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Introduction

• Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with, possibly complex, topological/geometric structure.

• Topological Data Analysis (TDA):
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data
(classification, recognition, learning, clustering,...).

[distribution of galaxies]
[Non-rigid shape database]



Persistent homology for (point cloud) data

∞

0
0

X Filt(X)

dgm(Filt(X))

Build topol.
structure

Persistent
homology

• Build a geometric filtered simplicial complex on top of X̂m → multiscale topol.
structure.

• Compute the persistent homology of the complex → multiscale topol. signature.

• Compare the signatures of “close” data sets → robustness and stability results.

• Statistical properties of signatures (connections with stability properties).

Examples:
- Filt(X) = Ripsα(X)
- Filt(X) = Čechα(X)
- Filt(X) = sublevelset filtration of a distance function.



Filtered simplicial complexes

a filtered simplicial complex S built on top of a set X is a family (Sa | a ∈ R) of
subcomplexes of some fixed simplicial complex S with vertex set X s. t. Sa ⊆ Sb
for any a ≤ b.

Example: Let (X, dX) be a metric space.

• The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for
a ∈ R,

[x0, x1, · · · , xk] ∈ Rips(X, a)⇔ dX(xi, xj) ≤ a, for all i, j.

A multiscale topological structure on top of the data:



Persistent homology for (point cloud) data
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• Statistical properties of signatures

X̂m: metric data set
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Persistent homology for (point cloud) data

Persistence barcode

• Build a geometric filtered simplicial complex
on top of X̂m → multiscale topol. structure.

• Compute the persistent homology of the
complex → multiscale topol. signature.

• Compare the signatures of “close” data sets
→ robustness and stability results.

• Statistical properties of signatures

X̂m: metric data set

Filt(X̂m): filtered simplicial complex

Persistence diagram



The bottleneck distance between two diagrams D1 and D2 is

dB(D1, D2) = inf
γ∈Γ

sup
p∈D1

‖p− γ(p)‖∞

where Γ is the set of all the bijections between D1 and D2 and ‖p − q‖∞ =
max(|xp − xq|, |yp − yq|).

Distance between persistence diagrams

birth

death

∞

0

Multiplicity: 2

Add the diagonal

D1

D2

→ Persistence diagrams provide easy to compare topological signatures.



Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ 2dGH(X,Y).

Bottleneck distance Gromov-Hausdorff distance

Rem: This result also holds for other families of filtrations (particular case of a more general
theorem).

[C., de Silva, Oudot - Geom. Dedicata 2013].

dGH(X,Y) := inf
Z,γ1,γ2

dH(γ1(X), γ2(X))

Z metric space, γ1 : X→ Z and γ2 : Y→ Z
isometric embeddings.



Illustration: non rigid shape classification
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MDS using bottleneck distance.

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP ’09]

• Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

• Compare diagrams of sampled shapes instead of shapes themselves.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Examples:

• Let S be a filtered simplicial complex. If Va = H(Sa) and vba : H(Sa)→ H(Sb)
is the linear map induced by the inclusion Sa ↪→ Sb then (H(Sa) | a ∈ R) is
a persistence module.

• Given a metric space (X, dX) , H(Rips(X)) is a persistence module.

• If f : X → R is a function, then the filtration defined by the sublevel sets of
f , Fa = f−1((−∞, a]), induces a persistence module at homology level.



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

An idea about the definition of persistence diagrams:

a b
c

d
Number of points in any rectangle [a, b] × [c, d]
above the diagonal:

rk(vcb)− rk(vdb ) + rk(vda)− rk(vca)

Measures on rectangles:

a b c d



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Definition: A persistence module V is q-tame if for any a < b, vba has a finite rank.

Theorem:

q-tame persistence modules have well-defined persistence diagrams.

Exercise: Let X be a precompact metric space. Then H(Rips(X)) is q-tame.

Recall that a metric space (X, ρ) is precompact if for any ε > 0 there exists a finite subset Fε ⊂ X such that dH (X, Fε) < ε (i.e.
∀x ∈ X, ∃p ∈ Fε s.t. ρ(x, p) < ε).

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG’09], [C., de Silva, Glisse,
Oudot 12]



Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

A homomorphism of degree ε between two persis-
tence modules U and V is a collection Φ of linear
maps

(φa : Ua → Va+ε | a ∈ R)

such that vb+εa+ε ◦ φa = φb ◦ uba for all a ≤ b.

