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Plasma turbulence simulation
Each grid point has structure 
in real space (x, y, z) and 
velocity space (v||, v⊥)

5D stencil computations

[Idomura et al., Comput. Phys. Commun (2008);
Nuclear Fusion (2009)]

Accelerators are key ingredients to satisfy huge computational 
demands at reasonable energy consumption

The fusion plasma performance is dominated by plasma turbulence
First principle full-f 5D gyrokinetic model is employed for plasma
turbulence simulation

Peta-scale machine required due to huge computational cost
(even for single-scale simulation)

Concerning the dynamics of kinetic electrons, more computational
resource is needed
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GYSELA and GT5D

Semi-Lagrangian [3] Finite Difference [3]

Interpolate
Footpoint

4D Op.

GYSELA [1] and GT5D [2] computes 4D convection operator in the Vlasov 
equation with different numerical schemes

GYSELA computes 4D convection operator (which is split into 1D+1D
+2D parts) with Semi-Lagrangian method.
GT5D kernel computes the 4D convection operator with a 4th order 
finite difference　(Morinishi scheme, 17-stencils). 

Follow back in time
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Acceleration of stencil kernels
Difficulty of the acceleration of 5D stencil kernels

Vectorisation (SIMD instructions)
load balancing within a plenty of cores
Complex memory access patterns (affinity to architecture)

Establish the optimisation strategies of high 
dimensional stencil kernels on accelerators 

Employing the 4D fusion kernels with different numerical 
schemes: Semi-Lagrangian and Finite-Difference
Investigate the architecture affinity to the complex memory 
access patterns: Indirect-access and strided-access
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Xeon Phi

GPGPU

Changing array style from Array of Structure (AoS) to 
Array of Structure of Array (AoSoA) for SIMD load
Dynamic scheduling to improve load balance

Texture cache usage to reduce indirect access cost

Optimization of Semi-Lagrangian kernel

Changing array style from Array of Structure (AoS) to 
Array of Structure of Array (AoSoA) for coalescing
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1. Load from 4D Foot point (AoS)

2. Compute nearest index
3. Compute 2D Spline basis

4. Load 2D Spline coefficient
(indirect access)

5. Spline interpolation (2D)

2D interpolation in θ、φ directions
Problem size (128, 72, 52, 201)

Semi-Lagrangian kernel

Non-continuous access
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AoSoA layout
do mir = 0, VSIZE-1 
  theta_star(local_i) = feet(2*(global_i), j, k) 
  phi_star(local_i) = feet(2*(global_i)+1, j, k)   
enddo

do mir = 0, VSIZE-1 
  theta_star(local_i) = feet(2*global_i, j, k) 
  phi_star(local_i) = feet(2*global_i+VSIZE, j, k) 
enddo

Applying Array of Structure of Array (AoSoA) layout to SIMD load operation

Original

Optimized

stride access 

sequential access
64 Byte SIMD load

foot point in
foot point in

VSIZE = 8 
(SIMD width)
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Load Imbalance on Phi

dynamic
Average [ms]: 44.3104860667
Standard deviation [ms] 5.33978190512
Max [ms]: 54.844884
Min [ms]: 32.590335

Elapsed time of a single iteration by each thread (x 100 times)

Each result sorted by elapsed time and averaged within 100 results

The maximum elapsed time is reduced by 6%, which is roughly the 
same as 5% performance improvement by changing the schedule

static
Average [ms]: 43.5337826708
Standard deviation [ms] 4.04344345115
Max [ms]: 58.161645
Min [ms]: 25.18641
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Texture memory usage

Each thread accesses different foot points and thus the access pattern is 
basically unpredictable (in-direct access)

Texture cache usage to reduce the penalty from in-direct accesses

Due to the physical features, there is a spatial locality
→A thread accesses a memory address close to the addresses accessed by 
threads in the vicinity (similar memory access pattern to texture mapping).
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Xeon Phi

GPGPU

Appropriate thread mapping to avoid warp divergence 

Effective register usage to reduce the total amount of memory accesses

Explicit thread mapping to improve the cache locality in space and time

Optimization of Finite-difference kernel
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Finite Difference kernel

2. Compute 17 coefficients
no dependence in k direction
(Toroidal asymmetry)

3. Finite difference(4D)
Additional memory accesses
in the derivative operation in
the outer most (i) direction 

Reduce the total amount of memory accesses by using the shared cache 
in conventional CPUs
Huge latency in remote L2 cache accessing across cores on Xeon Phi

1. loop collapse
problem (128, 16, 32, 32)

The size of shared cache is not large enough for GPU
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Shared cache usage in CPUs
Block decomposition Cyclic decomposition

In Cyclic decomposition, adjacent threads can share the data on shared 
cache (an adjacent thread loads data with the adjacent index)

Ex. 2D finite difference
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Shared L2 cache accessing is 
still possible but it involves the cache 
access across the cores.
→remote access latency [1]

Shared L2 cache is distributed over 
cores on Xeon Phi

Efficient cache usage by changing 
the thread mapping pattern

[1] Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips, Lilun Zhang,
Yonggang Che, and Chuanfu Xu, CoRR, 2013.

Shared cache usage in Phi
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Cache locality in space and time

Explicit mappingBlock Decomposition

Considering the memory access pattern to f[l][k][j][i] array
with the task parallelisation for the two outermost directions (i and j loops) 

Counting the total amounts of memory access to the f[l][k][j][i] for each (i, j) 
index by a single core with 4 Hyper Threads. Each core computes pairs 
of 16 different indices (in combination of i and j) in the current problem size
→ Treated by 4 different sequential steps with 4 Hyper threads

: the total counts of memory access to f[:][:][i][j] 
  by a single Hyper Thread at the m-th step

Explicit mapping → Higher cache locality in space and time 
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Appropriate thread mapping (GPU)
Original kernel (threads mapped to l, k plane)

Optimized kernel (threads mapped to l, j plane)

Divergent branch

Appropriate thread mapping to avoid divergent branch (coefficient computation)
19



Effective register usage
Cyclic register usage in the inner most direction

5 stencils in k direction are kept on registers (registers are used cyclically)

Loop unrolling in i direction
Reduce additional memory accesses for derivative in i direction
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Testbed description
Sandy Bridge FX100 Xeon Phi GPU

CPU / GPU SandyBridge-Ep SPARC64XIfx Xeon Phi 5110P Tesla K-20X
Compiler intel compiler 13.1.3 Fujitsu compiler 2.0 intel compiler 13.1.3 pgfortran 15.7

Cores (DP) 8 32 + 2 60 896

Cache [MB] 20 24 0.5 x 60 1.5

GFlops (DP) 172.8 1000 1010 1310

STREAM GB/s 40 320 160 180

SIMD width 4 (AVX) 4 8 N/A
Power efficiency 

[MFlops/W] 562 1910 1501 2973

Flop/Byte 4.32 3.13 6.31 7.28

Adding FX100 as a reference for acceleration, which has a comparable performance to
accelerators.



Acceleration of kernels

Low performance of SL kernel on Phi could be due to indirect access 

Both kernels show good performance on GPGPU 

Low performance of FD kernel on Phi could be due to memory bound feature
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Summary for optimization strategies

Xeon Phi
AoSoA layout for SIMD load (SL)
Improve load balancing by 
dynamic scheduling (SL)
High cache locality in 
space and time (SL, FD)

GPGPU
AoSoA layout for coalescing (SL)
Texture memory for 
indirect accessing (SL)
Effective register usage (FD)

24


