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INTRODUCTION



INTRODUCTION

▸ We are interested in sub-Gaussian estimators, that is 
estimators satisfying a sub-Gaussian deviation inequality : 

▸ The empirical mean satisfies such inequalities under 
several assumptions like independence and identical 
distributions of the data and sub-Gaussian tails
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INTRODUCTION

MOTIVATION

▸ Non independent, heavy-tailed 
data are common in high 
frequency trading. 

▸ Data are corrupted in many 
applications in biology : micro-
array analysis, neuro imaging. 

▸ Robustness is a central issue in 
various modern applications!



INTRODUCTION

GOAL : BUILD ESTIMATORS (OF THE MEAN)

▸ with sub-Gaussian deviations up to 
exponentially low levels of confidence 

▸ robust to « heavy-tailed » data 

▸ robust to (a few) outliers…



CHEBYCHEV’S 
INEQUALITY IS SHARP

 [Catoni (2012)]               

WE CANNOT USE THE EMPIRICAL MEAN BECAUSE



SOME ALTERNATIVES TO MOM

REPLACING THE EMPIRICAL MEAN

▸ « Trimming » ideas : getting rid of extremal points and take 
the empirical mean of the remaining data. 

▸ « Quantile » regression. 

▸ « mixing »       and      losses : Huber loss. 

▸ Using robust tests : T-estimation,   -estimation. 

▸ « smoothing » the loss : Catoni’s loss.
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BASIC IDEAS



MOM’S PRINCIPLE

THE MEDIAN OF MEANS ESTIMATORS
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▸ First, by definition : 

▸ Next, by Markov’s inequality

WHY DOES IT WORK?

THE 2-LINES PROOF
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FIRST CONCLUSIONS

A PARTIAL RESULT

▸ taking              , we get  

▸ Sub-Gaussian deviation inequality!! 

▸ Need only 2 moments 

▸ Extension to non-id data easy, robustness to (few) outliers 

▸ BUT : need to fix the level to build the estimator
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ADAPTIVE ESTIMATORS? 
USE MY METHOD!

[Lepski (1990)]

FORTUNATELY



ESTIMATORS INDEPENDENT OF THE CONFIDENCE LEVEL

LEPSKI’S METHOD

▸ Start from a collection of confidence intervals                       .                        

▸ Consider the smallest index    

▸ Pick as an estimator the mid-point 

▸                                           are confidence intervals for        .PX

If the 
variance is 
known!!
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WHY DOES IT WORK?

THE 2-LINES PROOF

▸ Let                      and                     . Consider the event 

▸            has probability larger than 

▸ On this event              thus                            , so 

⌦
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o

.

⌦
good

K̂  K

K = [x] + 2

|PX � Ê|  C�

r
K

n

 C�

r
2 + x

n

.
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TAKE HOME MESSAGE

FOR THE ESTIMATION OF THE MEAN

▸ We have built sub-Gaussian estimators of the mean of 
a real valued random variables. 

▸ The method only requires finite second moment. 

▸ The exponentially small confidence level cannot be 
beaten. 

▸ Building Sub-Gaussian estimators not depending on 
the confidence level is impossible without extra 
knowledge. 

▸ The optimal constant                [Catoni 2012] requires 
more work.  
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TOWARD 
LEARNING THEORY



DIFFERENT FORMULATION

ESTIMATE THE MINIMUM OF A INTEGRATED CONTRAST

▸ We can write  

▸ We use the contrast to compare candidates    and   . 
Ideally, we would prefer    if 

▸ This ideal comparison can be replaced by a test using 
MOM’s estimators.

PX = argmin
µ2R

P [(X � µ)2] .

µ ⌫
⌫

P [(X � µ)2 � (X � ⌫)2] > 0 .



ESTIMATION PROCEDURE

T-AGGREGATED MOM’S TESTS

▸ We shall say that    beats    any time  

▸ To any real      we associate the set       
of reals     that beat    and define       

µ

MOMK [(X � ⌫)2 � (X � µ)2] > 0 .

