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INTRODUCTION



INTRODUCTION

OUR GOAL

» We are interested in sub-Gaussian estimators, that is
estimators satisfying a sub-Gaussian deviation inequality :

A 1
Vr < x,, IP’(E,u>CJ\/ +$)<ex.

n

» The empirical mean satisfies such inequalities under
several assumptions like independence and identical
distributions of the data and sub-Gaussian tails
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INTRODUCTION

MOTIVATION

» Non independent, heavy-tailed
data are common in high
frequency trading.

» Data are corrupted in many
applications in biology : micro-
array analysis, neuro imaging.

» Robustness is a central issue in
various modern applications! BLUE BRAIN PROJECT

WORLD'S FIRST VIRTUAL BRAIN
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INTRODUCTION

GOAL : BUILD ESTIMATORS (OF THE MEAN)

» with sub-Gaussian deviations up to
exponentially low levels of confidence

» robust to « heavy-tailed » data

» robust to (a few) outliers...




WE CANNOT USE THE EMPIRICAL MEAN BECAUSE
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Abstract. We present new M-estimators of the mean and variance of real valued random variables, based on PAC-Bayes bounds.
We analyze the non-asymptotic minimax properties of the deviations of those estimators for sample distributions having either a
bounded variance or a bounded variance and a bounded kurtosis. Under those weak hypotheses, allowing for heavy-tailed distribu-
tions, we show that the worst case deviations of the empirical mean are suboptimal. We prove indeed that for any confidence level,
there is some M-estimator whose deviations are of the same order as the deviations of the empirical mean of a Gaussian statistical
sample, even when the statistical sample is instead heavy-tailed. Experiments reveal that these new estimators perform even better
than predicted by our bounds, showing deviation quantile functions uniformly lower at all probability levels than the empi
mean for non-Gaussian sample distributions as simple as the mixture of two Gaussian measures.

Résumé. Nous présentons de nouveaux M-estimateurs de la moyenne et de la variance d’une variable aléatoire réelle, fondés sur
des bornes PAC-Bayésiennes. Nous analysons les propriétés minimax non-asymptotiques des déviations de ces estimateurs pour
des distributions de I'échantillon soit de variance bornée, soit de variance et de kurt bornées. Sous ces hypothéses faibles,
permettant des distributions 4 queue lourde, nous montrons que les déviations de la moyenne empirique sont dans le pire des cas
sous-optimales. Nous prouvons en effet que pour tout niveau de confiance, il existe un M-estimateur dont les déviations sont du
méme ordre que les déviations de la moyenne empirique d’un échantillon Gaussien, méme dans le cas ol la véritable distribution
de I'échantillon a une queue lourde. Le comportement expérimental de ces nouveaux estimateurs est du reste encore meilleur que
ce que les bornes théoriques laissent prévoir, montrant que la fonction quantile des déviations est constamment en dessous de celle
de la moyenne empirique pour des échantillons ns aussi simples que des mélanges de deux distributions Gaussiennes.

MSC: 62G05; 62G35

Keywonds: Non-parametric estimation; M-estimators; PAC-Bayes bounds

1. Introduction

This paper is devoted to the estimation of the mean and possibly also of the variance of a real random variable
om an independent identically distributed sample. While the most traditional way to deal with this question is to
ocus on the mean square error of estimators, we will instead focus on their deviations. Deviations are related to

the estimation of confidence intervals which are of importance in many situations. While the empirical mean has an

optimal minimax mean square error among all mean estimators in all models including Gaussian distributions, its
deviations tell a different story. Indeed, as far as the mean square error is concerned, Gaussian distributions represent
already the worst case, so that in the framework of a minimax mean least square analysis, no need is felt to improve
estimators for non-Gaussian sample distributions. On the contrary, the deviations of estimators, and especially of the
empirical mean, are worse for non-Gaussian samples than for Gaussian ones. Thus a deviation analysis will point

[Catoni (2012)]




SOME ALTERNATIVES TO MOM

REPLACING THE EMPIRICAL MEAN

» « Trimming » ideas : getting rid of extremal points and take
the empirical mean of the remaining data.

» « Quantile » regression.
» «mixing» L*and L' losses : Huber loss.
» Using robust tests : T-estimation, p-estimation.

