
3RD WORKSHOP "ACCELERATED COMPUTING FOR FUSION",
MAISON DE LA SIMULATION ORSAY NOVEMBER 28TH - 29TH 2016

François Courteille |Principal Solutions Architect, NVIDIA |fcourteille@nvidia.com

Programming heterogeneous architectures
Introduction to Pascal architecture & Unified Memory

2

Pascal- 5 Miracles

Pascal

16nm FinFET

CoWoS HBM2

NVLink

cuDNN

NVIDIA DGX-1 NVIDIA DGX SATURNV 65x in 3 Years

[CELLR
ANGE]

[CELLR
ANGE]

[CELLR
ANGE]

[CELLR
ANGE]

0x

10x

20x

30x

40x

50x

60x

70x

2013 2014 2015 2016

AlexNet Training Performance

ONE ARCHITECTURE BUILT FOR BOTH
DATA SCIENCE & COMPUTATIONAL SCIENCE

3

AGENDA

The Tesla Platform : architecture and future

Rapid software development for heterogeneous architecture

ENZO : Hydrodynamics and Magnetohydrodynamics Solvers on GPU - MPS

4

TESLA PLATFORM

5

NVIDIA DGX-1 DEEP LEARNING SYSTEM

6

TESLA P100 ACCELERATORS

Compute 5.3 TF DP ∙ 10.6 TF SP ∙ 21.2 TF HP 4.7 TF DP ∙ 9.3 TF SP ∙ 18.7 TF HP

Memory HBM2: 732 GB/s ∙ 16 GB
HBM2 16GB: 732 GB/s

HBM2 12GB: 549 GB/s

Interconnect NVLink (160 GB/s) + PCIe Gen3 (32 GB/s) PCIe Gen3 (32 GB/s)

Programmability
Page Migration Engine

Unified Memory

Page Migration Engine

Unified Memory

Power 300W 250W

Tesla P100 with NVLink Tesla P100 for PCIe

Interconnect Speed is measured bi-directional

8

P100: FASTEST PERFORMANCE FOR HPC

0x

2x

4x

6x

8x

10x

12x

14x

16x

VASP GROMACS GTC-P LAMMPS AMBER Hoomd-Blue QUDA

2x K80 2x P100 PCIe 4x P100 PCIe

S
p
e
e
d
-u

p
 v

s
2
x
 B

ro
a
d
w

e
ll

 C
P
U

 S
e
rv

e
r

HPC Applications

2x
3x

6x

8x

21x

13x

40x

CPU Server: Dual Xeon E5-2699 v4@2.2GHz (44-core CPU), GPU Servers: Dual Xeon E5-2699 v4@2.2GHz (44-core CPU) with Tesla K80s, P100s PCIe
Dataset: VASP- Silica IFPEN, GROMACS- Water 3M, GTC-P- Model A, LAMMPS- 256x256x256 local size,
QUDA 0.9 vs QPhiX- Dslash Wilson-Clover,Precisio: Double, Problem Size 32x32x32x64, AMBER- PME-Cellulose-NVE, Hoomd-Blue- lj_liquid_1m

21x

9

NVLINK

10

GPU-TO-GPU NVLINK TOPOLOGY

For the 8-GPU-Cube-Mesh topology, there is no need to use PCIe for any GPU-to-GPU

communications (whether point-to-point or collective).

11

MOST SCALABLE, MOST VERSATILE

8-GPU Cube Mesh with NVLINK

Best in class scaling with 8-GPU for
Wide variety of workloads

Easy to partition into logical systems of
two or four GPUs

12

15

NVLINK TO CPU
IBM Power Systems Server S822LC (codename “Minsky”)