µ ⌫

Birgé’s idea

PX

large radius

small radius
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Risk minimization by median-of-means tournaments ∗

Gábor Lugosi†‡ Shahar Mendelson §

August 3, 2016

Abstract

We consider the classical statistical learning/regression problem, when the value of a
real random variable Y is to be predicted based on the observation of another random
variableX . Given a class of functions F and a sample of independent copies of (X,Y ), one

needs to choose a function f̂ from F such that f̂(X) approximates Y as well as possible,
in the mean-squared sense. We introduce a new procedure, the so-called median-of-means
tournament, that achieves the optimal tradeoff between accuracy and confidence under
minimal assumptions, and in particular outperforms classical methods based on empirical
risk minimization.

1 Introduction

Estimation and prediction problems are of central importance in statistics and learning theory.
In the standard regression setup, (X,Y ) is a pair of random variables: X takes its values in
some (measurable) set X and is distributed according to an unknown probability measure µ,
while Y is real valued that is also unknown. Given a class F of real-valued functions defined
on X , one wishes to find f ∈ F for which f(X) is a good prediction of Y . Although one
may consider various notions of ‘a good prediction’, we restrict our attention to the–perhaps
most commonly used–squared error : the learner is penalized by (f(X) − Y )2 for predicting
f(X) instead of Y . Thus, one would like to find a function f ∈ F for which the expected loss
E(f(X)−Y )2, known as the risk, is as small as possible. Naturally, the best performance one
may hope for is of the risk minimizer in the class, that is, that of

f∗ = argmin
f∈F

E(f(X)− Y )2 .

We assume in what follows that the minimum is attained and f∗ ∈ F exists and is unique,
as is the case when F ⊂ L2(µ) is a closed, convex set.

One may formulate two natural goals in estimation and prediction problems. One of them
is to find a function f ∈ F whose L2(µ) distance to f∗

(
E (f(X)− f∗(X))2

)1/2
(1.1)
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PERFORMANCES

BIRGE’S ESTIMATOR IS MOM’S ESTIMATOR

▸    beats    any time 

▸ If                             , this inequality is equivalent to  

▸ In other words,                       beats everyone, so 

▸ MOM’s estimators can be extended to learning problems !  

µ ⌫

µ = MOMK(X)

(⌫ �MOMK(X))2 > 0 .

MOMK(X)

ÊK = MOMK(X) .

0 < ⌫2 � µ2 � 2MOMK(X)(⌫ � µ)

= (⌫ �MOMK(X))2 � (µ�MOMK(X))2 .



OTHER PROCEDURES FOR AGGREGATING TESTS

BARAUD-BIRGE-SART PROCEDURE

▸ We consider Birgé’s T-estimator based on MOM’s tests. We 
could also at this stage consider the   -estimator :  

▸ It is easy to check that we also have 

⇢

ÊK = MOMK(X).
Ann. I. H. Poincaré – PR 42 (2006) 273–325

www.elsevier.com/locate/anihpb

Model selection via testing:
an alternative to (penalized) maximum likelihood estimators

Lucien Birgé

UMR 7599 “Probabilités et modèles aléatoires”, Laboratoire de Probabilités, boîte 188, Université Paris VI,
4, place Jussieu, 75252 Paris cedex 05, France
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Abstract

This paper is devoted to the definition and study of a family of model selection oriented estimators that we shall call T-estimators
(“T” for tests). Their construction is based on former ideas about deriving estimators from some families of tests due to Le Cam
[L.M. Le Cam, Convergence of estimates under dimensionality restrictions, Ann. Statist. 1 (1973) 38–53 and L.M. Le Cam, On
local and global properties in the theory of asymptotic normality of experiments, in: M. Puri (Ed.), Stochastic Processes and Related
Topics, vol. 1, Academic Press, New York, 1975, pp. 13–54] and Birgé [L. Birgé, Approximation dans les espaces métriques et
théorie de l’estimation, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 65 (1983) 181–237, L. Birgé, Sur un théorème de minimax
et son application aux tests, Probab. Math. Statist. 3 (1984) 259–282 and L. Birgé, Stabilité et instabilité du risque minimax pour
des variables indépendantes équidistribuées, Ann. Inst. H. Poincaré Sect. B 20 (1984) 201–223] and about complexity based model
selection from Barron and Cover [A.R. Barron, T.M. Cover, Minimum complexity density estimation, IEEE Trans. Inform. Theory
37 (1991) 1034–1054].

It is well-known that maximum likelihood estimators and, more generally, minimum contrast estimators do suffer from various
weaknesses, and their penalized versions as well. In particular they are not robust and they require restrictive assumptions on both
the models and the underlying parameter set to work correctly. We propose an alternative construction, which derives an estimator
from many simultaneous tests between some probability balls in a suitable metric space. In many cases, although not in all, it
results in a penalized M-estimator restricted to a suitable countable set of parameters.

