operatorname{Filt}(\widehat{\mathbb{X}}_m)$: filtered simplicial complex

- Build a geometric filtered simplicial complex on top of $\widehat{\mathbb{X}}_m \to$ multiscale topol. structure.
- Compute the persistent homology of the complex \rightarrow multiscale topol. signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures

► $\operatorname{Filt}(\widehat{\mathbb{X}}_m)$: filtered simplicial complex

- Build a geometric filtered simplicial complex on top of $\mathbb{X}_m \to \text{multiscale topol. structure.}$
- Compute the persistent homology of the complex \rightarrow multiscale topol. signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures

- Build a geometric filtered simplicial complex on top of $\widehat{\mathbb{X}}_m \to$ multiscale topol. structure.
- Compute the persistent homology of the complex \rightarrow multiscale topol. signature.
- Compare the signatures of "close" data sets \rightarrow robustness and stability results.
- Statistical properties of signatures

Persistence barcode

Distance between persistence diagrams

The bottleneck distance between two diagrams D_1 and D_2 is

$$d_B(D_1, D_2) = \inf_{\gamma \in \Gamma} \sup_{p \in D_1} \|p - \gamma(p)\|_{\infty}$$

where Γ is the set of all the bijections between D_1 and D_2 and $||p - q||_{\infty} = \max(|x_p - x_q|, |y_p - y_q|).$

 \rightarrow Persistence diagrams provide easy to compare topological signatures.

Stability properties

"Stability theorem": Close spaces/data sets have close persistence diagrams! [C., de Silva, Oudot - Geom. Dedicata 2013].

If $\mathbb X$ and $\mathbb Y$ are pre-compact metric spaces, then

Rem: This result also holds for other families of filtrations (particular case of a more general theorem).

Illustration: non rigid shape classification

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP '09]

- Non rigid shapes in a same class are almost isometric, but computing Gromov-Hausdorff distance between shapes is extremely expensive.
- Compare diagrams of sampled shapes instead of shapes themselves.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Examples:

- Let S be a filtered simplicial complex. If V_a = H(S_a) and v^b_a : H(S_a) → H(S_b) is the linear map induced by the inclusion S_a → S_b then (H(S_a) | a ∈ R) is a persistence module.
- Given a metric space (X, d_X) , H(Rips(X)) is a persistence module.
- If f : X → R is a function, then the filtration defined by the sublevel sets of f, F_a = f⁻¹((-∞, a]), induces a persistence module at homology level.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Definition: A persistence module \mathbb{V} is q-tame if for any a < b, v_a^b has a finite rank.

Theorem: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG'09], [C., de Silva, Glisse, Oudot 12]

q-tame persistence modules have well-defined persistence diagrams.

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

An idea about the definition of persistence diagrams:

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Definition: A persistence module \mathbb{V} is q-tame if for any a < b, v_a^b has a finite rank.

Theorem: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG'09], [C., de Silva, Glisse, Oudot 12]

q-tame persistence modules have well-defined persistence diagrams.

Exercise: Let X be a precompact metric space. Then H(Rips(X)) is q-tame.

Recall that a metric space (X, ρ) is precompact if for any $\epsilon > 0$ there exists a finite subset $F_{\epsilon} \subset X$ such that $d_{H}(X, F_{\epsilon}) < \epsilon$ (i.e. $\forall x \in X, \exists p \in F_{\epsilon} \text{ s.t. } \rho(x, p) < \epsilon$).

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

A homomorphism of degree ϵ between two persistence modules $\mathbb U$ and $\mathbb V$ is a collection Φ of linear maps

$$(\phi_a: U_a \to V_{a+\epsilon} \mid a \in \mathbf{R})$$

such that $v_{a+\epsilon}^{b+\epsilon} \circ \phi_a = \phi_b \circ u_a^b$ for all $a \leq b$.

