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e Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with, possibly complex, topological /geometric structure.

e Topological Data Analysis (TDA):
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data

(classification, recognition, learning, clustering,...).



Persistent homology for (point cloud) data

Examples:
- Filt(X) = Rips,, (X)
- Filt(X) = Cechq (X)

- Filt(X) = sublevelset filtration of a distance function. .,
dgm(Filt(X))
* X ¢/ —n
" .* Build topol. Persistent
Ce s e structure homology
o o.° 0

Build a geometric filtered simplicial complex on top of X,, — multiscale topol.
structure.

Compute the persistent homology of the complex — multiscale topol. signature.

Compare the signatures of “close” data sets — robustness and stability results.

Statistical properties of signatures (connections with stability properties).



Filtered simplicial complexes

............

A multiscale topological structure on top of the data:

a filtered simplicial complex S built on top of a set X is a family (S, | a € R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. S C Sy
for any a < b.

Example: Let (X, dx) be a metric space.
e The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for
a € R,

(xo, 1, -+ ,xk] € Rips(X,a) < dx (i, z;) < a, foralli,j.



Persistent homology for (point cloud) data
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Xm: metric data set

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets
— robustness and stability results.

e Statistical properties of signatures
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Xm: metric data se

k» Filt(X,, ): filtered simplicial complex

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets
— robustness and stability results.

e Statistical properties of signatures
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Xom: metric data ge

k» Filt(X,, ): filtered simplicial complex

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets
— robustness and stability results.

e Statistical properties of signatures
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............

i

AN

X, metric data set

k» Filt(X,, ): filtered simplicial complex

e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets
— robustness and stability results.

e Statistical properties of signatures
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Persistence barcode
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e Build a geometric filtered simplicial complex
on top of X,, — multiscale topol. structure.

e Compute the persistent homology of the
complex — multiscale topol. signature.

e Compare the signatures of “close” data sets Persistence diagram

— robustness and stability results. >

e Statistical properties of signatures



Distance between persistence diagrams
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The bottleneck distance between two diagrams D and D5 is

dp(D1, D) = WirélfF Sup o — () ||oc
D 1

where I' is the set of all the bijections between D1 and D5 and ||p — ¢l =

max(|zp — Zql, [Yp — Yal)-

— Persistence diagrams provide easy to compare topological signatures.



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

(23 (dgm(Rips(X)),dgm(Rips(Y))) < 2deu (X, Y).

Gromov-Hausdorff distance

dau(X,Y) := , ivfllfm da (711 (X), v2(X))

Z, metric space, 71 : X =+ Zandvy2 : Y — Z
Isometric embeddings.

Bottleneck distance

Rem: This result also holds for other families of filtrations (particular case of a more general
theorem).



lllustration: non rigid shape classification
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e Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

e Compare diagrams of sampled shapes instead of shapes themselves.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €
R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Examples:

o Let S be a filtered simplicial complex. If V, = H(S,) and v2 : H(S,) — H(Ss)
is the linear map induced by the inclusion S, — S; then (H(S;) | a € R) is
a persistence module.

e Given a metric space (X, dx) , H(Rips(X)) is a persistence module.

o If f: X — R is a function, then the filtration defined by the sublevel sets of
f, Fo = f ' ((—00,al]), induces a persistence module at homology level.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Definition: A persistence module V is g-tame if for any a < b, v° has a finite rank.

Theorem:

g-tame persistence modules have well-defined persistence diagrams.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

An idea about the definition of persistence diagrams:

Measures on rectangles:

Number of points in any rectangle |a,b] X |[c,d]
above the diagonal:

rk(vy) — rk(vg) + rk(vff) — rk(vg)




Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Definition: A persistence module V is g-tame if for any a < b, v° has a finite rank.

Theorem:

g-tame persistence modules have well-defined persistence diagrams.

Exercise: Let X be a precompact metric space. Then H(Rips(X)) is g-tame.