On the one hand, this construction should be considered as a theoretical rather than a practical tool because of its high com-
putational complexity. On the other hand, it solves many of the previously mentioned difficulties provided that the tests involved
in our construction exist, which is the case for various statistical frameworks including density estimation from i.i.d. variables or
estimating the mean of a Gaussian sequence with a known variance. For all such frameworks, the robustness properties of our
estimators allow to deal with minimax estimation and model selection in a unified way, since bounding the minimax risk amounts
to performing our method with a single, well-chosen, model. This results, for those frameworks, in simple bounds for the minimax
risk solely based on some metric properties of the parameter space. Moreover the method applies to various statistical frameworks
and can handle essentially all types of models, linear or not, parametric and non-parametric, simultaneously. It also provides a
simple way of aggregating preliminary estimators.

From these viewpoints, it is much more flexible than traditional methods and allows to derive some results that do not presently
seem to be accessible to them.
© 2005 Elsevier SAS. All rights reserved.

E-mail address: lb@ccr.jussieu.fr (L. Birgé).

0246-0203/$ – see front matter © 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.anihpb.2005.04.004
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A NEW METHOD FOR ESTIMATION AND MODEL SELECTION:

ρ -ESTIMATION

Y. BARAUD, L. BIRGÉ, AND M. SART

Abstract. The aim of this paper is to present a new estimation procedure that can be
applied in various statistical frameworks including density and regression and which leads
to both robust and optimal (or nearly optimal) estimators. In density estimation, they
asymptotically coincide with the celebrated maximum likelihood estimators at least when
the statistical model is regular enough and contains the true density to estimate. For very
general models of densities, including non-compact ones, these estimators are robust with
respect to the Hellinger distance and converge at optimal rate (up to a possible logarithmic
factor) in all cases we know. In the regression setting, our approach improves upon the
classical least squares in many respects. In simple linear regression for example, it provides
an estimation of the coefficients that are both robust to outliers and simultaneously rate-
optimal (or nearly rate-optimal) for a large class of error distributions including Gaussian,
Laplace, Cauchy and uniform among others.

1. Introduction

The primary scope of this paper was to design a new and more or less universal estimation
method for the regression framework where we observe n independent real random variables
X1, . . . ,Xn of the form Xi = fi + εi where the fi are the unknown parameters of interest
and the εi i.i.d. real random errors with a partially unknown distribution which may be
quite different from the usual Gaussian one. The problem arose from a question by Oleg
Lepski to the first author during his visit to Nice in January 2012. This question was about
the regression framework when the errors have rather unusual distributions, in which case
the classical least squares method can be far from optimal. That was the starting point of
our study which finally resulted in a much broader approach and the design of a new class
of estimators with several remarquable and partly unexpected properties.

The regression frameworks that we shall consider here are of the form Zi = f(Wi)+εi for
1 ≤ i ≤ n, where the Zi are real observations, the εi i.i.d. errors with density p with respect
to the Lebesgue measure µ on R, f is an unknown function from W to R and the Wi ∈ W
are explanatory variables which may either be deterministic, in which case Wi = xi and
f(xi) = fi, or random and i.i.d. This leads to the two classical regression frameworks on
Rn that we shall consider in the sequel:

Xi = fi + εi and Xi = (Wi, Yi) with Yi = f(Wi) + εi for 1 ≤ i ≤ n.

The first case corresponds to fixed design regression for which Xi has density p(·− fi) with
respect to µ, the second case to random design regression with i.i.d. random explanatory
variables Wi independent of the εi.

Both examples can be set in the more general framework of independent observations
with a distribution that may vary with i and that we shall now describe more precisely. We

Date: June 2, 2016.

1

ÊK 2 argmin
⌫

⇢
sup
µ

MOMK [(X � ⌫)2 � (X � µ)2]

�
.



AN ALTERNATIVE?

LUGOSI AND MENDELSON’S APPROACH

▸ Compute an upper bound      on                for a good choice 
of K=K* on an event of large probability. 

▸ Call « champion » any     such that                    . 

▸ Estimate         by a champion. 

▸ Of course, the T-estimator is a champion on the same 
event, but it is also always defined and its definition does 
not require the knowledge of      or K*. 

