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Extreme computing (Distributed and Parallel)
some correlated goals

*  Minimize the global computing time,
e Accelerate the convergence (and analysis at runtime)

*  Minimize the number of communications (optimized Ax, asynchronous comp, communication compiler
and mappetr,....)

*  Minimize the number of longer size scalar products,
. Minimize memory space, cache optimization....

* Select the best sparse matrix compressed format,

*  Mixed arithmetic

*  Unite and Conquer methods

. Minimize energy consumption

* Resilience

These criteria are some of the requirements for future Exascale computing and beyond

Several optimizations are not possible at compile time and have to be decided at runtime:
Auto-tuning, smart-tuning, ....

The goal of this talk is to illustrate that we would need intelligent linear algebra
methods to create the next generation of High Performance numerical software,
associated with adapted programming paradigms allowing the end-user to give
expertise
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GMRES example : about memory space, dot products and sparse

vector multiplication

1 matrix vector m, subspace size

multiplication .r. Choose x, and comp € ro=f—Axo and v, = ro/ || rol.

2. Ite :Forj=1,2,---,m do.

h;; = Av;, vi)a. =—12; 5 J scalar product
A” J

U;+1 = Av;— )iy hijvs,

J+1,J = ||6j+4]|, and

]+1 ]+1/ j+1,j¢
3. Form the approximate solution:

Xm = Xo+ ViuVm, Where y,, minimizes ||Be, — H,.y|, ye R™ Subspace computation :
4. Restart: O(m?)
Compute r,, = f — Ax,,; if satisfied then stop
else compute xy:= X,,, v;:=r,/| =] and go to 2.
Memory space : Scalar products, at j fixed:
sparse matrix : nnz elements Sparse Matrix-vector product : n of size C
Krylov basis vectors : n m Orthogonalization : j of size n

Hessenberg matrix : m m

m, the subspace size, may be auto-tuned at runtime to minimize the space memory
occupation and the number of scalar product, with better or approximately same
convergence behaviors.



GMRES : about memory space and dot products

—y

. Start: Choose x, and compute r,=f— Ax, and v, = ro/ || ro||.

2. Iterate: For j=1,2,---,m do:

hj=(Av, v;),i=1,2,--,j, Incomplete orthogonalization (Y.Saad):i.e. i= from
6]+1 = Ay, —Yi_, hijvs max(1,j-q) to j

J+1J = || §;44[, and g>0. Then, J-g+1 bands on the Hesseberg matrix.

]+1 ]+1/ j+1,j¢
3. Form the approximate solution:

Xm = Xo+ V.Y, Where y,, minimizes ||Be,— H,y||, y€ R™

4. Restart:
Compute r,, = f — Ax,,; if satisfied then stop
else compute xy:= X,,, v;:=r,/| =] and go to 2.
Memory space : Scalar products, at j fixed:
sparse matrix : nnz (i.e. < C n) elements Sparse Matrix-vector product : n of size C
Krylov basis vectors : n m Orthogonalization : m of size n

Hessenberg matrix : m m

m, the subspace size, may be auto-tuned at runtime to minimize the space memory
occupation and the number of scalar product, with better or approximately same
convergence behaviors. The number of vectors othogonalized with the new one may
be auto-tuned at runtime. The subspace size may be large!
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Previous works, subspace auto-tuning
algorithms

e Subspace size : different auto-tuning at runtime
— Subspace size increase, until a fixed limit [KatagiriOO][Sosonkina96],..
— Subspace size decrease, until a fixed limit [Baker09],.....
— Restart Trigger [Zhang04], restart when stagnation is detected.

* Orthogonalization : no auto-tuning at runtime

— Prior to execution : [Jia94]

Remark, in general:

* Greater subspace size -> better convergence/long restart, less iterations

Smaller subspace size -> slow convergence, stagnation, short restart, more iteration
e  Choice of mis mandatory.

For difficult problems we have to use a large subspace size to reach convergence : the numerical
stability and the quality of the orthogonalization are crucial.

Nov 28th Fusion/MDLS



Auto-Tuning Algorithms
with Pierre-Yves Aquilenti (TOTAL)

 Subspace size
— Evaluate convergence progression over

some iterations.

