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Pascal- 5 Miracles 

Pascal 

 
16nm FinFET 

 
CoWoS HBM2 

NVLink 

cuDNN 

NVIDIA DGX-1 NVIDIA DGX SATURNV 65x in 3 Years 

[CELLR
ANGE] 

[CELLR
ANGE] 

[CELLR
ANGE] 

[CELLR
ANGE] 

0x

10x

20x

30x

40x

50x

60x

70x

2013 2014 2015 2016

AlexNet Training Performance  

ONE ARCHITECTURE BUILT FOR BOTH 
DATA SCIENCE & COMPUTATIONAL SCIENCE  
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AGENDA 

The Tesla Platform : architecture and future 

Rapid software development for heterogeneous architecture 

ENZO : Hydrodynamics and Magnetohydrodynamics Solvers on GPU - MPS 
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TESLA PLATFORM 
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NVIDIA DGX-1 DEEP LEARNING SYSTEM 
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TESLA P100 ACCELERATORS 

Compute 5.3 TF DP ∙ 10.6 TF SP ∙ 21.2 TF HP 4.7 TF DP ∙ 9.3 TF SP ∙ 18.7 TF HP 

Memory HBM2: 732 GB/s ∙ 16 GB 
HBM2 16GB: 732 GB/s 

HBM2 12GB: 549 GB/s  

Interconnect NVLink (160 GB/s) + PCIe Gen3 (32 GB/s) PCIe Gen3 (32 GB/s) 

Programmability 
Page Migration Engine 

Unified Memory 

Page Migration Engine 

Unified Memory 

Power 300W 250W 

Tesla P100 with NVLink Tesla P100 for PCIe 

Interconnect Speed is measured bi-directional 
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P100: FASTEST PERFORMANCE FOR HPC 
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HPC Applications 

2x 
3x 

6x 

8x 

21x 

13x 

40x 

CPU Server: Dual Xeon E5-2699 v4@2.2GHz (44-core CPU), GPU Servers: Dual Xeon E5-2699 v4@2.2GHz (44-core CPU) with Tesla K80s, P100s PCIe 
Dataset: VASP- Silica IFPEN, GROMACS- Water 3M, GTC-P- Model A, LAMMPS- 256x256x256 local size,  
QUDA 0.9 vs QPhiX- Dslash Wilson-Clover,Precisio: Double, Problem Size 32x32x32x64, AMBER- PME-Cellulose-NVE, Hoomd-Blue- lj_liquid_1m 

21x 
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NVLINK 
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GPU-TO-GPU NVLINK TOPOLOGY 

For the 8-GPU-Cube-Mesh topology, there is no need to use PCIe for any GPU-to-GPU 

communications (whether point-to-point or collective). 
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MOST SCALABLE, MOST VERSATILE 

8-GPU Cube Mesh with NVLINK 

Best in class scaling with 8-GPU for 
Wide variety of workloads 

Easy to partition into logical systems of 
two or four GPUs 
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NVLINK TO CPU 
IBM Power Systems Server S822LC (codename “Minsky”) 

2x 

80 

80 

IBM Power8+ CPUs and 4x P100 GPUs 

GB/s per GPU bidirectional for peer traffic 

GB/s per GPU bidirectional to CPU 

115GB/s 

115 GB/s CPU Memory Bandwidth 

Direct Load/store access to CPU Memory 

High Speed Copy Engines for bulk data movement 

 
P100 

 
P100 

 
P100 

 
P100 

IB IB 
 

P8+ CPU 
 

P8+ CPU 

 

DDR4 
 

DDR4 
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Fully Integrated DL 
Supercomputer 

Hyperscale HPC Strong-Scale HPC Mixed-App HPC 

END-TO-END PASCAL PRODUCT FAMILY 

Training - Tesla P100 

Inference - Tesla P40 & P4 

Tesla P100 with NVLink Tesla P100 with PCI-E DGX-1 
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RAPID SOFTWARE DEVELOPMENT ON 
HETEROGENEOUS SYSTEMS 
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GPU COMPUTING IN STANDARD LANGUAGES 

