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1 LTCI, Télécom ParisTech, Université Paris-Saclay
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This talk

Random vector X = (X 1, . . . ,X d), d ‘large’

• Focus on extremes : L
[
X
∣∣∣ ‖X‖ � 1

]
≈ µ

• Dimension reduction:

Identify supporting subspaces of µ (?)

Multivariate extreme value theory (MEVT) tells us:

(?) ⇐⇒ Identify the groups of features α ⊂ {1, . . . d} which may be
large together (while the others stay small), given that one of them is

large.

1. Support recovery, finite sample error, concentration
(Goix, S., Clémençon, 15, 16)

2. Subspaces/features clustering Chiapino, S., 2016
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Outline
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It cannot rain everywhere at the same time

(daily precipitation)

(air pollutants)

question (e.g. for risk management):
Which groups of sensors/components are likely to be jointly impacted ?
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Applications to risk management

Sensors network (road traffic, river streamflow, temperature, internet
traffic . . . ):

→ extreme event = traffic jam, flood, heatwave, network congestion

→ question: which groups of sensors are likely to be jointly impacted ?

→ how to define alert regions (alert groups of features)?

spatial case: one feature = one sensor
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Applications to anomaly detection

• Training step:
Learn a ‘normal region’ (e.g. approximate support)

• Prediction step: (with new data)
Anomalies = points outside the ‘normal region’

If ‘normal’ data are heavy tailed, Abnormal 6⇔ Extreme .
There may be extreme ‘normal data’.

How to distinguish between large anomalies and normal extremes?
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Multivariate extremes

• Random vectors X = (X1, . . . ,Xd ,) ; Xj ≥ 0

• Margins: Xj ∼ Fj , 1 ≤ j ≤ d (continuous).

• Preliminary step: Standardization Vj = 1
1−Fj (Xj ))

, P(Vj > v) = 1
v .

• Goal : P(V ∈ A), A ’far from 0’ ?
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Regular variation assumption de Haan, Resnick, 70’s, 80’s

0 /∈ Ā : t P
(

V

t
∈ A

)
−−−→
t→∞

µ(A), µ : Exponent measure

Polar coordinates (R = ‖V‖,W = V
‖V‖): a product dµ(r ,w) = dr

r2
dΦ(w).

Φ: a finite angular measure on the sphere, Φ(B) = µ{tB, t ≥ 1}.

‘model’ for large V ’s: P
(
‖V‖ ≥ r ; V

‖V‖ ∈ B
)
≈ r−1 Φ(B)
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Estimation of the dependence structure: Φ(B) or µ[0, x ]c

• Flexible multivariate models for moderate dimension (d ' 5)

Dirichlet Mixtures (Boldi,Davison 07; S., Naveau 12), Logistic family (Stephenson

09, Fougères et.al, 13), Pairwise Beta (Cooley et.al) . . .

• Asymptotic theory: rates under second order conditions

(Einmahl, 01) Empirical likelihood (Einmahl, Segers 09) Asymptotic normality

(Einmahl et. al., 12, 15) (parametric)

• Finite sample error bounds, non parametric, on

sup
x�R
|µ̂n[0, x ]c − µ[0, x ]c | (Goix, S., Clémençon, 15)

Does not tell ‘which components may be large together’
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A bound on the stdf
x ∈ R+

d \ {0}, l(x) = µ[0, 1/x]c .
k = o(n), k →∞,
Rank transform: F̂j(x) = 1

n

∑
1
X j
i ≤x

V̂ j
i = 1

1−F̂j (X
j
i )

Empirical estimator of l

ln(x) =
n

k

(
1

n

n∑
1

δ
V̂ j
i

(n
k

[
0, 1/x

]c))

Theorem (Goix, S. Clémençon, 15)

for T > 7
2

(
log d
k + 1

)
, δ > e−k ,

sup
0�x�T

|ln − l |(x) ≤ Cd

√
T

k
log

d + 3

δ
+ Bias n

k
,T (F , µ)

Existing litterature (d = 2): Einmahl Segers 09, Einmahl et.al. 01: asymptotic,
O(1/

√
k).
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Tools for the proof
N.B

Bias n
k
,T (F , µ) = sup

0�x�T

∣∣n
k
P
(
∃j ≤ d : 1− Fj(X

j) ≤ k

n
xj

)
− l(x)

∣∣
n→∞−−−→ 0 (regular variation assumption)

1. Mc Diarmid (98) ’s Bernstein type concentration inequality involving
the variance of martingale differences.

2. → VC inequality for small probability classes (Goix et.al., 2015)

→ max deviations ≤ √p × (usual bound)

3. Apply it on VC-class of rectangles {kn [0, x]c}

→ p ≤ d
kT

n
⇒ sup

α
|µ̂n − µ|(Rεα) ≤ Cd

√
T

k
log

d

δ
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Back to problem: ‘which components may be large
together, while the others are small?’