— Decrease if convergence are
monotonous or if they are smoothly
slowing ( approximately same
convergence but minimize time and
space)- Cr medium

Increase

— Increase if convergence stall (problem if
we increase too much the memory
space), Track memory levels : Cache,
RAM, Nodes. Cr low

GMRES(m)

— Do nothing if Cr high
Entry Point

Cr =norm2 (r;) / norm2(r; ;)
Exit Point

Easy to implement using libraries (both for
GMRES and Arnoldi method for example)

Nov 28th Fusion/MDLS
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Parameters

d : number of steps between successive
decreases,

m_min: minimum subspace size value,
m_max : maximum subspace size value,

m_counts : number of successive soft
increase before intending “special”
Increases,

m_memory|[ | : array containing
subspace size values for hardware
increase
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e Qur algorithm compared to no auto-tuning

Simple Strategy, decrease

or keep the subspace size
20 between successives
15 GMRES restarts
10
g -
)
c
)
= .
S _
o
3
° ~m-hel-161- Less is better
=
= -B-hel 737
- hel 369
-30 ~ H-youngdc-
-35

Number of Processors
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Auto-Tune Restarted GMRES With Caches
with Pierre-Yves Aquilenti (TOTAL)

1 We define levels of GMRES restart parameter auto-
tuning increase depending on levels of memory

Cache L1 | Cache L2 | Cache L3 | RAM | SWAP
4 10 20 200 1000

(nnz4+3n+m(m+1)+n(m-+1)) x SizeO fScalar > MemoryBytesLevel

MemoryBytesLevel
SizeO fScalar

—nnz —4n=m? +m(n +1)

nnz = number of non zeros of the matrix
m = subspace size / restart parameter
n = matrix size



With Pierre-Yves Aquilenti (TOTAL)
and Takahiro Katagari (U. Tokyo)

16 Threads on the T2K Open Supercomputer (1 node), Xabclib_ GMRES V1.00

Speedup Factor

Torso2 is dramatically accelerated

16,00 to original Aquilanti’s .
14,00 / . I
B Speedup to Xabclib
12,00
. M Speedup to Original
1000 Torsol establishes
2 00 nice acceleration
' to original Xabclib.
6,00 7
4,00
2,00
0,00 -
P L PP L L LI PSS S
@Qc'ooébé& S & é\.‘%%o{\’). c,foo&-\{‘é\ /Qﬁé +Q’°0 +®(\o &S é(\éb c,@éb s@& et
C & TS
&
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Incomplete orthogonalization Auto-Tuning

Complete orthogonalisation : we orthogonalise with all the previous computed
vectors of the basis, i.e. at step k, we ortogonalise with k vectors, which generates
k scalar product at step k.

Incomplete orthogonalisation : we orthogonalize with only min(k,q)
previous computed vectors of the basis, i.e. at step k, we ortogonalise only
with min(k,q) vectors, g <m. DQGMRES : [Saad '94], DQGMRES : [Wu '97]

IGMRES : [Brown ’86][Jia '07]

Then, we have only q scalar product at step k (for k > or equal to q).

Complete ortogonalization : k scalar product for k fixed
Incomplete orthogonalization : g scalar product for k fixed, q < k

We may then save k-q scalar products, for q < k, and, then, several
synchronized communications .

Even, if the number of iterations may be a little larger, we minimize a lot of long globe
communications generated by scalar products.

Nov 28th Fusion/MDLS 15



Incomplete orthogonalization algorithm
at runtime (with P-Y. Aquilenti)

— Evaluate iteration costs in
@ time vs. Convergence

— Decrease number of
orthogonalized vectors g

if ratio convergence/(time
iteration) decrease

A complex heuristic-based algorithm :
’[ H : ] With respect to the variation of the
residual between restarts, we change

the number q of vectors concerned
by the orthogonalization

Entry Point

Exit Point

Still, a lot of researches to achieve to
optimize this algorithm.

Nov 28th Fusion/MDLS 16



No

Incomplete orthogpnalization Auto-tuning Algorithm
Yes ‘cpt>m_oou p g g g

m_ nt
No

No | Yes Omin= Minimum number
[ levei=1 | [levei=levels1] of vector to orthogonalize
l Yes No Omax= Maximum number of

m<- m_max

@ Yes
No vector to orthogonalize,
m_cpt <- 1 .
lovel < 1 typically = m the gmres
’ - subspace size
Yes

Yes

No

T, = time of the xt" restart

m X 2 =< m_memory|level

Yes N, = norm of the residual

m = m_memary[level]

m_cpt=m_cpt + 1 variation, equal to the norm of
Y ‘ L v the duration of the x t restart
e - " level=level_max . .
o [m=m-a [mem got] lm-cot=mentet “ - minus the duration of the x-1th

Yes
m; 10 m=m_memory[level] re Sta rt
m_cpt = m_count 4+ 1
H, = relative variation

<> =N/,
l No

e Heuristic = ratio of the relative
’ﬁ variation between restart x and

x-1, equal H,/H

cr=lr 2112 _
Nov 28th , Fusion/MDLS 17




Results : Industrial Case (TOTAL)

number of unknown = (119 x 119 x 115), 3Hz, m=10

20

® Restart+Orthog
® Orthog

15
W Restart

10

128 64 32 16 8

Percentage of improvements in time
for auto-tuned GMRES over classical

Number of computing nodes
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number of unknown = (119 x 119 x 115), 3 Hz, m=30