Progress on a C++ 
Standard Parallel 
Algorithms Library 

Open Source Compilers Support 
GPUs with OpenACC/OpenMP 

GCC/GFORTRAN 

OpenUH 

OpenARC 

ACCUL 

Numba: Open Source 
Python compiler now 

supports GPUs 

Prototype Java Bytecode 
Compiler 
for GPUs 
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Portable, High-level Parallel Code TODAY 

Thrust library allows the same C++ code to target both: 

NVIDIA GPUs 

x86, ARM and POWER CPUs 

Thrust was the inspiration for a proposal to 
the ISO C++ Committee 

Committee voted unanimously to accept as 
official tech. specification working draft 

 N3960 Technical Specification Working Draft: 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf 

Prototype: 

https://github.com/n3554/n3554 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
https://github.com/n3554/n3554
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Technical Specification for 
C++ Extensions for Parallelism 

STANDARDIZING 
Published as ISO/IEC TS 19570:2015, July 2015. 

PARALLEL STL 
Draft available online 

http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf 

We’ve proposed adding this to C++17 

http://www.openstd.org/jtc1/sc22/wg21/docs/papers/2015/p0024r0.html 

Published as ISO/IEC TS 19570:2015, July 2015. 
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MORE C++ PARALLEL FOR LOOPS 

GPU Lambdas Enable Custom Parallel Programming Models 

Kokkos::parallel_for(N, KOKKOS_LAMBDA (int i) { 
  y[i] = a * x[i] + y[i]; 
});  

Kokkos 

https://github.com/kokkos 

RAJA::forall<cuda_exec>(0, N, [=] __device__ (int i) { 
  y[i] = a * x[i] + y[i];  
});  

RAJA 

https://e-reports-ext.llnl.gov/pdf/782261.pdf 

hemi::parallel_for(0, N, [=] HEMI_LAMBDA (int i) { 
  y[i] = a * x[i] + y[i]; 
});  

Hemi  
CUDA Portability 

Library 

http://github.com/harrism/hemi 

https://github.com/kokkos
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://e-reports-ext.llnl.gov/pdf/782261.pdf
https://e-reports-ext.llnl.gov/pdf/782261.pdf
http://github.com/harrism/hemi
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Powerful 

LSDALTON 
Simulation of molecular energies 

1.0x 

11.7x 

CPU GPU 

Big Performance 
CCSD(T) Module, Alanine-3 

Titan System: AMD CPU vs Tesla K20X 
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Simple Portable 

OPENACC 
World’s Only Performance Portable Programming Model for HPC 

main() 
  
{ 
 
  <serial code> 
 
  #pragma acc kernels 
 
  {   
 
    <parallel code> 
 
  } 
 
} 

Add Simple Compiler Hint 

ARM  

PEZY 

POWER 

Sunway 

x86 CPU 

x86 Xeon Phi 

NVIDIA GPU 

Quicker Development 

Lines of Code Modified 

<100 Lines 

# of Weeks Required 

1 Week 
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X86 CPU: Intel Xeon E5-2698 v3, 32=cores 

POWER CPU: IBM POWER8NVL, 40 cores 

PORTING THE OPENACC VERSION OF GTC  
FROM XEON TO OPENPOWER 

Makefile 

Source Code 

x86 

OpenPOWER 

GTC 

gtc.exe 

gtc.exe 

PETSc Open MPI 

 8.8x 

 4.7x 

Single System w/4 or 8 MPI Processes 
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Multicore
Haswell

Multicore
Broadwell

Multicore
POWER8

Speed-up vs  

Single-core 

Haswell 

Kepler P100 

PGI OpenACC  

Intel OpenMP 

IBM OpenMP 

8.5x 8.9x 10.2x 10.3x 
14.2x 

52.1x 

10.8x 11.3x 

2xP100 

AWE Hydrodynamics CloverLeaf mini-App, bm32 data set 

OPENACC PERFORMANCE PORTABILITY – 
CLOVERLEAF 1.3 

Xeon · OpenPOWER · Kepler · Pascal 
92.6x 

4xP100 

142x 
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OPENACC SPEC ACCEL 1.0 BENCHMARKS 