Recall that a metric space (X, p) is precompact if for any € > O there exists a finite subset F'e C X such that d g7 (X, F¢) < € (i.e.
Ve € X,3dp € Fe s.t. p(x,p) < €).



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.
A homomorphism of deg-ree € betwe.en two pgrsis— [7a [7b
tence modules U and V is a collection ® of linear
maps \ () \
(0 : Uy = Vare | a € R) Jote — pp J/bFe

such that vgiz O (pg = Pp © ug for all a <b.

An e-interleaving between U and V is specified by two homomorphisms of degree ¢
®:U—->Vand ¥ :V 5> Ust. PoV¥ and ¥ o & are the “shifts” of degree 2¢

between U and V.

2
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Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Stability Thm:

If U and V are g-tame and e-interleaved for some ¢ > 0 then

dp(dgm(U),dgm(V)) < e



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (V, | a €

R) and a doubly-indexed family of linear maps (v% : Vo, — V4 | a < b) which satisfy

the composition law v¢ o v2 = v¢ whenever a < b < ¢, and where v? is the identity

map on V.

Stability Thm:

If U and V are g-tame and e-interleaved for some ¢ > 0 then

dp(dgm(U),dgm(V)) < e

Strategy: build filtrations that induce g-tame homology persistence modules
and that turn out to be c-interleaved when the considered spaces/functions are

O(e)-close.



Some weaknesses

If X and Y are pre-compact metric spaces, then

dp (dgm(Rips(X)),dgm(Rips(Y))) < deu (X, Y).

— Vietoris-Rips (or Cech, witness) filtrations quickly become prohibitively large as
the size of the data increases ( O(|X|%) ), making the computation of persistence
practically almost impossible.

— Persistence diagrams of Rips-Vietoris (and Cé&ch, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
- Filt(Xm) = Rips, (Xim)
. - Filt(Xpm) = Cecha (X))
Sample m points -~
» P - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. e

AN

dgm(Filt(X

Questions:
e Statistical properties of dgm(Filt(X,»)) ? dgm(Filt(X.n)) —7? as m — +00?



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
- Filt(Xm) = Rips, (Xim)
. - Filt(Xpm) = Cecha (X))
Sample m points -~
» P - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. e
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dgm(Filt(X

Questions:
e Statistical properties of dgm(Filt(X,»)) ? dgm(Filt(X.n)) —7? as m — +00?

e Can we do more statistics with persistence diagrams?



Statistical setting

(M, p) metric space
1t a probability measure with compact support X,,.

Examples: R
_ Filt(Xom) = Rips,, (Xm)
Sample m points - Filt(Xm) = Cecha (Xim)
. - Filt(X;,) = sublevelset filtration of p(.,X,,).
according to L. oo

AN

dgm(Filt(X

AN

Stability thm: dp,(dgm(Filt(X,)), dgm(Filt(X,))) < 2dan (X, Xom)

So, for any € > 0,

P (db (dgm(Filt(XM)),dgm(Filt(Xm))) > s) <P (daH(Xme) > %)



Deviation inequality

—n ° '
G .
X1, Xz, X o Xm 2
I.I.d. sampled ‘. L
according to L. e o.°

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,r)) > min(ar’, 1).



Deviation inequality

—n ° '
* S . —
X1, Xz, X o Xm 2
I.I.d. sampled ‘. L
according to L. e o.°

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,r)) > min(ar’, 1).

Theorem: If u satisfies the (a, b)-standard assumption, then for any € > 0:

P (db (dgm(Filt(Xu)),dgm(Filt(Xm))) > 5) < min(a8—; exp(—mae’), 1).



Deviation inequality

* S . —
X1, Xz, X o Xm 2
I.I.d. sampled ‘. L
according to L. e o.°

For a,b > 0, u satisfies the (a, b)-standard assumption if for any x € X,, and any
r > 0, we have u(B(z,r)) > min(ar’, 1).