An ε -interleaving between \mathbb{U} and \mathbb{V} is specified by two homomorphisms of degree ϵ $\Phi : \mathbb{U} \to \mathbb{V}$ and $\Psi : \mathbb{V} \to \mathbb{U}$ s.t. $\Phi \circ \Psi$ and $\Psi \circ \Phi$ are the "shifts" of degree 2ϵ between \mathbb{U} and \mathbb{V} .

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Stability Thm: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12] If U and V are q-tame and ϵ -interleaved for some $\epsilon \geq 0$ then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Definition: A persistence module \mathbb{V} is an indexed family of vector spaces $(V_a \mid a \in \mathbb{R})$ and a doubly-indexed family of linear maps $(v_a^b : V_a \to V_b \mid a \leq b)$ which satisfy the composition law $v_b^c \circ v_a^b = v_a^c$ whenever $a \leq b \leq c$, and where v_a^a is the identity map on V_a .

Stability Thm: [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG '09], [C., de Silva, Glisse Oudot 12]

If $\mathbb U$ and $\mathbb V$ are q-tame and $\epsilon\text{-interleaved}$ for some $\epsilon\geq 0$ then

 $d_B(\mathsf{dgm}(\mathbb{U}),\mathsf{dgm}(\mathbb{V})) \leq \epsilon$

Strategy: build filtrations that induce **q-tame** homology persistence modules and that turn out to be ϵ -interleaved when the considered spaces/functions are $O(\epsilon)$ -close.

Some weaknesses

If \mathbb{X} and \mathbb{Y} are pre-compact metric spaces, then

 $d_{\mathrm{b}}(\mathsf{dgm}(\operatorname{Rips}(\mathbb{X})), \mathsf{dgm}(\operatorname{Rips}(\mathbb{Y}))) \leq d_{GH}(\mathbb{X}, \mathbb{Y}).$

 \rightarrow Vietoris-Rips (or Cech, witness) filtrations quickly become prohibitively large as the size of the data increases ($O(|X|^d)$), making the computation of persistence practically almost impossible.

 \rightarrow Persistence diagrams of Rips-Vietoris (and Cěch, witness,..) filtrations and Gromov-Hausdorff distance are very sensitive to noise and outliers.

Statistical setting

 (\mathbb{M},ρ) metric space

 μ a probability measure with compact support $\mathbb{X}_{\mu}.$

Sample m points according to μ .

Examples:

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{Rips}_{\alpha}(\widehat{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{\check{C}ech}_{\alpha}(\widehat{\mathbb{X}}_m)$

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{sublevelset} \operatorname{filtration} \operatorname{of} \rho(., \mathbb{X}_\mu).$

Questions:

• Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_m$)) ? dgm(Filt($\widehat{\mathbb{X}}_m$)) \rightarrow ? as $m \rightarrow +\infty$?

Statistical setting

 μ a probability measure with compact support $\mathbb{X}_{\mu}.$

Sample m points according to μ .

Examples:

 $\operatorname{Filt}(\widehat{\mathbb{X}}_m)$

- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{Rips}_{\alpha}(\widehat{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{\check{C}ech}_{\alpha}(\widehat{\mathbb{X}}_m)$
- $\operatorname{Filt}(\widehat{\mathbb{X}}_m) = \operatorname{sublevelset} \operatorname{filtration} \operatorname{of} \rho(., \mathbb{X}_\mu).$

 $\mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}$

0

 $\widehat{\mathbb{X}}_m$

- Statistical properties of dgm(Filt($\widehat{\mathbb{X}}_m$)) ? dgm(Filt($\widehat{\mathbb{X}}_m$)) \rightarrow ? as $m \rightarrow +\infty$?
- Can we do more statistics with persistence diagrams?