CK(PX)r⇤

µ CK(µ)  r⇤

PX

r⇤



LEARNING IN SMALL 
DIMENSION



LEAST-SQUARES REGRESSION

SETTING

▸ Let                                     denote i.i.d. observations taking 
values in               with common unknown distribution    . Let 

▸ To compare    and     , we use the following decomposition 
of the least-squares contrast 

▸ We assume to simplify that the distribution of X is known.   

(X,Y ), (Xi, Yi)i=1,...,n

Rp ⇥ R P

�⇤ 2 arg min
�2Rp

P (Y �XT�)2, ⇠i = Yi �XT
i �

⇤ .

� �0

(Y �XT�)2 � (Y �XT�0)2 = [XT (� � �0)]2 � 2(Y �XT�0)XT (� � �0) .

k�k2L2(PX) = P [(XT�)2] = �TP (XXT )� .



ESTIMATION STARTEGY

EXTENSION OF MOM’S PRINCIPLES

▸ Consider, for any   , the set            of those    such that  

▸ Then define as a criterion the diameter of this set : 

▸ Select finally the estimator minimizing this criterion :  

� BK(�) �0

�̂K 2 arg min
�2Rp

CK(�) .

CK(�) = sup
�02BK(�)

k� � �0k2L2(PX) .

MOMK

⇥
(XT (� � �0))2 � 2(Y �XT�0)XT (� � �0)

⇤
� 0 .



RISK BOUND

MAIN RESULT  [LECUÉ, L., SAUMARD]

▸ Assume that                                     Let                                    ,                                    
For any              ,    

▸ One can apply Lepski’s method to derive an estimator 
satisfying this bound simultaneously for all K, in particular :

r2 = E[⇠2kXk2] < 1. C⇠ � max

�2S(0,1)
Var(⇠XT�)

K & r2

C⇠

P
 
k�̂K � �⇤kL2(PX) &

r
C⇠

K

n

!
 2e�K/C .

P
 
k�̃ � �⇤kL2(PX) &

r
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n

!
. e
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Learning from MOM’s principles

G. Lecué and M. Lerasle

January 10, 2017

Abstract

We obtain estimation error rates and sharp oracle inequalities for a Birgé’s T-estimator using a regu-
larized median of mean principle as based tests. The results hold with exponentially large probability –
the same one as in the gaussian framework with independent noise– under only weak moments assump-
tion like a L4/L2 assumption and without assuming independence between the noise and the design X .
The obtained rates are minimax optimal. The regularization norm we used can be any norm. When it
has some sparsity inducing power we recover sparse rates of convergence and sparse oracle inequalities.
As in [29], the size of the sub-differential of the regularization norm in a neighborhood of the oracle
plays a central role in our analysis.

Moreover, the procedure allows for robust estimation in the sense that a large part of the data may
have nothing to do with the oracle we want to reconstruct. The number of such irrelevant data (which
can be seen as outliers) may be as large as (sample size)×(rate of convergence) as long as the quantity
of useful data is larger than a proportion of the number of observations.

As a proof of concept, we obtain the “exact” minimax rate of convergence s log(ed/s)/N for the
problem of recovery of a s-sparse vector in Rd via a median of mean version of the LASSO under a Lq0

assumption on the noise for some q0 > 2 and a C0 log(ed) moment assumption on the design matrix.
As mentionned previously this result holds with exponentially large probability as if the noise and the
design were independent and standard gaussian random variables.

1 Introduction

An important problem in learning theory is to estimate a minimizer f∗ ∈ argminf∈F P (Y − f(X))2 over
a convex class of functions F of the integrated square-loss based on a data set (Xi, Yi)i=1,...,N . The
Empirical Risk Minimizer (ERM) of [42] and later on, its penalized versions propose to replace the unknown
distribution P by the empirical distribution PN based on the sample (Xi, Yi)i=1,...,N , to choose a non-
negative function pen : F → R and to define

f̂ERM
N ∈ argmin

f∈F
{PN (Y − f(X))2 + pen(f)} .