» « smoothing » the loss : Catoni’s loss.



BASIC IDEAS



MOM’S PRINCIPLE

THE MEDIAN OF MEANS ESTIMATORS

X1
Xo

Blocks
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WHY DOES IT WORK?

THE 2-LINES PROOF

» First, by definition :

P <|MOMK(X) — PX|> CU\/f) <P (

{k . |(Pg, — P)X]| > Ca\/f}

[V
Sk
~_

K _ K/2
< Ny (k>p’§<(1—pK)K b < oKpl?

W
B 1
pKIP)<PBkXPX|>CO' ) < — "

n

» Next, by Markov's inequality



FIRST CONCLUSIONS

A PARTIAL RESULT

» taking C = 2¢, we get
P (MOMK(X) — PX| > CO’\E) <e
» Sub-Gaussian deviation inequality!!
» Need only 2 moments
» Extension to non-id data easy, robustness to (few) outliers

» BUT : need to fix the level to build the estimator



FORTUNATELY

THEORY PROBAB. APPL. Translated from Russian Journal
Vol. 35, No. 3

ON A PROBLEM OF ADAPTIVE ESTIMATION IN GAUSSIAN
WHITE NOISE*

O. V. LEPSKII
(Translated by V. I. Khokhlov)

1. Introduction. A random process s ying the stochastic differential equa-

dX.(t) = S(t) dt + € dw(t)

served on the interval [0,1]; here w(-) standard Wiener process and ¢ is a;

shing parameter. It is required to estimate from the observation of the trajectory

Xe(t), 0 <t <1, the val f S(to), where ty is a known fixed point in the interval
(0,1).

We denote by ). the set of functions (estimates) that are measurable with re-
spect to X(t), 0 < Pg() and Eg., stand for the measures and expectat
corresponding to the process X,(t),0 1, provided that (1) was generated by the
function S(-).

We call a function I: R* — R! the loss function (1f) if it is non-negative,
symmetric, monotonically nondecreasing on the positive semiaxis, continuous at 0,
and 1(0) = 0.

Let X be an arbitrary set of functions. Let us consider a minimax risk of the form

Re(0e, %, 055(c))

where 6, € V. and @y (¢) is a positive
DEFINITION 1. We call the funct

limsup R, (67,
e—0
Let 3 = m + @, m a non-negative integer, @ € (0,1] and let > 0 be some;
constants. Denote by (3, L) the class of functions which are m-fold continuously
differentiable on the segment [0, 1] and such that, for any ¢y, t, € [0, 1],

‘S”"‘(!;) — 8™ ()| < Lity — ta]*,
where S(™)(.) is the mth derivative of the function S(-)

Now suppose that the function S(-) in (1) belongs to the set £(3, L) for some
known 3 > 0 and L > 0. Then (see [1] and [2])

N _ 3+1)
Ps(a,1)(€) i)
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ESTIMATORS INDEPENDENT OF THE CONFIDENCE LEVEL

LEPSKI'S METHOD

» Start from a collection of confidence intervals(Ix)x_;

» Consider the smallest index

A

K:inf{K:ﬂg/ZQKfJ#@}

» Pick as an estimator the mid-point

A

. n/2
EEﬂJ:f(’I‘] :

» Ix = |[MOMg(X) £ Ca\/g are confidence intervals for PX.

A
If the

variance is
known!!




WHY DOES IT WORK?

THE 2-LINES PROOF

» Letx < n/2—2and K = [z] + 2. Consider the event
ngod — {PX = ﬂT}/ZZKIAJ} :

» (o00d has probability larger than
n/2

1 — Ze_J21—el_K21—6_“" .
J=K
» On this event K < K thus PX,E e n"/?.1;, so

. K 2
\PX—E\gCa\/—SCU\/ il .
n n




TAKE HOME MESSAGE

FOR THE ESTIMATION OF THE MEAN

» We have built sub-Gaussian estimators of the mean of

a real valued random variables.
» The method only requires finite second moment.

» The exponentially small confidence level cannot be
beaten.

» Building Sub-Gaussian estimators not depending on
the confidence level is impossible without extra
knowledge.

» The optimal constant C' = /2 [Catoni 2012] requires
more work.