Statistical setting

0

Stability thm: $d_b(dgm(Filt(\mathbb{X}_{\mu})), dgm(Filt(\widehat{\mathbb{X}}_m))) \leq 2d_{GH}(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_m)$

So, for any $\varepsilon > 0$, $\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m}))\right) > \varepsilon\right) \leq \mathbb{P}\left(d_{GH}(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_{m}) > \frac{\varepsilon}{2}\right)$

Deviation inequality

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Deviation inequality

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in X_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Theorem: If μ satisfies the (a, b)-standard assumption, then for any $\varepsilon > 0$:

$$\mathbb{P}\left(\mathrm{d}_{\mathrm{b}}\left(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m}))\right) > \varepsilon\right) \leq \min(\frac{8^{b}}{a\varepsilon^{b}}\exp(-ma\varepsilon^{b}), 1).$$

Deviation inequality

For a, b > 0, μ satisfies the (a, b)-standard assumption if for any $x \in \mathbb{X}_{\mu}$ and any r > 0, we have $\mu(B(x, r)) \ge \min(ar^{b}, 1)$.

Sketch of proof:

- 1. Upperbound $\mathbb{P}\left(d_H(\mathbb{X}_{\mu}, \widehat{\mathbb{X}}_m) > \frac{\varepsilon}{2}\right)$.
- 2. (a, b) standard assumption \Rightarrow an explicit upperbound for the covering number of \mathbb{X}_{μ} (by balls of radius $\varepsilon/2$).
- 3. Apply "union bound" argument.

Minimax rate of convergence

[C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of all the probability measures on the metric space (\mathbb{M}, ρ) satisfying the (a, b)-standard assumption on \mathbb{M} :

Minimax rate of convergence

[C., Glisse, Labruère, Michel ICML'14 - JMLR'15]

Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of all the probability measures on the metric space (\mathbb{M}, ρ) satisfying the (a, b)-standard assumption on \mathbb{M} :

Theorem: Let $\mathcal{P}(a, b, \mathbb{M})$ be the set of (a, b)-standard proba measures on \mathbb{M} . Then:

$$\sup_{\mu \in \mathcal{P}(a,b,\mathbb{M})} \mathbb{E}\left[\mathrm{d}_{\mathrm{b}}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}}_{m})))\right] \leq C\left(\frac{\ln m}{m}\right)^{1/b}$$

where the constant C only depends on a and b (not on $\mathbb{M}!$). Assume moreover that there exists a non isolated point x in \mathbb{M} and let x_m be a sequence in $\mathbb{M} \setminus \{x\}$ such that $\rho(x, x_m) \leq (am)^{-1/b}$. Then for any estimator $\widehat{\operatorname{dgm}}_m$ of $\operatorname{dgm}(\operatorname{Filt}(\mathbb{X}_\mu))$:

$$\liminf_{m \to \infty} \rho(x, x_m)^{-1} \sup_{\mu \in \mathcal{P}(a, b, \mathbb{M})} \mathbb{E}\left[\mathrm{d}_{\mathrm{b}}(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_{\mu})), \widehat{\mathsf{dgm}}_m) \right] \ge C'$$

where C' is an absolute constant.

Remark: we can obtain slightly better bounds if \mathbb{X}_{μ} is a submanifold of \mathbb{R}^{D} - see [Genovese, Perone-Pacifico, Verdinelli, Wasserman 2011, 2012]

Numerical illustrations

- μ : unif. measure on Lissajous curve \mathbb{X}_{μ} . - Filt: distance to \mathbb{X}_{μ} in \mathbb{R}^2 .

- sample k = 300 sets of m points for m = [2100:100:3000].

- compute

$$\widehat{\mathbb{E}}_m = \widehat{\mathbb{E}}[d_B(\mathsf{dgm}(\mathrm{Filt}(\mathbb{X}_\mu)), \mathsf{dgm}(\mathrm{Filt}(\widehat{\mathbb{X}_n})))].$$

- plot $\log(\widehat{\mathbb{E}}_m)$ as a function of $\log(\log(m)/m)$.

Numerical illustrations

Persistence landscapes

Persistence landscape [Bubenik 2012]:

$$\lambda_D(k,t) = \underset{p \in \mathsf{dgm}}{\mathsf{kmax}} \Lambda_p(t), \quad t \in \mathbb{R}, k \in \mathbb{N},$$

where kmax is the kth largest value in the set.