Sketch of proof:
1. Upperbound P (dH(XM,Xm) > %)

2. (a,b) standard assumption = an explicit upperbound for the covering number

of X,, (by balls of radius £/2). 7

3. Apply “union bound” argument.
C(e) < P(g/2)
+ w(B(z,e/2)) > a(e/2)"



Minimax rate of convergence

Let P(a,b, M) be the set of all the probability measures on the metric space (M, p)
satisfying the (a, b)-standard assumption on M:



Minimax rate of convergence

Let P(a,b, M) be the set of all the probability measures on the metric space (M, p)
satisfying the (a, b)-standard assumption on M:

Theorem: Let P(a,b, M) be the set of (a, b)-standard proba measures on M. Then:

A {db(dgm(Fﬂt(Xu)),dgm(Fﬂt(Xm)))} <C (m_W)l/b

pEP(a,b,M) m

where the constant C only depends on a and b (not on M!). Assume moreover that
there exists a non isolated point x in M and let x,, be a sequence in M \ {z} such

that p(z, zm) < (am)~*/® . Then for any estimator d/gam of dgm(Filt(X,,)):

liminf p(z, zm)” " sup E [db(dgm(Filt(Xu)), d/g?nm)} > ('

m=r oo nEP(a,b,M)

where C’ is an absolute constant.

Remark: we can obtain slightly better bounds if X,, is a submanifold of RY - see [Genovese,
Perone-Pacifico,Verdinelli, Wasserman 2011, 2012]



Numerical illustrations

e
Multiplicity 4 —

- w: unif. measure on Lissajous curve X, . — =~
- Filt: distance to X,u In RQ. 3351 |y = 099287 +2.2274 linear |
- sample k£ = 300 sets of m points for m = 4}
[2100 . 100 . 3000] 345
- compute el
E.. = E[ds(dgm(Filt(X,)), dgm(Filt(X))]. |

AN

- plot log(E,,) as a function of 3%

log(log(m)/m) é -5.I95 -5.I9 -5.IE55 -5.IEE -5.:7'5 -5.I.'f' -5.:35 -5.IE -5_I55



Numerical illustrations

- w: unif. measure on a torus X,,.

- Filt: distance to X, in R”.

- sample k = 300 sets of n points for m =
(12000 : 1000 : 21000].

- compute

E.. = E[ds(dgm(Filt(X,)), dgm(Filt(Xm)))].

- plot log(E,)
log(log(m)/m).
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Persistence landscapes
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Ap(t) = qd—t te (X4, d]
0 otherwise.

Persistence landscape [Bubenik 2012]:

Ap(k,t) = kmax A,(t), teR keN,

pedgm

where kmax is the kth largest value in the set.



Persistence landscapes
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Persistence landscape [Bubenik 2012]:

Ap(k,t) = kmax A,(t), teR keN,

pedgm
Properties
e Foranyt € Randany k€N, 0 < Ap(k,t) < Ap(k+1,¢).
e Foranyt € R and any k € N, |Ap(k,t) — Ap/(k,t)| < dp(D,D") where

dg (D, D") denotes the bottleneck distWD and D’.

stability properties of persistence landscapes



Persistence landscapes

2
Ad SR
I‘ _______
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: P
- />O<\ , b

e Persistence encoded as an element of a functional space (vector space!).

e Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

e process point of view: convergence results and convergence rates — confidence
Intervals can be computed using bootstrap.



To summarize

* X o« —
X1’X27...7Xm o. m o
I.I.d. sampled ‘. . L
according to L. e o.°

Bootstrap
Repeat n times: A1 (¢ * E[X:(t)]
I>\ (t) — Ap(t)]

5 X

m — OO

Stability w.r.t. u?




VWasserstein distance

Let (M, p) be a metric space and let i, v be probability measures on M with finite
p-moments (p > 1).

“The" Wasserstein distance W, (i, ) quantifies the optimal cost of pushing u onto
v, the cost of moving a small mass dx from = to y being p(x,y)’dx.