The Annals of Statistics

2016, Vol. 44, No. 6, 2605
DOL 10.1214/16-A08
© Institte of Mathematical Statisics, 2016

SUB-GAUSSIAN MEAN ESTIMATORS

BY Luc DEVROYE'"*, MATTHIEU LERASLE",
GABOR LUGOSI>*# AND ROBERTO I. OLIVEIRA>®§

McGill University*, CNRS—Université Nice Sophia Antipolis,
ICREA and Universitat Pompeu Fabra® and IMPAS

We discuss the possibilities and limitations of estimating the mean of
a real-valued random variable from independent and identically di
observations from a nonasymptotic point of view. In particular, we define
estimators with a sub-Gaussian behavior even for certain heavy-tailed distri-
butions. We also prove various impossibility results for mean estimators.

1. Introduction. Estimating the mean of a probability distribution P on the
real line based on a sample X{ = (X,..., X,,) of n independent and identically
distributed random variables is arguably the most basic problem of statistics. While
the standard empirical mean

A 1<
&b, (X7) =~ > Xi
i=1

is the most natural choice, its finite-sample performance is far from optimal when
the distribution has a heavy tail.

The central limit theorem guarantees that if the X; have a finite second moment,
this estimator has Gaussian tails, asymptotically, when n — oo. Indeed,

1
1) P(lﬁ)”(x7)—ﬂp‘ >M)_N§’

where pp and a& > 0 are the mean and variance of P (resp.) and ® is the cumula-
tive distribution function of the standard normal distribution. This result is essen-

tially optimal: no estimator can have better-than-Gaussian tails for all distributions
in any “reasonable class” (cf. Remark 1 below).

Received September 2015; revised January 2016.
!'Supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.
2Support from CNPq, Brazil via Ciéncia sem Fronteiras Grant # 401572/2014-5.
3Supported by Spanish Ministry of Science and Technology Grant MTM2012-37195.
“4Supported by a Bolsa de Produtividade em Pesquisa from CNPq, Brazil.
5Supported by FAPESP Center for Neuromathematics (Grant # 2013/ 07699-0, FAPESP—S. Paulo
Research Foundation).
MSC2010 subject classifications. Primary 62G05; secondary 60F99.
Key words and phrases. Sub-Gaussian estimators, minimax bounds.
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TOWARD
LEARNING THEORY



DIFFERENT FORMULATION

ESTIMATE THE MINIMUM OF A INTEGRATED CONTRAST

» We can write

PX = argmlergP[(X 1n)?]
e

» We use the contrast to compare candidates p and v.
Ideally, we would prefer v if

P((X —p)* = (X =v)*] >0 .

» This ideal comparison can be replaced by a test using
MOM'’s estimators.



ESTIMATION PROCEDURE

Risk minimization by median-of-means tournaments *

T-AGGREGATED MOM'S TESTS "

Abstract

We consider the classical statistical learning/regression problem, when the value of a
real random variable Y is to be predicted based on the observation of another random
variable X. Given a class of functions F and a sample of independent copies of (X, Y’), one
needs to choose a function ffrom F such that f(X ) approximates Y as well as possible,
in the mean-squared sense. We introduce a new procedure, the so-called median-of-means
tournament, that achieves the optimal tradeoff between accuracy and confidence under
minimal assumptions, and in particular outperforms classical methods based on empirical
risk minimization.

» We shall say that i beats v any time T

Estimation and prediction problems are of central importance in statistics and learning theory.

In the standard regression setup, (X,Y) is a pair of random variables: X takes its values in

some (measurable) set X' and is distributed according to an unknown probability measure g,

while Y is real valued that is also unknown. Given a class F of real-valued functions defined

on X, one wishes to find f € F for which f(X) is a good prediction of Y. Although one

— V — — > may consider various notions of ‘a good prediction’, we restrict our attention to the-perhaps

li ° most commonly used-squared error: the learner is penalized by (f(X) — Y)? for predicting
f(X) instead of Y. Thus, one would like to find a function f € F for which the expected loss