2x

80

80

IBM Power8+ CPUs and 4x P100 GPUs

GB/s per GPU bidirectional for peer traffic

GB/s per GPU bidirectional to CPU

115GB/s

115 GB/s CPU Memory Bandwidth

Direct Load/store access to CPU Memory

High Speed Copy Engines for bulk data movement

P100

P100

P100

P100

IB IB

P8+ CPU

P8+ CPU

DDR4

DDR4

14

Fully Integrated DL
Supercomputer

Hyperscale HPC Strong-Scale HPC Mixed-App HPC

END-TO-END PASCAL PRODUCT FAMILY

Training - Tesla P100

Inference - Tesla P40 & P4

Tesla P100 with NVLink Tesla P100 with PCI-E DGX-1

17

RAPID SOFTWARE DEVELOPMENT ON
HETEROGENEOUS SYSTEMS

18

GPU COMPUTING IN STANDARD LANGUAGES

Progress on a C++
Standard Parallel
Algorithms Library

Open Source Compilers Support
GPUs with OpenACC/OpenMP

GCC/GFORTRAN

OpenUH

OpenARC

ACCUL

Numba: Open Source
Python compiler now

supports GPUs

Prototype Java Bytecode
Compiler
for GPUs

19

Portable, High-level Parallel Code TODAY

Thrust library allows the same C++ code to target both:

NVIDIA GPUs

x86, ARM and POWER CPUs

Thrust was the inspiration for a proposal to
the ISO C++ Committee

Committee voted unanimously to accept as
official tech. specification working draft

 N3960 Technical Specification Working Draft:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf

Prototype:

https://github.com/n3554/n3554

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
https://github.com/n3554/n3554

20

13

Technical Specification for
C++ Extensions for Parallelism

STANDARDIZING
Published as ISO/IEC TS 19570:2015, July 2015.

PARALLEL STL
Draft available online

http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf

We’ve proposed adding this to C++17

http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html

Published as ISO/IEC TS 19570:2015, July 2015.

http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html

21

MORE C++ PARALLEL FOR LOOPS

GPU Lambdas Enable Custom Parallel Programming Models

Kokkos::parallel_for(N, KOKKOS_LAMBDA (int i) {
 y[i] = a * x[i] + y[i];
});

Kokkos

https://github.com/kokkos

RAJA::forall<cuda_exec>(0, N, [=] __device__ (int i) {
 y[i] = a * x[i] + y[i];
});

RAJA

https://e-reports-ext.llnl.gov/pdf/782261.pdf

hemi::parallel_for(0, N, [=] HEMI_LAMBDA (int i) {
 y[i] = a * x[i] + y[i];
});

Hemi
CUDA Portability

Library

http://github.com/harrism/hemi

https://github.com/kokkos
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://e-reports-ext.llnl.gov/pdf/782261.pdf
http://github.com/harrism/hemi

22

Powerful

LSDALTON
Simulation of molecular energies

1.0x

11.7x

CPU GPU

Big Performance
CCSD(T) Module, Alanine-3

Titan System: AMD CPU vs Tesla K20X

S
p
e
e
d
u
p
 v

s
C
P
U

Simple Portable

OPENACC
World’s Only Performance Portable Programming Model for HPC

main()