*System Information: 

Supermicro SYS-2028GR-

TRT 

CPU: Intel Xeon E5-2698 

v3,  

          2 sockets, 32 cores,  

          HT disabled 

GPU: NVIDIA Tesla K80  

          (single GPU) 

OS: CentOS 6.6 

Compiler: PGI 16.1 
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Dual-Haswell (32
cores)

Dual-Broadwell (40
cores)

Dual-POWER8
(20 cores)

Tesla K80
(Single GPU)

Tesla P100 (single
GPU)

11.8x 11.2x 

56x 

17.7x 

10.5x 

Performance measured November, 2016 and are considered estimates per SPEC run and reporting rules.  SPEC® and SPEC 
ACCEL® are registered trademarks of the Standard Performance Evaluation Corporation (www.spec.org).  

Geometric mean across all 15 benchmarks 
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UNIFIED MEMORY 
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KEPLER/MAXWELL UNIFIED MEMORY 

Performance 

Through 

Data Locality 

Migrate data to accessing processor 

Guarantee global coherency 

Still allows explicit hand tuning 

Simpler 

Programming & 

Memory Model 

Single allocation, single pointer,  

 accessible anywhere 

Eliminate need for explicit copy 

Greatly simplifies code porting 

Allocate Up To  
GPU Memory Size 

Kepler 

GPU 
CPU 

Unified Memory 

CUDA 6+ 
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PAGE MIGRATION ENGINE 

49-bit Virtual Addresses 

Sufficient to cover 48-bit CPU address + all GPU memory 

GPU page faulting capability 

Can handle thousands of simultaneous page faults  

Up to 2 MB page size 

Better TLB coverage of GPU memory 

Support Virtual Memory Demand Paging 

5.12.2

016 г. 
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PASCAL UNIFIED MEMORY 
Large datasets, simple programming, High Performance 

Allocate Beyond  
GPU Memory Size 

Enable Large  

Data Models 

Oversubscribe GPU memory 

Allocate up to system memory size 

Tune  

Unified Memory 

Performance  

Usage hints via cudaMemAdvise API 

Explicit prefetching API  

Simpler  

Data Access 

CPU/GPU Data coherence 

Unified memory atomic operations 

Unified Memory 

Pascal 

GPU 
CPU 

CUDA 8 
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CUDA 8 UNIFIED MEMORY — EXAMPLE 

64 GB unified memory allocation on 
P100 with 16 GB physical memory 

Transparent – No API changes 

Works on Pascal & future 
architectures 

Allocating 4x more than P100 physical memory 

 

void foo() { 
 
  // Allocate 64 GB 
  char *data; 
  size_t size = 64*1024*1024*1024; 
  cudaMallocManaged(&data, size); 
} 



USE CASE: ON-DEMAND PAGING 
Graph Algorithms 

Performance over GPU directly accessing host memory 
(zero-copy) 

Large Data Set 

Baseline: migrate on first touch 
Optimized: best placement in memory 

11/16/2016 40 
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OUT-OF-CORE AMR COMPUTATIONS 
WITH UNIFIED MEMORY ON P100 

P100 (x86 PCI-E) P100 + user hints (x86 PCI-E) P100 (P8 NVLINK) P100 + user hints (P8 NVLINK) 

200 
P100 memory size (16GB) 

180 
All 5 levels fit in GPU memory 

160 

140 

120 

100 

80 

Only 1 level fits 
60 

40 

20 

0 

1.4 4.7 8.6 
Application working 

28.9 58.6 
set (GB) 

x86 CPU: Intel E5-2630 v3, 2 sockets of 10 cores each with HT on (40 threads) 
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Only 2 levels fit 

 

Only 1 level f 
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GREAT PERFORMANCE WITH UNIFIED MEMORY 
RAJA: Portable C++ Framework for parallel-for style programming 

RAJA uses Unified Memory for 
heterogeneous array allocations 

Parallel forall loops run on device 
 

“Excellent performance 
considering this is a "generic” 

version of LULESH with no 
architecture-specific tuning.” 