E(f(X)—Y)?, known as the risk, is as small as possible. Naturally, the best performance one
may hope for is of the risk minimizer in the class, that is, that of

f* = argmin E(f(X) - Y)? .
feFr
We assume in what follows that the minimum is attained and f* € F exists and is unique,

as is the case when F C Lo(p) is a closed, convex set.
One may formulate two natural goals in estimation and prediction problems. One of them

» To any real u we associate the set By () i
of reals v that beat 1t and define

Birgé's idea large radius
CK f) — Imax ‘,LL_V‘ |
veEBi (1)

B € arg min C'g (1 <
peR




PERFORMANCES

BIRGE™S ESTIMATOR IS MOM'S ESTIMATOR

» (L beats vany time
0 < v?—p* — 2MOMK (X)) (v — p)
= (v — MOMEg(X))? — (1 — MOMg (X))? .
» If u = MOMg (X), this inequality is equivalent to
(v — MOMg (X)) >0 .

» In other words, MOM g (X) beats everyone, so
Ex = MOMg(X) .

» MOM'’s estimators can be extended to learning problems !



OTHER PROCEDURES FOR AGGREGATING TESTS

BARAUD-BIRGE-SART PROCEDURE

» We consider Birgé’'s T-estimator based on MOM'’s tests. We
could also at this stage consider the p-estimator :

EKEargmin sup MOM g —v)? — X—,u2 .

|74

U

It is easy to check that we also have Ex = MOMg (X).

Model selection via testing:
an alternative to (penalized) maximum likelihood estimators

Lucien Birgé

UMR 7599 “F ilités et modeles aléatoires”, L ire de F ilités, boite 188, Université Paris VI,
4, place Jussieu, 75252 Paris cedex 05, France

Received 9 July 2003; received in revised form 28 February 2005; accepted 12 April 2005
Available online 18 November 2005

Abstract

This paper is devoted to the definition and study of a family of model selection oriented estimators that we shall call T-estimators
(“T” for tests). Their construction is based on former ideas about deriving estimators from some families of tests due to Le Cam
[L.M. Le Cam, Convergence of estimates under dimensionality restrictions, Ann. Statist. 1 (1973) 38-53 and L.M. Le Cam, On
local and global properties in the theory of asymptotic normality of experiments, in: M. Puri (Ed.), Stochastic Processes and Related
Topics, vol. 1, Academic Press, New York, 1975, pp. 13-54] and Birgé [L. Birgé, Approximation dans les espaces métriques et
théorie de I'estimation, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 65 (1983) 181-237, L. Birgé, Sur un théoréme de minimax
et son application aux tests, Probab. Math. Statist. 3 (1984) 259-282 and L. Birgé, Stabilité et instabilité du risque minimax pour
des variables indépendantes équidistribuées, Ann. Inst. H. Poincaré Sect. B 20 (1984) 201-223] and about complexity based model
selection from Barron and Cover [A.R. Barron, T.M. Cover, Minimum complexity density estimation, IEEE Trans. Inform. Theory
37 (1991) 1034-1054].

It is well-known that maximum likelihood estimators and, more generally, minimum contrast estimators do suffer from various
weaknesses, and their penalized versions as well. In particular they are not robust and they require restrictive assumptions on both
the models and the underlying parameter set to work correctly. We propose an alternative construction, which derives an estimator
from many simultaneous tests between some probability balls in a suitable metric space. In many cases, although not in all, it
results in a penalized M-estimator restricted to a suitable countable set of parameters.

On the one hand, this construction should be considered as a theoretical rather than a practical tool because of its high com-
putational complexity. On the other hand, it solves many of the previously mentioned difficulties provided that the tests involved
in our construction exist, which is the case for various statistical frameworks including density estimation from i.i.d. variables or
estimating the mean of a Gaussian sequence with a known variance. For all such frameworks, the robustness properties of our
estimators allow to deal with minimax estimation and model selection in a unified way, since bounding the minimax risk amounts
to performing our method with a single, well-chosen, model. This results, for those frameworks, in simple bounds for the minimax
risk solely based on some metric properties of the parameter space. Moreover the method applies to various statistical frameworks
and can handle essentially all types of models, linear or not, parametric and non-parametric, simultaneously. It also provides a
simple way of ing preliminary esti

From these viewpoints, it is much more flexible than traditional methods and allows to derive some results that do not presently
seem to be accessible to them.
© 2005 Elsevier SAS. All rights reserved.