Persistence landscapes

Persistence landscape [Bubenik 2012]:

$$\lambda_D(k,t) = \underset{p \in \mathsf{dgm}}{\mathsf{kmax}} \Lambda_p(t), \quad t \in \mathbb{R}, k \in \mathbb{N},$$

Properties

- For any $t \in \mathbb{R}$ and any $k \in \mathbb{N}$, $0 \leq \lambda_D(k, t) \leq \lambda_D(k+1, t)$.
- For any $t \in \mathbb{R}$ and any $k \in \mathbb{N}$, $|\lambda_D(k,t) \lambda_{D'}(k,t)| \leq d_B(D,D')$ where $d_B(D,D')$ denotes the bottleneck distance between D and D'.

stability properties of persistence landscapes

Persistence landscapes

- Persistence encoded as an element of a functional space (vector space!).
- Expectation of distribution of landscapes is well-defined and can be approximated from average of sampled landscapes.
- process point of view: convergence results and convergence rates → confidence intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]

To summarize

Wasserstein distance

Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probability measures on \mathbb{M} with finite p-moments ($p \ge 1$).

"The" Wasserstein distance $W_p(\mu, \nu)$ quantifies the optimal cost of pushing μ onto ν , the cost of moving a small mass dx from x to y being $\rho(x, y)^p dx$.

- Transport plan: Π a proba measure on $M \times M$ such that $\Pi(A \times \mathbb{R}^d) = \mu(A)$ and $\Pi(\mathbb{R}^d \times B) = \nu(B)$ for any borelian sets $A, B \subset M$.
- Cost of a transport plan:

$$C(\Pi) = \left(\int_{M \times M} \rho(x, y)^p d\Pi(x, y)\right)^{\frac{1}{p}}$$

• $W_p(\mu,\nu) = \inf_{\Pi} C(\Pi)$

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$.

Remarks:

- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distributions, not for expectations) ;

- Extended to point process setting y L. Decreusefond et al;

- $m^{\overline{p}}$ cannot be replaced by a constant.

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$.

Consequences:

- Subsampling: efficient and easy to parallelize algorithm to infer topol. information from huge data sets.
- Robustness to outliers.
- R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

(Sub)sampling and stability of expected landscapes

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Theorem: Let (\mathbb{M}, ρ) be a metric space and let μ , ν be probal measures on \mathbb{M} with compact supports. We have

$$\|\Lambda_{\mu,m} - \Lambda_{\nu,m}\|_{\infty} \le m^{\frac{1}{p}} W_p(\mu,\nu)$$

where W_p denotes the Wasserstein distance with cost function $\rho(x, y)^p$. **Proof:**

1.
$$W_p(\mu^{\otimes m}, \nu^{\otimes m}) \leq m^{\frac{1}{p}} W_p(\mu, \nu)$$

- 2. $W_p(P_{\mu}, P_{\nu}) \leq W_p(\mu^{\otimes m}, \nu^{\otimes m})$ (stability of persistence!)
- 3. $\|\Lambda_{\mu,m} \Lambda_{\nu,m}\|_{\infty} \leq W_p(P_\mu, P_\nu)$ (Jensen's inequality)

(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: Circle with one outlier.

(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: 3D shapes

From n = 100 subsamples of size m = 300

(Sub)sampling and stability of expected landscapes [C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

(Toy) Example: Accelerometer data from smartphone.

spatial time series (accelerometer data from the smarphone of users).
no registration/calibration preprocessing step needed to compare!

Thank you for your attention!

Collaborators: V. de Silva, B. Fasy, D. Cohen-Steiner, M. Glisse, L. Guibas, C. Labruère, F. Lecci, F. Memoli, B. Michel, S. Oudot, A. Rinaldo, L. Wasserman

Software:

- The Gudhi library (C++): https://project.inria.fr/gudhi/software/
- R package TDA