• Φ’s support determines the answer.

• Unfortunately, above results concern µ[0, x]c , which is:

• Inclusion/exclusion: scary in high dimension (error terms pile up).
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in higher dimensions: sparse angular support ?

Full support: Sparse support
anything may happen (V1 not large if V2 or V3 large)

Cones: Cα = {x � 0 : ‖x‖ ≥ 1, xj = 0 (j /∈ α)}, α ⊂ {1, . . . , d}
Subspheres: Ωα : = Projections on the sphere

Where is the mass?

µ(Cα) > 0 ⇐⇒ Φ(Ωα) > 0 ⇐⇒

features j ∈ α may be large together while the others are small.
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Identifying non empty edges
Issue:

real data are non asymptotic.
→ all points belong to the interior cone C{1,...,d}.

Fix ε > 0. Affect data ε-close to an edge, to that edge.

Cα → Rεα

New partition of the sample space, compatible with non asymptotic data.
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Empirical estimator of µ(Cα))
(Counts the standardized points in Rε

α, far from 0.)

data: Xi , i = 1, . . . , n, Xi = (Xi ,1, . . . ,Xi ,d).

• Standardize: V̂i ,j = 1
1−F̂j (Xi,j )

, with F̂j(Xi ,j) =
rank(Xi,j )−1

n

• Natural estimator

µ̂n(Cεα) =
n

k
Pn(V̂ ∈ n

k
Rεα)

• Estimated support Ŝ = {α : µ̂n(Cα) > µ0}. 14/27



Sparsity in real datasets
Data=50 wave direction from buoys in North sea.
(Shell Research, thanks J. Wadsworth)
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Finite sample error bound
VC-bound adapted to low probability regions (see Goix, S., Clémençon, 2015)

Theorem

If the margins Fj are continuous and if the density of the angular measure
is bounded by M > 0 on each subface,
There is a constant C s.t. for any n, d, k, δ ≥ e−k , ε ≤ 1/4,
with probability ≥ 1− δ,

max
α
|µ̂n(Cα)− µ(Cα)| ≤Cd

(√
1

kε
log

d

δ
+ Mdε

)
+ Bias n

k
,ε(F , µ).

Bias: using non asymptotic data to learn about an asymptotic quantity

Regular variation ⇐⇒ Biast,ε −−−→
t→∞

0

• relaxed bound: 1/
√
kε+ Mdε. Price for biasing estimator with ε.

• Choice of ε: cross-validation or ‘ε = 0.1’
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Tools for the proof

1. Apply the deviation bound for low-probability region on the VC-class
of rectangles {kn R(x , z , α), x , z � ε}

→ p ≤ d
k

εn
⇒ sup

α
|µ̂n − µ|(Rεα) ≤ Cd

√
1

εk
log

d

δ

(1/ε plays the role of T in the previous bound for the stdf)

2. Approach µ(Cα) with µ(Rεα) → error ≤ Mdε
(bounded angular density).
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Results: support recovery

• Asymmetric logistic, d = 10, dependence parameter α = 0.1
→ Non asymptotic data (not exactly Generalized Pareto)

• K randomly chosen (asymptotically) non-empty faces.

• parameters: k =
√
n, ε = 0.1

• Heuristic for setting minimum mass µ0: eliminate faces supporting
less than 1% of total mass.