A NEW METHOD FOR ESTIMATION AND MODEL SELECTION:
p-ESTIMATION

Y. BARAUD, L. BIRGE, AND M. SART

ABSTRACT. The aim of this paper is to present a new estimation procedure that can be
applied in various statistical frameworks including density and regression and which leads
to both robust and optimal (or nearly optimal) estimators. In density estimation, they
asymptotically coincide with the celebrated maximum likelihood estimators at least when
the statistical model is regular enough and contains the true density to estimate. For very
general models of densities, including non-compact ones, these estimators are robust with
respect to the Hellinger distance and converge at optimal rate (up to a possible logarithmic
factor) in all cases we know. In the regression setting, our approach improves upon the
classical least squares in many respects. In simple linear regression for example, it provides
an estimation of the coefficients that are both robust to outliers and simultaneously rate-
optimal (or nearly rate-optimal) for a large class of error distributions including Gaussian,
Laplace, Cauchy and uniform among others.

1. INTRODUCTION

The primary scope of this paper was to design a new and more or less universal estimation
method for the regression framework where we observe n independent real random variables
Xi,..., X, of the form X; = f; +&; where the f; are the unknown parameters of interest
and the ¢; i.i.d. real random errors with a partially unknown distribution which may be
quite different from the usual Gaussian one. The problem arose from a question by Oleg
Lepski to the first author during his visit to Nice in January 2012. This question was about
the regression framework when the errors have rather unusual distributions, in which case
the classical least squares method can be far from optimal. That was the starting point of
our study which finally resulted in a much broader approach and the design of a new class
of estimators with several remarquable and partly unexpected properties.



AN ALTERNATIVE?

LUGOSI AND MENDELSON'S APPROACH

» Compute an upper bound r* on Cx(PX)for a good choice
of K=K* on an event of large probability.

X

» Call « champion » any i such that Cx () < r™
» Estimate PX by a champion.

» Of course, the T-estimator is a champion on the same
event, but it is also always defined and its definition does
not require the knowledge of r™ or K*.



GRESSION

Tvon d'_m comporTe
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and

‘It's a non-linear pattern with

outliers but for some reason

I'm very happy with the data.’

LEARNING IN SMALL
DIMENSION



LEAST-SQUARES REGRESSION

SETTING

» Let (X,Y),(X;,Y;)i—1 ..., denote i.i.d. observations taking
values in RP x R with common unknown distribution P. Let

B" € arg min PY-X"B)?  &L=Y.-X]p*.
cRP

00000

» To compare 5 and /', we use the following decomposition
of the least-squares contrast

YV -X"8) (Y -X"3)=[X"(6-8)-2(Y -X"5)X"(B-5) .

» We assume to simplify that the distribution of X is known.
HﬂH%Z(pX) - P[(XTB)Q] - BTP(XXTW :



ESTIMATION STARTEGY

EXTENSION OF MOM'S PRINCIPLES

» Consider, for any 3, the set Bk (3) of those 5'such that
MOMy [(X* (8 —8")° —=2(Y = X' 8)X" (B-5)] >0 .

» Then define as a criterion the diameter of this set :

Cr(B)= sup |B8—5l72px) -
B'eBk (B)

» Select finally the estimator minimizing this criterion :

Pk € arg min Cx (f) -




RISK BOUND

MAIN RESULT [LECUE, L., SAUMARD]

» Assume that 52 = E[¢?|| X]|*] < oo. Let C¢ >

Forany K > —,
:

Y

Learning from MOM’s principles

G. Lecué and M. Lerasle
January 10, 2017

Abstract

We obtain estimation error rates and sharp oracle inequalities for a Birgé’s T-estimator using a regu-
larized median of mean principle as based tests. The results hold with exponentially large probability —
the same one as in the gaussian framework with independent noise- under only weak moments assump-
tion like a Ly /Ly assumption and without assuming independence between the noise and the design X.
The obtained rates are minimax optimal. The regularization norm we used can be any norm. When it
has some sparsity inducing power we recover sparse rates of convergence and sparse oracle inequalities.
As in [20], the size of the sub-differential of the regularization norm in a neighborhood of the oracle
plays a central role in our analysis.