This estimator is well understood now and is known to suffer several drawbacks when the data are heavy-
tailed or in the presence of “outliers” [15]. These issues are critical in many modern applications such
as high-frequency trading, where heavy-tailed data are quite common or in various areas of biology such
as micro-array analysis or neuroscience where data are sometimes still nasty after being preprocessed. To
overcome the problem, various methods have been proposed, the most common strategy being to “smooth”
the shape of the square function at infinity to make it less sensitive to large data. For example, the Hüber
loss [21] replaces the function x → x2 by x → x2I(|x| ≤ τ) + [τ(2|x| − τ)]I(|x| > τ) that is it interpolates
between the square loss that leads to the unbiased (but non robust) empirical mean estimator and the
absolute loss that leads to the (more robust but biased) empirical median. Beside the asymptotic results
of [21], this estimator has been studied in a non-asymptotic framework, see for example [16, 19] and the
references therein. An alternative to the Hüber function has been proposed by Catoni [15] and used
in learning frameworks by Audibert and Catoni [2] in least-squares regression and for more general loss
functions by Brownlees, Joly and Lugosi [13].

1



ANALYSIS OF THE ESTIMATOR

MAIN STEPS

▸ First remark that      beats any     such that 

▸ Then it beats any     such that                                  , where                            

▸ We deduce from this result that                                    .  

▸ We use empirical process theory to bound 

�⇤ �

�

rK .

k�̂K � �⇤kL2(PX)  rK

Q1/4,K [(XT (� � �⇤))2]� 2Q3/4,K [⇠XT (� � �⇤)] � 0 .

k� � �⇤kL2(PX) � rK

rK = 2
sup�2S(�⇤,1)(Q3/4,K � P )[⇠XT (� � �⇤)]

inf�2S(�⇤,1) Q1/4,K [(XT (� � �⇤))2]
.



BOUNDING SUPREMA OF QUANTILE PROCESSES

MAIN IDEAS

Bounded 
difference 
inequality

symetrization 
+ contraction 
principle

with probability

1� e�
u2
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(
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TO SUMMARIZE

BOUNDING QUANTILE/MEAN PROCESSES

if x &
r

K

n

kE[Z2
t,i]kT _ E

�����
1

n

nX

i=1

✏iZt,i

�����
T

P (kQ↵,K [Zt]kT > x)  e

�K/C
.



IMPORTANT REMARK

ON THE MARGIN CONDITION

C⇠ 2
⇣
|Var(Y |X)|1 +

��E[Y |X]�XT�⇤��2
1

⌘

Var(Y |X) E[Y |X]�XT�⇤

2 + ↵

C⇠ .  1
1+↵/2

 = sup
�2B2(�⇤

,1),x2supp(PX)
|xT (� � �

⇤)|

▸       can be bounded by                                                               
provided that these quantities are finite. 

▸ This example covers the case where the linear model is 
correct and the variance of the noise is bounded. 

▸ More generally, if               and                         have finite 
moment of order           and                                                        , 
then                     . 

▸ In particular, for Fourier basis, Wavelet basis, histograms
 . p

p thus C⇠ . p
1

2+↵ .



EXTENSION TO 
HIGH DIMENSION



PRINCIPLE

ADDING PENALTIES TO TESTS

▸ As usual, we have to add a penalty to the tests to deal with 
the large dimension setting. One can use for example, the    
penalty and define the penalized test statistics  

▸ Birge’s aggregation procedure has to be slightly extended 
to benefit from the penalty.

`1

MOMK [(XT (� � �0))2 � 2(Y �XT�0)XT (� � �0)] + �(|�|1 � |�0|1)

C(1)
K (�) = sup

�02BK(�)
{|� � �0|1} C(2)

K (�) = sup
�02BK(�)

{|� � �0|L2(PX)} .

CK(�) = min{⇢ � 0 : C(1)
K (�)  ⇢, C(2)

K (�)  r(⇢)} .



IT STILL WORKS!

IDEAS UNDERLYING THE PROOF

▸ Using the approach of Mendelson, we reduce 
the problem to the control of a localized             
process.  

▸  The concentration of this terms reduces to the 
study of                                                          . 

▸ This last term can be bounded at least in the 
linear regression framework.
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Learning without Concentration

Shahar Mendelson ∗

October 23, 2014

Abstract

We obtain sharp bounds on the performance of Empirical Risk Min-
imization performed in a convex class and with respect to the squared
loss, without assuming that class members and the target are bounded
functions or have rapidly decaying tails.

Rather than resorting to a concentration-based argument, the method
used here relies on a ‘small-ball’ assumption and thus holds for classes
consisting of heavy-tailed functions and for heavy-tailed targets.