{

 <serial code>

 #pragma acc kernels

 {

 <parallel code>

 }

}

Add Simple Compiler Hint

ARM

PEZY

POWER

Sunway

x86 CPU

x86 Xeon Phi

NVIDIA GPU

Quicker Development

Lines of Code Modified

<100 Lines

of Weeks Required

1 Week

23

0

5

10

15

Haswell
4xK80

Haswell
2xP100

POWER8
4xP100

S
p

e
e
d

u
p

 O
v
e
r

A
ll
 C

P
U

 C
o

re
s

 14x

X86 CPU: Intel Xeon E5-2698 v3, 32=cores

POWER CPU: IBM POWER8NVL, 40 cores

PORTING THE OPENACC VERSION OF GTC
FROM XEON TO OPENPOWER

Makefile

Source Code

x86

OpenPOWER

GTC

gtc.exe

gtc.exe

PETSc Open MPI

 8.8x

 4.7x

Single System w/4 or 8 MPI Processes

24

0

10

20

30

40

50

60

Multicore
Haswell

Multicore
Broadwell

Multicore
POWER8

Speed-up vs

Single-core

Haswell

Kepler P100

PGI OpenACC

Intel OpenMP

IBM OpenMP

8.5x 8.9x 10.2x 10.3x
14.2x

52.1x

10.8x 11.3x

2xP100

AWE Hydrodynamics CloverLeaf mini-App, bm32 data set

OPENACC PERFORMANCE PORTABILITY –
CLOVERLEAF 1.3

Xeon · OpenPOWER · Kepler · Pascal
92.6x

4xP100

142x

25

OPENACC SPEC ACCEL 1.0 BENCHMARKS

*System Information:

Supermicro SYS-2028GR-

TRT

CPU: Intel Xeon E5-2698

v3,

 2 sockets, 32 cores,

 HT disabled

GPU: NVIDIA Tesla K80

 (single GPU)

OS: CentOS 6.6

Compiler: PGI 16.1

S
p

e
e
d

u
p

 v
s
 S

in
g

le
 H

a
s
w

e
ll
 C

o
re

0

10

20

30

40

50

60

Dual-Haswell (32
cores)

Dual-Broadwell (40
cores)

Dual-POWER8
(20 cores)

Tesla K80
(Single GPU)

Tesla P100 (single
GPU)

11.8x 11.2x

56x

17.7x

10.5x

Performance measured November, 2016 and are considered estimates per SPEC run and reporting rules. SPEC® and SPEC
ACCEL® are registered trademarks of the Standard Performance Evaluation Corporation (www.spec.org).

Geometric mean across all 15 benchmarks

26

UNIFIED MEMORY

27

KEPLER/MAXWELL UNIFIED MEMORY

Performance

Through

Data Locality

Migrate data to accessing processor

Guarantee global coherency

Still allows explicit hand tuning

Simpler

Programming &

Memory Model

Single allocation, single pointer,

 accessible anywhere

Eliminate need for explicit copy

Greatly simplifies code porting

Allocate Up To
GPU Memory Size

Kepler

GPU
CPU

Unified Memory

CUDA 6+

28

PAGE MIGRATION ENGINE

49-bit Virtual Addresses

Sufficient to cover 48-bit CPU address + all GPU memory

GPU page faulting capability

Can handle thousands of simultaneous page faults

Up to 2 MB page size

Better TLB coverage of GPU memory

Support Virtual Memory Demand Paging

5.12.2

016 г.

29

PASCAL UNIFIED MEMORY
Large datasets, simple programming, High Performance

Allocate Beyond
GPU Memory Size

Enable Large

Data Models

Oversubscribe GPU memory

Allocate up to system memory size

Tune

Unified Memory

Performance

Usage hints via cudaMemAdvise API

Explicit prefetching API

Simpler

Data Access

CPU/GPU Data coherence

Unified memory atomic operations

Unified Memory

Pascal

GPU
CPU

CUDA 8

30

CUDA 8 UNIFIED MEMORY — EXAMPLE

64 GB unified memory allocation on
P100 with 16 GB physical memory

Transparent – No API changes

Works on Pascal & future
architectures

Allocating 4x more than P100 physical memory

void foo() {

 // Allocate 64 GB
 char *data;
 size_t size = 64*1024*1024*1024;
 cudaMallocManaged(&data, size);
}

USE CASE: ON-DEMAND PAGING
Graph Algorithms

Performance over GPU directly accessing host memory
(zero-copy)

Large Data Set

Baseline: migrate on first touch
Optimized: best placement in memory

11/16/2016 40

20

OUT-OF-CORE AMR COMPUTATIONS
WITH UNIFIED MEMORY ON P100

P100 (x86 PCI-E) P100 + user hints (x86 PCI-E) P100 (P8 NVLINK) P100 + user hints (P8 NVLINK)

200
P100 memory size (16GB)

180
All 5 levels fit in GPU memory

160

140

120

100

80

Only 1 level fits
60

40

20

0

1.4 4.7 8.6
Application working

28.9 58.6
set (GB)

x86 CPU: Intel E5-2630 v3, 2 sockets of 10 cores each with HT on (40 threads)