Ua U b

V a+ε V b+ε

An ε-interleaving between U and V is specified by two homomorphisms of degree ε
Φ : U → V and Ψ : V → U s.t. Φ ◦ Ψ and Ψ ◦ Φ are the “shifts” of degree 2ε
between U and V.

Ua

V a+ε

Ua+2ε

V a+3ε· · ·

· · ·
φa

ψa+ε

ua+2ε
a

va+3ε
a+ε

· · ·

· · ·
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Where do stability results come from?

Definition: A persistence module V is an indexed family of vector spaces (Va | a ∈
R) and a doubly-indexed family of linear maps (vba : Va → Vb | a ≤ b) which satisfy
the composition law vcb ◦ vba = vca whenever a ≤ b ≤ c, and where vaa is the identity
map on Va.

Stability Thm:

If U and V are q-tame and ε-interleaved for some ε ≥ 0 then

dB(dgm(U), dgm(V)) ≤ ε

Strategy: build filtrations that induce q-tame homology persistence modules
and that turn out to be ε-interleaved when the considered spaces/functions are
O(ε)-close.

[C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG ’09], [C., de Silva, Glisse,
Oudot 12]



Some weaknesses

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

→ Vietoris-Rips (or Cech, witness) filtrations quickly become prohibitively large as
the size of the data increases ( O(|X|d) ), making the computation of persistence
practically almost impossible.

→ Persistence diagrams of Rips-Vietoris (and Cěch, witness,..) filtrations and
Gromov-Hausdorff distance are very sensitive to noise and outliers.



Statistical setting
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(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Questions:

• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?
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• Statistical properties of dgm(Filt(X̂m)) ? dgm(Filt(X̂m))→? as m→ +∞?

• Can we do more statistics with persistence diagrams?



Statistical setting

∞

0
0

X̂m Filt(X̂m)

dgm(Filt(X̂m))
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Examples:
- Filt(X̂m) = Ripsα(X̂m)

- Filt(X̂m) = Čechα(X̂m)

- Filt(X̂m) = sublevelset filtration of ρ(.,Xµ).

Stability thm: db(dgm(Filt(Xµ)), dgm(Filt(X̂m))) ≤ 2dGH(Xµ, X̂m)

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ P

(
dGH(Xµ, X̂m) >

ε

2

)So, for any ε > 0,



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Xµ compact

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem: If µ satisfies the (a, b)-standard assumption, then for any ε > 0:

P
(

db

(
dgm(Filt(Xµ)), dgm(Filt(X̂m))

)
> ε
)
≤ min(

8b

aεb
exp(−maεb), 1).

Xµ compact

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Deviation inequality

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ Xµ and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Sketch of proof:

1. Upperbound P
(
dH(Xµ, X̂m) > ε

2

)
.

2. (a, b) standard assumption⇒ an explicit upperbound for the covering number
of Xµ (by balls of radius ε/2).

3. Apply “union bound” argument.

Xµ compact

C(ε) ≤ P (ε/2)

+ µ(B(x, ε/2)) ≥ a(ε/2)b

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ρ)
satisfying the (a, b)-standard assumption on M:

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Minimax rate of convergence

Let P(a, b,M) be the set of all the probability measures on the metric space (M, ρ)
satisfying the (a, b)-standard assumption on M:

Remark: we can obtain slightly better bounds if Xµ is a submanifold of RD - see [Genovese,
Perone-Pacifico,Verdinelli, Wasserman 2011, 2012]

Theorem: Let P(a, b,M) be the set of (a, b)-standard proba measures on M. Then:

sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), dgm(Filt(X̂m)))

]
≤ C

(
lnm

m

)1/b

where the constant C only depends on a and b (not on M!). Assume moreover that
there exists a non isolated point x in M and let xm be a sequence in M \ {x} such

that ρ(x, xm) ≤ (am)−1/b . Then for any estimator d̂gmm of dgm(Filt(Xµ)):

lim inf
m→∞

ρ(x, xm)−1 sup
µ∈P(a,b,M)

E
[
db(dgm(Filt(Xµ)), d̂gmm)

]
≥ C′

where C′ is an absolute constant.

