
Y. ASAHI1, G. Latu1, T. Ina2, Y. Idomura2,
V. Grandgirard1, X. Garbet1

CEA1、Japan Atomic Energy Agency2

Acceleration of stencil-
based fusion kernels

1

Outline
Introduction

Semi-Lagrangian and Finite-Difference kernels from GYSELA and GT5D

Optimization strategies
Semi-Lagrangian kernel on Xeon Phi and GPGPU

Demands for exa-scale supercomputer

Finite-Difference kernel on Xeon Phi and GPGPU

Summary
Acceleration ratio of kernels
Summary for optimization strategies on Xeon Phi and GPGPU

2

Outline
Introduction

Semi-Lagrangian and Finite-Difference kernels from GYSELA and GT5D

Optimization strategies
Semi-Lagrangian kernel on Xeon Phi and GPGPU

Demands for exa-scale supercomputer

Finite-Difference kernel on Xeon Phi and GPGPU

Summary
Acceleration ratio of kernels
Summary for optimization strategies on Xeon Phi and GPGPU

3

Plasma turbulence simulation
Each grid point has structure
in real space (x, y, z) and
velocity space (v||, v⊥)

5D stencil computations

[Idomura et al., Comput. Phys. Commun (2008);
Nuclear Fusion (2009)]

Accelerators are key ingredients to satisfy huge computational
demands at reasonable energy consumption

The fusion plasma performance is dominated by plasma turbulence
First principle full-f 5D gyrokinetic model is employed for plasma
turbulence simulation

Peta-scale machine required due to huge computational cost
(even for single-scale simulation)

Concerning the dynamics of kinetic electrons, more computational
resource is needed

4

GYSELA and GT5D

Semi-Lagrangian [3] Finite Difference [3]

Interpolate
Footpoint

4D Op.

GYSELA [1] and GT5D [2] computes 4D convection operator in the Vlasov
equation with different numerical schemes

GYSELA computes 4D convection operator (which is split into 1D+1D
+2D parts) with Semi-Lagrangian method.
GT5D kernel computes the 4D convection operator with a 4th order
finite difference　(Morinishi scheme, 17-stencils).

Follow back in time

5

Acceleration of stencil kernels
Difficulty of the acceleration of 5D stencil kernels

Vectorisation (SIMD instructions)
load balancing within a plenty of cores
Complex memory access patterns (affinity to architecture)

Establish the optimisation strategies of high
dimensional stencil kernels on accelerators

Employing the 4D fusion kernels with different numerical
schemes: Semi-Lagrangian and Finite-Difference
Investigate the architecture affinity to the complex memory
access patterns: Indirect-access and strided-access

6

Outline
Introduction

Semi-Lagrangian and Finite-Difference kernels from GYSELA and GT5D

Optimization strategies
Semi-Lagrangian kernel on Xeon Phi and GPGPU

Demands for exa-scale supercomputer

Finite-Difference kernel on Xeon Phi and GPGPU

Summary
Acceleration ratio of kernels
Summary for optimization strategies on Xeon Phi and GPGPU

7

Xeon Phi

GPGPU

Changing array style from Array of Structure (AoS) to
Array of Structure of Array (AoSoA) for SIMD load
Dynamic scheduling to improve load balance

Texture cache usage to reduce indirect access cost

Optimization of Semi-Lagrangian kernel

Changing array style from Array of Structure (AoS) to
Array of Structure of Array (AoSoA) for coalescing

8

1. Load from 4D Foot point (AoS)

2. Compute nearest index
3. Compute 2D Spline basis

4. Load 2D Spline coefficient
(indirect access)

5. Spline interpolation (2D)

2D interpolation in θ、φ directions
Problem size (128, 72, 52, 201)

Semi-Lagrangian kernel

Non-continuous access

9

AoSoA layout
do mir = 0, VSIZE-1
 theta_star(local_i) = feet(2*(global_i), j, k)
 phi_star(local_i) = feet(2*(global_i)+1, j, k)
enddo

do mir = 0, VSIZE-1
 theta_star(local_i) = feet(2*global_i, j, k)
 phi_star(local_i) = feet(2*global_i+VSIZE, j, k)
enddo

Applying Array of Structure of Array (AoSoA) layout to SIMD load operation

Original

Optimized

stride access

sequential access
64 Byte SIMD load

foot point in
foot point in

VSIZE = 8
(SIMD width)

10

Load Imbalance on Phi

dynamic
Average [ms]: 44.3104860667
Standard deviation [ms] 5.33978190512
Max [ms]: 54.844884
Min [ms]: 32.590335

Elapsed time of a single iteration by each thread (x 100 times)

Each result sorted by elapsed time and averaged within 100 results

The maximum elapsed time is reduced by 6%, which is roughly the
same as 5% performance improvement by changing the schedule

static
Average [ms]: 43.5337826708
Standard deviation [ms] 4.04344345115
Max [ms]: 58.161645
Min [ms]: 25.18641

11

Texture memory usage

Each thread accesses different foot points and thus the access pattern is
basically unpredictable (in-direct access)

Texture cache usage to reduce the penalty from in-direct accesses

Due to the physical features, there is a spatial locality
→A thread accesses a memory address close to the addresses accessed by
threads in the vicinity (similar memory access pattern to texture mapping).