Moreover, the procedure allows for robust estimation in the sense that a large part of the data may
have nothing to do with the oracle we want to reconstruct. The number of such irrelevant data (which
can be seen as outliers) may be as large as (sample size)x (rate of convergence) as long as the quantity
of useful data is larger than a proportion of the number of observations.

max Var(éX713),

5€S(0,1)

. ) K -
P { (185 = B ll2px) 2 \/Ce— | < 2e77/C

» One can apply Lepski’'s method to derive an estimator
satisfying this bound simultaneously for all K, in particular :

. 2
P8 =B r2px) 2 o

2

T
- CC
<e 7%



ANALYSIS OF THE ESTIMATOR

MAIN STEPS

» First remark that 5* beats any 5 such that
Q1/4,K[(XT(5 — 5%))7] — 2@3/4,K[€XT(5 —6%)] >0 .

» Then it beats any [such that || — 8%||L2(px) > rk, where
- SUPges(pe,1) (@34, — P)EXT (B — BY)]
infges(g=1) Qu/a,x [(XT(B—6%))*]

» We deduce from this result that |8 — 8[| z2(px) < 7k .

» We use empirical process theory to bound 7.



BOUNDING SUPREMA OF QUANTILE PROCESSES

MAIN IDEAS

Qo x| Ztll|lr <2 =

Bounded
difference
inequality

symetrization
+ contraction

K
1
—> Itpy 252} <1—0
k=1 T
| K
< Ppr + iZa Z[{PBth>a:} —pt|| <l—-a
k=1 T
K
1
= <=pr+E| =Y Ipy 250 — | tusl-a
k=1 T
1 n
——=<pr+ —-E|- Z €Zill +tu<l—a with probability
n 2
a l—e 28

principle




TO SUMMARIZE

BOUNDING QUANTILE/MEAN PROCESSES

K 1
if >\/—E22. \/E—E:Z—Zi
1 xf\J nH [ t,’L]HT n- ¢ ta




IMPORTANT REMARK

ON THE MARGIN CONDITION

» C, can be bounded by 2 (\Var(Y]X)‘OO + [E[Y]X] - XTB*
provided that these quantities are finite.

<)

» This example covers the case where the linear model is
correct and the variance of the noise is bounded.

» More generally, if var(Y|X) and E[Y|X] — X' 8* have finite
moment of order 2 + « and ¥ = sup 2T (B — B,
then Ci 5 wr#7e. Saa

» In particular, for Fourier basis, Wavelet basis, histograms
U <.\p thus Ce S pﬁ .



Projection on
basis {&1,®2}

Projection on
basis {eg, ®s}

is

®1

=
<5

EXTENSION 10

HIGH DIMENSION



PRINCIPLE

ADDING PENALTIES TO TESTS

» As usual, we have to add a penalty to the tests to deal with
the large dimension setting. One can use for example, the ¢4
penalty and define the penalized test statistics

MOMg[(XT(B—8)* —2(Y = X)X (B—8)]+ X181 — |18]1)

» Birge's aggregation procedure has to be slightly extended
to benefit from the penalty.

CR(B) = sup {B-FL} CPB) = sup {|B—Blr2px)} -
B'€BK (B) B'e€BK (B)

Cx(B) =min{p > 0:CY(B) <p,  CL(B) <r(p)} .



IT STILL WORKS!

IDEAS UNDERLYING THE PROOF

Using the approach of Mendelson, we reduce
the problem to the control of a localized MOMg
process.

» The concentration of this terms reduces to the
study of E sup —ZeZ&XT B—57)]-

BEB2(8*,r)NB1 (Bup) N 1

» This last term can be bounded at least in the
linear regression framework.

Learning without Concentration

Shahar Mendelson *
October 23, 2014

Abstract

We obtain sharp bounds on the performance of Empirical Risk Min-
imization performed in a convex class and with respect to the squared
loss, without assuming that class members and the target are bounded
functions or have rapidly decaying tails.

Rather than resorting to a concentration-based argument, the method
used here relies on a ‘small-ball” assumption and thus holds for classes
consisting of heavy-tailed functions and for heavy-tailed targets.

The resulting estimates scale correctly with the ‘noise level’ of the
problem, and when applied to the classical, bounded scenario, always
improve the known bounds.