Ci1/ N\------"""°° >
dl e Transport plan: II a proba measure on

. M x M such that II(A x R%) = u(A)
C; O o _?T_ijj and II(R* x B) = v(B) for any borelian
Q LY sets A, B C M.
d;

Q e PO : E e Cost of a transport plan:

O : _- _ﬁ o ;O C(II) = (/MxM px, y)" dll(z, y)) ’

o W,(u,v) = inf C(II)

K =



(Sub)sampling and stability of expected landscapes

. % ) .
—n P—
at X17X27°” 7Xm: ,Lb®m '..
I.i.d. sampled ° - P, = &, (u®™)
according to u. *
g Ay (t) = Ep, [A(H)

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-

tions, not for expectations) ;

- Extended to point process setting y L. Decreusefond et al;

1
- mP cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

. % '..
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t X17X27°” 7Xm: ,u®m ':
I.i.d. sampled * . . P, =@, (u®™)

ding to L.
according to u Apm(t) =Ep, [A(2)]

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.
Consequences:

e Subsampling: efficient and easy to parallelize algorithm to infer topol. information
from huge data sets.

e Robustness to outliers.

e R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/



(Sub)sampling and stability of expected landscapes

. % '..
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at X17X27°” 7Xm: ,u®m '..
I.i.d. sampled * . . P, =@, (u®™)

ding to L.
according to u Apm(t) =Ep, [A(2)]

Theorem: Let (M, p) be a metric space and let i, v be proba measures on M with
compact supports. We have

1
[Ap,m — Avmlloo < meWy(p,v)

where W, denotes the Wasserstein distance with cost function p(x,y)?.
Proof:

1
L Wy (u®™, v®™) < m Wiy (u, v)

2. Wy(Py,P,) < Wy(u®™,v®™) (stability of persistence!)
3. ||Aum — Avmlloo < Wy(P,, P,) (Jensen’s inequality)



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.

XN + (0,0) Diagrams Dy, and Dy, (dim 1) 1st Landscape (dim 1)
o _ <
— \ - N
N - landscape of Xy
o A o = |andscape of Yy
o ] 0 _ -
- "J:" o
S [ ES i = -
Lo
o - g - ”D" -
A DXN

o _ o _ v P o

| | | | r 7 | | | | < | | | |

-1.0 -0.5 0.0 0.5 1.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0



(Sub)sampling and stability of expected landscapes

Example: 3D shapes

Average Landscapes Dissimilarity Matrix

+ a= « camel

flam. ele. camel

lion

| l J | J ' ' camel ele. flam. lion
0.00 0.10 0.20 0.30

‘\

From n = 100 subsamples of size m = 300




(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.
Walking Experiment with iPhone app

fred . i
© Dim 0, Mean 2nd Landscape with 95% band
_ o
o _| — fred
o] © fabri
a o | — bertrand
(Ty]
24\ .
| | | | | | | S
1000 1020 1040 1060 1080 1100 1120
o
N -
fabri o
. S 5 | | |
(Ty]
o 0.0 0.5 1.0 15
-
F. B - -
o ] Dim 1, Mean 1st Landscape with 95% band
S 4 | | | | | | [
I.'\.! ]
1000 1020 1040 1060 1080 1100 1120 e
2 _
P
betrand
2
o o
1 Ty
(Ty] [ T
0 | S _
e | | | T T | | o T | T |
1000 1020 1040 1060 1080 1100 1120 0.0 0.5 1.0 1.5

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!



Thank you for your attention!

Collaborators: V. de Silva, B. Fasy, D. Cohen-Steiner, M. Glisse, L. Guibas, C.
Labruere, F. Lecci, F. Memoli, B. Michel, S. Oudot, A. Rinaldo, L. Wasserman

Software:
e The Gudhi library (C++): https://project.inria.fr/gudhi/software/

e R package TDA
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