

Experience with new architectures: moving from HELIOS to Marconi

Serhiy Mochalskyy, Roman Hatzky

3rd Accelerated Computing For Fusion Workshop November 28–29th, 2016, Saclay, France

High Level Support Team Max-Planck-Institut für Plasmaphysik Boltzmannstr. 2, D-85748 Garching, Germany

Outline

- Marconi general architecture
- Marconi vs HELIOS
- Roofline model
- Stream benchmark
- Intel MPI Benchmark
- MPI_Barrier, MPI_Init, MPI_Alltoall performance test
- Porting Starwall code on Marconi
- Summary

Marconi general architecture

Marconi supercomputer – Bolonia, Italy

Model: Lenovo NeXtScale

1) A preliminary system went into production in July 2016: Intel Xeon processor E5-2600 v4 (Broadwell). 1512 computing nodes -> 2 Pflops. (HELIOS – 1.52 Pflops)

- 2) Till the end of 2016: the last generation of the Intel Xeon Phi (*Knights Landing*) ->11 Pflops.
- 3) July 2017: Intel Xeon processor Skylake -> 20 Pflops.

Comparison of CPU installed on Helios and Marconi

Processor	Intel Sandy Bridge (HELIOS)	Intel Broadwell (Marconi)
Number of cores	8	18
Memory	32 GB	64 GB
Frequency	2.6 GHz	2.3 GHz
FMA units	1	2
Peak performance	173 GFlop/s	633 GFlop/s
Memory bandwidth	68 GB/s	76.8 GB/s

~x1.62 increase in performance per core

- ~x3.6 increase in peak performance
- ~x1.13 increase in memory bandwidth

Marconi roofline model

> 80 % of the theoretical peak performance can be reached

Stream Benchmark – compact pinning

Stream benchmark on Marconi

Marconi vs HELIOS

- For one CPU memory bandwidth
 ~61 Gbytes/s (79 % of theoretical)
- For one node memory bandwidth
 ~118 Gbytes/s (77 % of theoretical)
- Both supercomputers provide expected behavior
- Bandwidth ratio even higher than expected on Marconi x1.5 in comparison with Helios

Stream Benchmark – scatter vs compact pinning

Stream benchmark on HELIOS

10

Threads number

20

15

Stream benchmark on Marconi

80000 70000

Bandwidth (MB/s) 50000 30000 20000

10000

0

0

5

Speed-up test within one node

Good speed-up for all array sizes

> In spite of a lower CPU frequency, Marconi is faster than Helios for all core numbers (reason \rightarrow 2 FMA)

Intel MPI benchmark (1) intra node

The latency is lower on HELIOS but the bandwidth is higher on Marconi

Intel MPI benchmark (2) inter node

Ping Pong test for latency and memory bandwidth for two distinct nodes

> The Marconi inter node bandwidth is very low and "strange"

Intel MPI benchmark (3) inter node

Ping Pong test for memory bandwidth of two distinct nodes

The Marconi bandwidth broke down at a message size of 8kB

Intel MPI benchmark (4) summary

- HELIOS bandwidth shows expected behavior
- Marconi Stream bandwidth is much higher than Intel IMB
- Marconi Intra node bandwidth is higher than intra node

Basic MPI test on Marconi

1,00E+00 1,00E-01 1,00E-02 Time (s) 1,00E-03 1,00E-04 1,00E-05 1,00E-06 ---Helios 16 tasks per node ----- Marconi 36 tasks per node 1,00E-07 2 8 16 1 4 32 64 Node number

Execution of the MPI_Barrier: Marconi vs HELIOS

- Mean value is reasonable but large maximum peaks appear
- Such peaks appears even on one node
- With new update the max peaks on Marconi decrease by one order but they are still one order of magnitude slower than on Helios

Basic MPI test on Marconi

Histogram of execution of the *MPI_Barrier* on one node using different task number

Within one node the execution of MPI_Barrier remains much slower on Marconi for 32, 35 and 36 tasks but it is fast for 2 and 4 tasks

MPI_Init and **MPI_Alltoall** tests

Porting Starwall code on Marconi

Scalability test Marconi vs HELIOS

- > Due to larger memory Marconi can perform the test even on two nodes
- Marconi is faster for small number of nodes (even if one compares the same number of cores)
- Scalability breaks on Marconi at 16 nodes

- Marconi supercomputer was tested during pre official operation phase.
- The roofline model was constructed and tested for the Intel Broadwell CPU.
- > Different benchmarks were executed:
 - Stream
 - Intel MPI benchmark
 - > MPI_Barrier, MPI_Init, MPI_Alltoall
- > A problem with memory bandwidth was found.
- The performance and scalability of the Starwall code were tested.

Thank you for your attention

- PBS system
- Problem with file system: no free space
- Problem with operation system: hanging
- Problem with module loading: errors for some modules
- -envlist flag

Basic MPI test on Marconi (3)

Execution of the MPI_BARRIER on one node-probability density function: Helios vs Marconi

Within one node the execution of MPI_BARRIER remains much slower on Marconi in comparison with Helios

Basic test on Marconi (5)

Slow events appear for both MPI_BARRIER and "delay" operations but less pronounced for "delay"

Basic MPI test on Marconi

Histogram of execution of the MPI_BARRIER on one node using different task number

HLST results

CINECA results after opening ticket

✓ Histogram using 4 or 36 tasks inside a node

Within one node the execution of MPI_BARRIER remains much slower on Marconi for 32, 35 and 36 tasks but it is very fast for 2 and 4 tasks

Accelerated Computing for Fusion, November 29th, 2016