1 Introduction

Our aim is to study the error of Empirical Risk Minimization (ERM), per-
formed in a convex class and relative to the squared loss.

To be more precise, let F be a class of real-valued functions on a proba-
bility space (€2, ) and let Y be an unknown target function. One would like
to find some function in F that is almost the ‘closest’ to ¥ in some sense.

A rather standard way of measuring how close Y is to F, is by using
the squared loss £(t) = #* to capture the ‘point-wise distance’ (f(z) — y)?,
and being ‘close’ is measured by averaging that point-wise distance. Hence,
if X is distributed according to the underlying measure p, the goal is to
identify, or at least approximate with good accuracy, the function f* € F



LARGE DIMENSION SETTING

MAIN RESULTS (LECUE, L. AND LUGOSI,MENDELSON, 2017)

» Assume that ¢ € Lo, and let ¢ > |¢|2,., SUppOSe also

V3 € R”, HﬁH%?(PX) - HﬁHQ@n isot@
vk € [Cologpl,Vi€ [p, | Xill,(px) < LVE<&ibGaussian momentd

» Then, with probability larger than 1 — 3¢~ %/¢,

. K |1 o?p
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REMARKS

COMPARISON/DISCUSSION

Compared to [Lugosi and Mendelson 2017], Lepski’s
approach allows to remove the dependency of the

estimator in an upper bound of 7(px=+).

» Regarding « robustness » properties, we prove that the
previous result is not affected by the presence of K,

RHO-ESTIMATORS REVISITED: GENERAL THEORY AND
APPLICATIONS

outliers, provided that K, < §r%(px-). (see also

[Baraud, Birgé 2016]).

» The « informative data » may not be i.i.d., the

ABSTRACT. Following Baraud, Birgé and Sart (2016), we pursue our attempt to design
a universal and robust estimation method based on independent (but not necessarily
i.i.d.) observations. Given such observations with an unknown joint distribution P and a
dominated model £ for P, we build an estimator P based on 2 and measure its risk by an
Hellinger-type distance. When P does belong to the model, this risk is bounded by some
new notion of dimension which relies on the local complexity of the model in a vicinity
of P. In most situations this bound corresponds to the minimax risk over the model (up
to a possible logarithmic factor). When P does not belong to the model, its risk involves
an additional bias term proportional to the distance between P and £, whatever the true
distribution P. From this point of view, this new version of p-estimators improves upon
the previous one described in Baraud, Birgé and Sart (2016) which required that P be
absolutely continuous with respect to some known reference measure. Further additional
improvements have been brought as compared to the former construction. In particular, it
provides a very general treatment of the regression framework with random design as well
as a computationally tractable procedure for aggregating estimators. Finally, we consider
the situation where the Statistician has at disposal many different models and we build
a penalized version of the p-estimator for model selection and adaptation purposes. In
the regression setting, this penalized estimator not only allows to estimate the regression
function but also the distribution of the errors.

procedure just requires close L', L moments.

In a previous paper, namely Baraud, Birgé and Sart (2016), we introduced a new class of
estimators that we called p-estimators for estimating the distribution P of a random variable
X = (Xy,...,X,) with values in some measurable space (2, %) under the assumption
that the X; are independent but not necessarily i.i.d. These estimators are based on density
models, a density model being a family of densities t with respect to some reference measure
pon Z. We also assumed that P was absolutely continuous with respect to g with density
s and we measured the performance of an estimator 8 in terms of h%(s,s), where h is a
Hellinger-type distance to be defined later. Originally, the motivations for this construction
were to design an estimator S of s with the following properties.

— Given a density model S, the estimator S should be nearly optimal over S from the
minimax point of view, which means that it is possible to bound the risk of the estimator
S over S from above by some quantity C'D(S) which is approximately of the order of the



PERSPECTIVES



ON-GOING AND FUTURE WORKS

FURTHER DEVELOPMENTS

» Efficient algorithm in learning problems : using a p-
aggregation procedure, reduction to a saddle-point
detection.

» Remove the « small-ball » assumption to allow more
general designs : no need to lower bound the quadratic
process for all data.

» More general learning problems (density estimation, non-
quadratic losses, ...)
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