[C., Glisse, Labruère, Michel ICML’14 - JMLR’15]



Numerical illustrations

- µ: unif. measure on Lissajous curve Xµ.
- Filt: distance to Xµ in R2.
- sample k = 300 sets of m points for m =
[2100 : 100 : 3000].
- compute

Êm = Ê[dB(dgm(Filt(Xµ)), dgm(Filt(X̂n)))].

- plot log(Êm) as a function of
log(log(m)/m).



Numerical illustrations

- µ: unif. measure on a torus Xµ.
- Filt: distance to Xµ in R3.
- sample k = 300 sets of n points for m =
[12000 : 1000 : 21000].
- compute

Êm = Ê[dB(dgm(Filt(Xµ)), dgm(Filt(X̂m)))].

- plot log(Êm) as a function of
log(log(m)/m).



Persistence landscapes
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) ∈ D,

Λp(t) =


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2
]

d− t t ∈ ( b+d
2
, d]

0 otherwise.

Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

where kmax is the kth largest value in the set.
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Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈dgm

Λp(t), t ∈ R, k ∈ N,

Properties

• For any t ∈ R and any k ∈ N, 0 ≤ λD(k, t) ≤ λD(k + 1, t).

• For any t ∈ R and any k ∈ N, |λD(k, t) − λD′(k, t)| ≤ dB(D,D′) where
dB(D,D′) denotes the bottleneck distance between D and D′.

stability properties of persistence landscapes



Persistence landscapes

b
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d+b
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• Persistence encoded as an element of a functional space (vector space!).

• Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

• process point of view: convergence results and convergence rates → confidence
intervals can be computed using bootstrap.

[C., Fasy, Lecci, Rinaldo, Wasserman SoCG 2014]



To summarize

X̂m Filt(X̂m)

(M, ρ, µ)

X1, X2, · · · , Xm
i.i.d. sampled

according to µ.

Xµ compact

Repeat n times: λ1(t), · · · , λn(t) → λn(t) ΛP (t) = E[λi(t)]

λXµ(t)

|λn(t)− ΛP (t)|

Bootstrap

|λXP
(t)− ΛP (t)| →

0 as m
→∞

Stability w.r.t. µ?

m→∞



Wasserstein distance
Let (M, ρ) be a metric space and let µ, ν be probability measures on M with finite
p-moments (p ≥ 1).

“The” Wasserstein distance Wp(µ, ν) quantifies the optimal cost of pushing µ onto
ν, the cost of moving a small mass dx from x to y being ρ(x, y)pdx.

• Transport plan: Π a proba measure on
M ×M such that Π(A × Rd) = µ(A)
and Π(Rd × B) = ν(B) for any borelian
sets A,B ⊂M .

• Cost of a transport plan:

C(Π) =

(∫
M×M

ρ(x, y)pdΠ(x, y)

) 1
p

• Wp(µ, ν) = infΠ C(Π)



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Remarks:
- similar results by Blumberg et al (2014) in the (Gromov-)Prokhorov metric (for distribu-
tions, not for expectations) ;
- Extended to point process setting y L. Decreusefond et al;

- m
1
p cannot be replaced by a constant.



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Consequences:
• Subsampling: efficient and easy to parallelize algorithm to infer topol. information

from huge data sets.

• Robustness to outliers.

• R package TDA +Gudhi library: https://project.inria.fr/gudhi/software/

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

X̂m Filt(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EPµ [λ(t)]

µ⊗m
λFilt(X̂m)

Φ

Pµ = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Proof:

1. Wp(µ
⊗m, ν⊗m) ≤ m

1
pWp(µ, ν)

2. Wp(Pµ, Pν) ≤Wp(µ
⊗m, ν⊗m) (stability of persistence!)

3. ‖Λµ,m − Λν,m‖∞ ≤Wp(Pµ, Pν) (Jensen’s inequality)

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes

Example: Circle with one outlier.

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



(Sub)sampling and stability of expected landscapes
[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]

Example: 3D shapes

From n = 100 subsamples of size m = 300



(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!

[C., Fasy, Lecci, Michel, Rinaldo, Wasserman ICML 2015]



Thank you for your attention!

Collaborators: V. de Silva, B. Fasy, D. Cohen-Steiner, M. Glisse, L. Guibas, C.
Labruère, F. Lecci, F. Memoli, B. Michel, S. Oudot, A. Rinaldo, L. Wasserman

• The Gudhi library (C++): https://project.inria.fr/gudhi/software/

• R package TDA

Software:
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