12

Outline
Introduction

Semi-Lagrangian and Finite-Difference kernels from GYSELA and GT5D

Optimization strategies
Semi-Lagrangian kernel on Xeon Phi and GPGPU

Demands for exa-scale supercomputer

Finite-Difference kernel on Xeon Phi and GPGPU

Summary
Acceleration ratio of kernels
Summary for optimization strategies on Xeon Phi and GPGPU

13

Xeon Phi

GPGPU

Appropriate thread mapping to avoid warp divergence

Effective register usage to reduce the total amount of memory accesses

Explicit thread mapping to improve the cache locality in space and time

Optimization of Finite-difference kernel

14

Finite Difference kernel

2. Compute 17 coefficients
no dependence in k direction
(Toroidal asymmetry)

3. Finite difference(4D)
Additional memory accesses
in the derivative operation in
the outer most (i) direction

Reduce the total amount of memory accesses by using the shared cache
in conventional CPUs
Huge latency in remote L2 cache accessing across cores on Xeon Phi

1. loop collapse
problem (128, 16, 32, 32)

The size of shared cache is not large enough for GPU
15

Shared cache usage in CPUs
Block decomposition Cyclic decomposition

In Cyclic decomposition, adjacent threads can share the data on shared
cache (an adjacent thread loads data with the adjacent index)

Ex. 2D finite difference

16

Shared L2 cache accessing is
still possible but it involves the cache
access across the cores.
→remote access latency [1]

Shared L2 cache is distributed over
cores on Xeon Phi

Efficient cache usage by changing
the thread mapping pattern

[1] Jianbin Fang, Ana Lucia Varbanescu, Henk J. Sips, Lilun Zhang,
Yonggang Che, and Chuanfu Xu, CoRR, 2013.

Shared cache usage in Phi

17

Cache locality in space and time

Explicit mappingBlock Decomposition

Considering the memory access pattern to f[l][k][j][i] array
with the task parallelisation for the two outermost directions (i and j loops)

Counting the total amounts of memory access to the f[l][k][j][i] for each (i, j)
index by a single core with 4 Hyper Threads. Each core computes pairs
of 16 different indices (in combination of i and j) in the current problem size
→ Treated by 4 different sequential steps with 4 Hyper threads

: the total counts of memory access to f[:][:][i][j]
 by a single Hyper Thread at the m-th step

Explicit mapping → Higher cache locality in space and time
18

Appropriate thread mapping (GPU)
Original kernel (threads mapped to l, k plane)

Optimized kernel (threads mapped to l, j plane)

Divergent branch

Appropriate thread mapping to avoid divergent branch (coefficient computation)
19

Effective register usage
Cyclic register usage in the inner most direction

5 stencils in k direction are kept on registers (registers are used cyclically)

Loop unrolling in i direction
Reduce additional memory accesses for derivative in i direction

20

Outline
Introduction

Semi-Lagrangian and Finite-Difference kernels from GYSELA and GT5D

Optimization strategies
Semi-Lagrangian kernel on Xeon Phi and GPGPU

Demands for exa-scale supercomputer

Finite-Difference kernel on Xeon Phi and GPGPU

Summary
Acceleration ratio of kernels
Summary for optimization strategies on Xeon Phi and GPGPU

21

22

Testbed description
Sandy Bridge FX100 Xeon Phi GPU

CPU / GPU SandyBridge-Ep SPARC64XIfx Xeon Phi 5110P Tesla K-20X
Compiler intel compiler 13.1.3 Fujitsu compiler 2.0 intel compiler 13.1.3 pgfortran 15.7

Cores (DP) 8 32 + 2 60 896

Cache [MB] 20 24 0.5 x 60 1.5

GFlops (DP) 172.8 1000 1010 1310

STREAM GB/s 40 320 160 180

SIMD width 4 (AVX) 4 8 N/A
Power efficiency

[MFlops/W] 562 1910 1501 2973

Flop/Byte 4.32 3.13 6.31 7.28

Adding FX100 as a reference for acceleration, which has a comparable performance to
accelerators.

Acceleration of kernels

Low performance of SL kernel on Phi could be due to indirect access

Both kernels show good performance on GPGPU

Low performance of FD kernel on Phi could be due to memory bound feature
23

Summary for optimization strategies

Xeon Phi
AoSoA layout for SIMD load (SL)
Improve load balancing by
dynamic scheduling (SL)
High cache locality in
space and time (SL, FD)

GPGPU
AoSoA layout for coalescing (SL)
Texture memory for
indirect accessing (SL)
Effective register usage (FD)

24