The resulting estimates scale correctly with the ‘noise level’ of the
problem, and when applied to the classical, bounded scenario, always
improve the known bounds.

1 Introduction

Our aim is to study the error of Empirical Risk Minimization (ERM), per-
formed in a convex class and relative to the squared loss.

To be more precise, let F be a class of real-valued functions on a proba-
bility space (Ω, µ) and let Y be an unknown target function. One would like
to find some function in F that is almost the ‘closest’ to Y in some sense.

A rather standard way of measuring how close Y is to F , is by using
the squared loss ℓ(t) = t2 to capture the ‘point-wise distance’ (f(x) − y)2,
and being ‘close’ is measured by averaging that point-wise distance. Hence,
if X is distributed according to the underlying measure µ, the goal is to
identify, or at least approximate with good accuracy, the function f∗ ∈ F
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LARGE DIMENSION SETTING

MAIN RESULTS (LECUÉ, L. AND LUGOSI,MENDELSON, 2017) 
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REMARKS

COMPARISON/DISCUSSION

▸ Compared to [Lugosi and Mendelson 2017], Lepski’s 
approach allows to remove the dependency of the 
estimator in an upper bound of              .  

▸ Regarding « robustness » properties, we prove that the 
previous result is not affected by the presence of      
outliers, provided that                         . (see also          
[Baraud, Birgé 2016]). 

▸ The « informative data » may not be i.i.d., the        
procedure just requires close            moments. 
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RHO-ESTIMATORS REVISITED: GENERAL THEORY AND

APPLICATIONS

Y. BARAUD AND L. BIRGÉ

Abstract. Following Baraud, Birgé and Sart (2016), we pursue our attempt to design
a universal and robust estimation method based on independent (but not necessarily
i.i.d.) observations. Given such observations with an unknown joint distribution P and a

dominated model! for P, we build an estimator P̂ based on ! and measure its risk by an
Hellinger-type distance. When P does belong to the model, this risk is bounded by some
new notion of dimension which relies on the local complexity of the model in a vicinity
of P. In most situations this bound corresponds to the minimax risk over the model (up
to a possible logarithmic factor). When P does not belong to the model, its risk involves
an additional bias term proportional to the distance between P and !, whatever the true
distribution P. From this point of view, this new version of ρ-estimators improves upon
the previous one described in Baraud, Birgé and Sart (2016) which required that P be
absolutely continuous with respect to some known reference measure. Further additional
improvements have been brought as compared to the former construction. In particular, it
provides a very general treatment of the regression framework with random design as well
as a computationally tractable procedure for aggregating estimators. Finally, we consider
the situation where the Statistician has at disposal many different models and we build
a penalized version of the ρ-estimator for model selection and adaptation purposes. In
the regression setting, this penalized estimator not only allows to estimate the regression
function but also the distribution of the errors.

1. Introduction

In a previous paper, namely Baraud, Birgé and Sart (2016), we introduced a new class of
estimators that we called ρ-estimators for estimating the distributionP of a random variable
X = (X1, . . . ,Xn) with values in some measurable space (" ,#) under the assumption
that the Xi are independent but not necessarily i.i.d. These estimators are based on density
models, a density model being a family of densities t with respect to some reference measure
µ on " . We also assumed that P was absolutely continuous with respect to µ with density
s and we measured the performance of an estimator ŝ in terms of h2(s, ŝ), where h is a
Hellinger-type distance to be defined later. Originally, the motivations for this construction
were to design an estimator ŝ of s with the following properties.

— Given a density model S, the estimator ŝ should be nearly optimal over S from the
minimax point of view, which means that it is possible to bound the risk of the estimator
ŝ over S from above by some quantity CD(S) which is approximately of the order of the
minimax risk over S.

— Since in Statistics we typically have uncomplete information about the true distribu-
tion of the observation, when we assume that s belongs to S nothing ever warrants that
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SOME 
PERSPECTIVES



ON-GOING AND FUTURE WORKS

FURTHER DEVELOPMENTS

▸ Efficient algorithm in learning problems : using a    -
aggregation procedure, reduction to a saddle-point 
detection. 

▸ Remove the « small-ball » assumption to allow more 
general designs : no need to lower bound the quadratic 
process for all data. 

▸ More general learning problems (density estimation, non-
quadratic losses, …)

⇢
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