A
p
p
li
c
a
ti

o
n
 T

h
ro

u
g
h
p
u
t

(M
D

O
F
/
s)

Only 2 levels fit

Only 1 level f

34

GREAT PERFORMANCE WITH UNIFIED MEMORY
RAJA: Portable C++ Framework for parallel-for style programming

RAJA uses Unified Memory for
heterogeneous array allocations

Parallel forall loops run on device

“Excellent performance
considering this is a "generic”

version of LULESH with no
architecture-specific tuning.”

-Jeff Keasler, LLNL

1.5x

1.9x 2.0x

0

2

4

6

8

10

12

14

16

18

20

45^3 100^3 150^3

CPU: 10-core Haswell

GPU: Tesla K40

M
il
li
o
n
 e

le
m

e
n
ts

 p
e
r

se
c
o
n
d

Mesh size
GPU: NVIDIA Tesla K40, CPU: Intel Haswell E5-2650 v3 @ 2.30GHz, single socket 10-core

LULESH Throughput

35

HOW UNIFIED MEMORY WORKS ON PASCAL
Servicing CPU and GPU Page Faults

GPU Memory Mapping CPU Memory Mapping

Interconnect

Page
Fault

Page
Fault

cudaMallocManaged(&array, size);

memset(array, size);

array array

__global__
Void setValue(char *ptr, int index, char val)
{
 ptr[index] = val;
}

setValue<<<...>>>(array, size/2, 5);

GPU Code CPU Code

37

OPENACC AND CUDA UNIFIED MEMORY

38

OPENACC AND CUDA UNIFIED MEMORY

ENZO Hydrodynamics and
Magnetohydrodynamics Solvers on GPU

Peng Wang, NVIDIA

Overview

 Introduction to ENZO

 How to port ENZO to GPU

 Performance and analysis

The ENZO Multi-Physics Code

 Block-structured AMR

 Finite volume hydrodynamics and magnetohydrodynamics solver

 Multigrid Poisson solver

 Particle-mesh N-body solver

 Particle-fluid interaction: particle formation, accretion,

feedback

 Radiative transfer using adaptive ray-tracing

 Chemistry network

 MPI-parallelized

http://code.google.com/p/enzo

ENZO Applications

First stars Black Hole
Galaxies

Relativistic Jets
Star formation

HII Region

ENZO GPU Porting

 Collaborators: Tom Abel, Ralf Kaehler (Stanford)

 First phase project finished in 2009

— HLL-PLM hydro solver

— New Astronomy 15 (2010) 581-589

 Second phase project started in 2012

— PPM and MHD solvers

 Focus on MHD solver in this talk as

— PPM solver’s implementation is similar

— MHD solver is a “newer” feature in ENZO

Supported MHD Feature on GPU

 HLL-PLM solver

 Chemistry

— MultiSpecies=1,2,3

 External sources

— Gravity

— Driving force

 Comoving coordinates

ENZO MHD Solver

 Finite volume solver

— Riemann solver: HLL

— Reconstruction: PLM

 Solver algorithm

— Input: field values at cell centers

— Output: flux at cell interfaces

— Highly parallel: each flux depending on the neighboring 4 inputs

 Fluxi-1/2=F(ui-2,ui-1,ui,ui+1)

Why Focusing on Solver

 One of the most time consuming parts

— DrivenTurbulence Problem: ~90% of the total time

 So we want to speedup it up using GPU!

Problem:
 Grid: 256^3
 Run for 10 time steps
Benchmarking system:

1 CPU core 16 CPU cores

Total Time 1328.7 87.4 Cray XK7

 AMD 16 core Opteron 6270

Solver Time 1277.8 78 NVIDIA K20X GPU

 Cray Linux Environment

 GNU compilers

(OPT=aggressive)

GPU Solver

 Basically the same between CPU and GPU solver

 Still room for further speedup.