18 “ Restart+Orthog

® Orthog

17,5

" Restart

17

16,5

classical
LY
(@))

15,5
15

of for auto-tuned GMRES over

14,5

Percentage of improvement in time

14

64 32 16 8
Number of computing nodes
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number of unknown = (183 x 183 x 191), 5 Hz, m=10

16

B Restart+Orthog

14

® Orthog

12

" Restart

Percentage of improvements in time for
auto-tunind GMRES over calssical
(00]

64 32
Number of computing nodes
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Percentage of improvements in time for

auto-tuned GMRES over classical

15

10

-10

Nov 28th

number of unknown = (335 x 327 x 383), 5Hz, m=30

B Restart+Orthog

® Orthog

W Restart

64 ~ 32

Have to be done in sequence?

~We optimize the number of scalar products,
then the speed up would increase with the
number of nodes

Number of computing nodes
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ERAM restarting strategies mix

5 | Initial Restarting Strategy : DEFAULT

210 L

Residual (log10)

12 L

-13 L

-14

Default

54 Restarts

10
LaRes

4 eigenpairs,
m=15, CGSr
Bayer04 Matrix
- N=20545

- NNz=85537:,
-1 Intel i5-2430M

Def

LaRes(5), Def(18)

o0 60 70 80 90
ERAM restart

Li(38)

Res(26)

Res(14), LaRes(24)
LaRes(4), Def(30)
LaRes(5), Def(21)
DEFAULT
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Performance of SpMV

25

Fusion/MDLS

Nov 28th



Outline

 |ntroduction

* Krylov subspace auto-tuned restarted methods
— Auto-tunings at runtime for Krylov methods
— Subspace size
— Incomplete orthogonalisation
— Restart strategies
— Sparse formats
— Energy consumption

* Asynchronous Unite-and-Conquer methods

e Multilevel programming paradigm : Graph of components/PGAS
 What Intelligent Krylov methods for extreme computing?

e Conclusion

Nov 28th Fusion/MDLS 26



Scalability of TEC

NOV £Zol

“E1-8- ARHG

14 | == PCAQRmQE

TEC/TEC on 8 GPUs

Strong Sealing of Total Energy on CDia 1000000 KSize 128

T T T T T T T T T T T

) AR

|-&-  1AR4

.......................................................................................................

..........................................................................................................

G0 T0 80 20 100

Number of GPUs

TEC/TEC on 8 GPUs

With Langshi Chen PhD, Lille 1 and MDLS, 201

Weak Secaling of Total Energy on CDia 20000 KSize 128

T T
‘-4~ AR
w2 f{-B-  ARHG
E |-~  1AR4
| == PCAQRmQE

...................................................................

40 &0 ao 7
Number of GPUs

» ArnoldiHG and PCAQRmMQE have good scalability of TEC

» Communication is important to scalability of energy

consumption.

FUSIOlN/ IVIDLD
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Then, for a given method:

Several parameter have to be optimized at runtime :
e Subspace size

* Incomplete orthogonalisation

* Restart strategies

* Energy consumption

e Sparse format compression

* Orthogonalisation algorithm

* Preconditionners

* Mixed arithmetic

e Others....

Nevertheless, we have to be able to evaluate the convergence, the stability and others
importants criteria at runtime, and some learning may be introduced

Deep learning technics may be used to learn and big analytics may help to compare with
past experiments

Unite-and-conquer methods would generate new potential problems, and information.

Nov 28th Fusion/MDLS 28
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Different first initial guess

and restart strategies \

TC b

TC a /
Different m, and q; —>
Experiments with the
asynchronous Hybrid

QR+ iter. Inv. Method, MERAM, QR+ iter. Inv.
to compute eingenpairs
Asynchronous communication
3
_ — = 3 send S| |+ 1 sende|+ — _ |
\‘>

ZZ a
receive receive

[ | mcws]
o I
[ A N
Ve N

— | Different restart strategies — I ‘

A 4 \ 4

- -
e
e
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Different first initial guess

and restart strategies \

TC b
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< Different m, and q; —>
INTRINSEQULY FAULT
TOLERANT

QR+ iter. Inv. QR+ iter. Inv.
Distributed and parallel
computing
Asynchronous communication
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e
e
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With Nahid Emad (CNRS, Univ.
Versailles) and Leroy
Drummond (LBNL)

Experiments up to 4 ERAMs
on CURIE/PRACE computer
and Hooper/LBNL
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Asynchronous lterative Restarted Methods