-Jeff Keasler, LLNL 
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Mesh size 
GPU: NVIDIA Tesla K40, CPU: Intel Haswell E5-2650 v3 @ 2.30GHz, single socket 10-core 

LULESH Throughput 
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HOW UNIFIED MEMORY WORKS ON PASCAL 
Servicing CPU and GPU Page Faults 

GPU Memory Mapping CPU Memory Mapping 

Interconnect 

Page  
Fault 

Page  
Fault 

cudaMallocManaged(&array, size); 

memset(array, size); 

array array 

__global__ 
Void setValue(char *ptr, int index, char val)  
{ 
  ptr[index] = val; 
} 

setValue<<<...>>>(array, size/2, 5); 

GPU Code CPU Code 
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OPENACC AND CUDA UNIFIED MEMORY 
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OPENACC AND CUDA UNIFIED MEMORY 



  

ENZO Hydrodynamics and  
Magnetohydrodynamics Solvers on GPU  

Peng Wang, NVIDIA  



Overview  

 Introduction to ENZO  

 How to port ENZO to GPU  

 Performance and analysis  



The ENZO Multi-Physics Code  

 Block-structured AMR  

 Finite volume hydrodynamics and magnetohydrodynamics solver  

 Multigrid Poisson solver  

 Particle-mesh N-body solver  

 Particle-fluid interaction: particle formation, accretion,  

feedback  

 Radiative transfer using adaptive ray-tracing  

 Chemistry network  

 MPI-parallelized  

http://code.google.com/p/enzo  



  

ENZO Applications  

First stars  Black Hole  
Galaxies  

Relativistic Jets  
Star formation  

HII Region  



ENZO GPU Porting  

 Collaborators: Tom Abel, Ralf Kaehler (Stanford)  

 First phase project finished in 2009  

— HLL-PLM hydro solver  

— New Astronomy 15 (2010) 581-589  

 Second phase project started in 2012  

— PPM and MHD solvers  

 Focus on MHD solver in this talk as  

— PPM solver’s implementation is similar  

— MHD solver is a “newer” feature in ENZO  



Supported MHD Feature on GPU  

 HLL-PLM solver  

 Chemistry  

— MultiSpecies=1,2,3  

 External sources  

— Gravity  

— Driving force  

 Comoving coordinates  



ENZO MHD Solver  

 Finite volume solver  

— Riemann solver: HLL  

— Reconstruction: PLM  

 Solver algorithm  

— Input: field values at cell centers  

— Output: flux at cell interfaces  

— Highly parallel: each flux depending on the neighboring 4 inputs  

 Fluxi-1/2=F(ui-2,ui-1,ui,ui+1)  



Why Focusing on Solver  

 One of the most time consuming parts  

— DrivenTurbulence Problem: ~90% of the total time  

 So we want to speedup it up using GPU!  

      

Problem:  
 Grid: 256^3  
 Run for 10 time steps 
Benchmarking system:  

  

1 CPU core  16 CPU cores  

Total Time  1328.7  87.4   Cray XK7  
      

 AMD 16 core Opteron 6270  

Solver Time  1277.8  78   NVIDIA K20X GPU  

 Cray Linux Environment        

    

 GNU compilers  
    

(OPT=aggressive)  



GPU Solver  

 Basically the same between CPU and GPU solver  

 Still room for further speedup.  