# sub-cones K 10 15 20 30 35 40 45 50

Aver. # errors 0.01 0.09 0.39 1.82 3.59 6.59 8.06 11.21
(n=5e4)

Aver. # errors 0.06 0.02 0.14 0.98 1.85 3.14 5.23 7.87
(n=15e4)
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Feature clustering (Chiapino, S, 2016)

Toy example: River stream-flow dataset, d = 92 gauging stations:
Typical groups jointly impacted by extreme records include noisy additional
features !
→ Empirical µ-mass scattered over many Cα’s

→ No apparent sparsity pattern.
How to gather ‘closeby’ α’s into feature clusters? (= maximal groups of
dependent features)
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Relaxed constraints on the region of interest
Initial regions of interest:

Cα = {v � 0 : v j large for j ∈ α, v j small for j /∈ α}

Modified regions (relaxed constraints, larger and nested regions)

Γα = {v � 0 : v j large for j ∈ α}

α is maximal in {α : µ(Cα) > 0}
⇐⇒

α is maximal in in {α : µ(Γα) > 0}
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Conditional criterion

• One needs an empirical criterion for ‘testing’ dependence: µ(Γα > 0).
e.g. µ̂n(Γα) > µ0.

• Issue: µ(Γα)↘ as |α| ↗ set the threshold according to |α| ?

• Way around: condition upon excess of all but one components.

κα = lim
t→∞

P(∀j ∈ α,V j > t | V j > t for all but at most one j ∈ α}

=
µ(Γα)

µ
(⋃

β⊂α,|β|≥|α|−1 µ(Γβ)
)

Empirical criterion κ̂α,t =

∑n
i=1 1

V̂ j
i >t for all j∈α∑n

i=1 1
V̂ j
i >t for all but at most one j∈α

21/27



Coping with combinatorial complexity
• O(2d) subsets α ⊂ {1, . . .} to be examined!
• Good news: µ(Γα) = 0⇒ ∀β ⊃ α, µ(Γβ) = 0
→ the search should ‘follow’ the Hasse diagram

CLEF algorithm (CLustering Extreme Features):

• Start with pairs: Â2 = {α : |α| = 2, κ̂t(α) > κ0}.

• Stage k : Âk = {α : |α| = k , κ̂t(α) > κ0}; → Candidates for Ak+1:

{α : |α| = k + 1, ∀β ⊂ α s.t. |β| = k , β ∈ Âk .} Not too many !

• Related data mining literature: ‘frequent itemsets mining’
Apriori algorithm (Agrawal et al., 94), feature clustering (Agrawal et al., 2005),

fault-tolerant pattern discovery (Pei et al., 2001)
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Toy example: output on stream-flow data

dependent groups are large in the North-West (oceanic climate), small in
the south west (mediterranean climate, rain-storms)

(time: ∼ 1s)
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Simulated data

Generation:
20 datasets with N = 100 . 103, d = 100.
From asymmetric logistic extreme value model [4,5]. For each dataset, p
subsets α1, .., αp of {1, .., 100} are randomly chosen.
Noise:
For each i ≤ N, one additional noisy feature is added to each true α.

p # errors CLEF # errors with Rεα regions (Goix et. al., 16)

40 1.2 72.2
50 3.5 91.0
60 10.1 134.0

Average number of errors (non recovered and falsely discovered clusters).

(average computation time : ∼ 1s on a laptop)
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Link with extremal coefficients joint work with Johan Segers

• Recall the extremal coefficient `α(= θα) = µ(∃j ∈ α : xj > 1).
(Schlather & Tawn, 03, Einmahl Kiriliouk, Segers 16, . . . )

• Define ρα := µ(Γα) = µ(∀j ∈ α, xj > 1)

• Inclusion/exclusion → our incremental criterion κα re-writes

κα =
ρα∑

j∈α ρα\{j} − (|α| − 1)ρα.

• Inclusion/exclusion again → ρα =
∑

β⊂α(−1)|β|+1`α

Nice! because the asymptotic joint distribution of (ˆ̀
α)α⊂{1,...,d} is

known. (Einmahl, Kiriliouk, Segers, 16)

• Delta method → (work in progress )
Gaussian asymptotics for

√
k(κ̂α − κα)∅6=α⊂{1,...,d}, statistical tests

. . . to be continued.
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Conclusion

• Adequate notion of ‘sparsity’ for MEVT: sparse angular measure

• Empirical estimation ( → simple algorithms) to learn this sparse
asymptotic support from non-asymptotic, non sparse data.

• Finite sample error bounds (tools from statistical learning theory)

• When sparsity structure not apparent: feature clustering may be
necessary

• Applications:
• Extreme values modeling: identification of dependent subgroups
• Anomaly detection among extremes.
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