— This simple port gives enough speedup that solver is no

longer the bottleneck

— Single source for CPU/GPU solver

ENZO CPU MHD solver code

for (int i=0; i < NCell; i++)

flux(i) = HLL_PLM(u(i-2),u(i-1),u(i),u(i+1));

ENZO GPU MHD solver code

int i=blockIdx.x*blockDim.x + threadIdx.x;

flux(i) = HLL_PLM(u(i-2),u(i-1),u(i),u(i+1));

#pragma kernels
for (int i=0; i < NCell; i++)

flux(i) = HLL_PLM(u(i-2),u(i-1),u(i),u(i+1));

Integrating GPU Solver with AMR

 Each grid is an independent initial-boundary value problem

— Just call GPU solver on each grid seperately

 Flux correction: ensure consistency between grids

— Use fine grids fluxes to update

coarse grid fluxes

Flux Correction

 Problem: fluxes now calculated on GPU

 Two possible solutions:

— Transfer the whole flux back to CPU and call CPU flux correction

routine

 Very simple to implement but wastes a lot of data transfer time: small

fraction of flux is actually needed

— Collect needed flux on GPU and transfer only them to CPU

 What we implemented

ENZO GPU MHD
Solver

for each level do:
for each grid in this level do:

call MHD solver on this grid:
transfer fields to GPU call
GPU HLL-PLM MHD solver update
chemistry field on GPU update
source terms on GPU flux
correction on GPU
transfer updated fields to CPU

call other modules on CPU(chemistry, gravity, etc)

Performance

 1core + 1GPU vs 16 cores

— Solver: 7.2x

— Overall: 1.4x

 Amdahl’s law

— 16 core: non-solver 9.4 sec

— 1 core+1GPU: non-solver 57.8 sec

 Solution: launch multiple MPI processes per GPU

16 CPU 1 CPU

#MPI=#cores cores core+1GPU Speedup

Total Time 87.4 61.6 1.4

Solver Time 78 10.8 7.2

GPU Profiling

 Data transfer ~50% of the total GPU time

 Overlapping data transfer with kernel computation?

— CUDA stream

— Many independent grids in AMR

— Modifying high level AMR code structure

Multi MPI Processes Per GPU Before Kepler

4MPI per GPU

Work4

Work3

Work2

Work1

GPU

 Serialized use of the GPU

 Potentially under-utilization

1 MPI per GPU

Work

GPU

Simultaneous Multiprocess (MPS)

Simultaneous processes on Kepler+ GPU

Automatic overlap between data transfer and kernel computation

1MPI per GPU 4MPI per GPU

W o r k 1 W o r k 2 W o r k 3 W o r k 4

GPU

Work

GPU

Final Performance

 16 CPU cores + 1 GPU (proxy on) vs 16 CPU cores

— Overall: 6x

— Solver: 16x

1 CPU core 16 CPU cores+

#MPI=#cores 16 CPU cores +1GPU 1GPU

Total Time 87.4 61.6 14.3

Solver Time 78 10.8 4.7

Proxy does Work!

Rank

Time

Proxy does work!

 Ubuntu PC with 4 core Nehalem and K20c

 Proxy performance advantage:

— 30% in the solver

— 10% overall

1 CPU core 4 CPU cores+ 4 CPU cores+

#MPI=#cores +1GPU 1GPU, proxy off 1GPU, proxy on

Total Time 51.8 24.2 21.7

Solver Time 10.64 8.6 5.9

Scalability

GPU

CPU

Mcell/s=#cell/time_per_step

Cray XK6
1 Node: 1 16-core CPU+1 K20X

What’s Limiting GPU’s scalability?

 Amdahl’s law: non-solver part now the dominant factor in

GPU version and it doesn’t scale Non-Solver

— Mostly MPI Solver

Summary

 Easy to integrate GPU into block-structured AMR code

— Similar to integrating OpenMP with MPI

 GPU gives good speedup on AMR solvers

 MPS proxy makes it easy to achieve high performance for AMR codes

QUESTIONS?