— This simple port gives enough speedup that solver is no  

longer the bottleneck  

— Single source for CPU/GPU solver  

ENZO CPU MHD solver code  

for (int i=0; i < NCell; i++)  

flux(i) = HLL_PLM(u(i-2),u(i-1),u(i),u(i+1));  

ENZO GPU MHD solver code  

int i=blockIdx.x*blockDim.x + threadIdx.x;  

flux(i) = HLL_PLM(u(i-2),u(i-1),u(i),u(i+1));  

#pragma kernels  
for (int i=0; i < NCell; i++)  

flux(i) = HLL_PLM(u(i-2),u(i-1),u(i),u(i+1));  



Integrating GPU Solver with AMR  

 Each grid is an independent initial-boundary value problem  

— Just call GPU solver on each grid seperately  

 Flux correction: ensure consistency between grids  

— Use fine grids fluxes to update  

coarse grid fluxes  



Flux Correction  

 Problem: fluxes now calculated on GPU  

 Two possible solutions:  

— Transfer the whole flux back to CPU and call CPU flux correction  

routine  

 Very simple to implement but wastes a lot of data transfer time: small  

fraction of flux is actually needed  

— Collect needed flux on GPU and transfer only them to CPU  

 What we implemented  



  

ENZO GPU MHD 
Solver  

for each level do:  
for each grid in this level do:  

call MHD solver on this grid: 
transfer fields to GPU call 
GPU HLL-PLM MHD solver update 
chemistry field on GPU update 
source terms on GPU flux 
correction on GPU  
transfer updated fields to CPU  

call other modules on CPU(chemistry, gravity, etc)  



Performance  

 1core + 1GPU vs 16 cores  

— Solver: 7.2x  

— Overall: 1.4x  

 Amdahl’s law  

— 16 core: non-solver 9.4 sec  

— 1 core+1GPU: non-solver 57.8 sec  

 Solution: launch multiple MPI processes per GPU  

  

16 CPU  1 CPU  
  

#MPI=#cores  cores  core+1GPU  Speedup  

Total Time  87.4  61.6  1.4  

Solver Time  78  10.8  7.2  



GPU Profiling  

 Data transfer ~50% of the total GPU time  

 Overlapping data transfer with kernel computation?  

— CUDA stream  

— Many independent grids in AMR  

— Modifying high level AMR code structure  



Multi MPI Processes Per GPU Before Kepler  

4MPI per GPU  

Work4  

Work3  

Work2  

Work1  

GPU  

 Serialized use of the GPU  

 Potentially under-utilization  

1 MPI  per  GPU  

Work  

GPU  



Simultaneous Multiprocess (MPS)  

Simultaneous processes on Kepler+ GPU  

Automatic overlap between data transfer and kernel computation  

1MPI per GPU  4MPI per GPU  

W o r k 1  W o r k 2    W o r k 3  W o r k 4   

GPU  

Work  

GPU  



Final Performance  

 16 CPU cores + 1 GPU (proxy on) vs 16 CPU cores  

— Overall: 6x  

— Solver: 16x  

    

1 CPU core  16 CPU cores+  

#MPI=#cores  16 CPU cores  +1GPU  1GPU  

Total Time  87.4  61.6  14.3  

Solver Time  78  10.8  4.7  



Proxy does Work!  

    

Rank  

  

Time  



Proxy does work!  

 Ubuntu PC with 4 core Nehalem and K20c  

 Proxy performance advantage:  

— 30% in the solver  

— 10% overall  

  

1 CPU core  4 CPU cores+  4 CPU cores+  

#MPI=#cores  +1GPU  1GPU, proxy off  1GPU, proxy on  

Total Time  51.8  24.2  21.7  

Solver Time  10.64  8.6  5.9  



Scalability  

GPU  

CPU  

Mcell/s=#cell/time_per_step  

Cray XK6  
1 Node: 1 16-core CPU+1 K20X  



What’s Limiting GPU’s scalability?  

 Amdahl’s law: non-solver part now the dominant factor in  

GPU version and it doesn’t scale Non-Solver  

— Mostly MPI Solver  



Summary  

 Easy to integrate GPU into block-structured AMR code  

— Similar  to integrating  OpenMP with MPI  

 GPU gives good speedup on AMR solvers  

 MPS proxy makes it easy to achieve high performance for AMR codes  



QUESTIONS? 