Collaboration with He Haiwu and Guy Bergére (U. Lille 1, CNRS)

and Ye Zhang (Hohai Univ. Nanjing) , Salim Nahi (Maison de la simulation),

and Pierre-Yves Aquilenti (TOTAL), Xinzhe Wu (Lille 1 and MDLS)

Experiments on several supercomputers, or networks of clusters/supercomputers)

We are beginning experiment on Tianhe 2 and planed some on the #1 in Japan

=

)

GMRES

Nov 28th
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G | L L 4
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Numeric Results and Analysis
advantage over GMRES (difficult convergence case)

Degrees of polynomial,
number of iterations between two LS “accelerations”,.... Well- known behaviours

may be auto-tuned
Hybrid method compared to GMRES(mpyitself
(N=23560, mG=100, mA=12841=10)
1.00E+11 &

1.00E+09 :“ A ," ,| \ / GMRES itself
1.00E+07 | | I ,| ,‘ " — — hybrnd meth%%‘\or\

o™ \V)
1.00E+05 || I I “f'“ ‘eﬁi\u‘}) \N\“%c om? eccmd

1.00E+03
1.00E+01
1.00E-01

esidual norm

0 30 60 90 120 150 180 210
Comp time (cecond)
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Residual Norm

Last results, last week on a Bull supercomputer in Reims (Romeo), with Xinzhe Wu
We also change the number of processor to compute ERAM and GMRES at runtime

101 Matrix Generated by utm300: dim=9,000, restart = 400

T

100+

1071

102

102+

Partial results, not yet published

104+

10°+

106¢ :

107+ :

108F :

10°} - without pc :
- with Isa

10710 - with pc = jacobi -
- with pc = SOR

10-11 Il 1 1 Il | L 1

0 1000 2000 3000 4000 5000 6000 7000 8000

Iterations 36



Then

Criteria of each methods have to be tuned at runtime

The information, and learning, extracted on each method have to be exchanged
asynchronously with the others in order to improve all the global convergence and

numerical behaviors

Each run would generate information which may be used for following computation
(ex : approximated eigenvalues for GMRES-ERAM/LS, ....)

But, existing programming paradigms are not well-adapted

And end-users/scientists may help with their expertise

A new generation of numerical methods has to be invented!

Nov 28th Fusion/MDLS
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Toward graph of parallel tasks/components
Supercomputers as distributed and parallel platforms

e  Communications have to be minimized : but all communications have not the
same costs, in term or energy and time.

* Latencies between farther cores will be very time consuming : global
reduction or other synchronized global operations will be really a bottleneck.

 We have to avoid large inner products, global synchronizations, and others
operations involving communications along all the cores. Large granularity
parallelism is required (cf. unite-and-conquer methods).

* Graph or tasks/components programming allows to limit these
communications only between the allocated cores to a given
task/components.

 Communications between these tasks and the |/O may be optimized using
efficient scheduling and orchestration strategies(asynchronous I/O and others)

e Distributed computing meet parallel computing, as the future
super(hyper)computers become very hierarchical and as the communications
become more and more important. Scheduling strategies would have to be
developed.

 We have to allow end-user to give expertise

Nov 28th Fusion/MDLS 39



Some elements on YML (since 2000)

YML' Framework is dedicated to develop and run parallel and distributed_aplplications
on Cluster, clusters of clusters, and supercomputers (tschedulers and middleware
would ﬁ\a)ve to be optimized for more integrated computer — cf. “K” and OmnRPC for
example).

Independent from systems and middlewares
— The end users can reused their code using another middleware
— Actually the main system is OmniRPC3

Components approach
— Defined in XML

— Three types : Abstract, Implementation (in FORTRAN, C or C++;XMP,..), Graph
(Parallelism)

— Reuse and Optimized

The parallelism is expressed through a gragh description language, named Yvette
(name of the river in Gif-sur-Yvette where the ASCI lab was). LL(1) grammar, easy to
parse.

Deployed France , Belgium, Ireland, Japan (T2K, K, FX10), China, Tunisia, USA
(LBNL, TOTAL-Houston).

_Ex8eriment on both supercomutes, Grid (Gird5000) and P2P (100 PCs in Lille, 100 PC
in Orsay, and 4 cluserts in Japon, launch from a SC INRIA boooth a few years ago)

Fusion/MDLS 40



Graph (n dimensions)
of components/tasks) YML

Generic component noc visualize mesh(...)

Begin node end par

@
@)
® Endnode
O Graph node
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YML Architecture

€ mm e Workflow
Development '
Compiler
Catalog y
Component
Generator
A 4
Just-in-time Data Repository Server
Scheduler (DRS)
AR
B Backend |
Execution BinoTr ~ :
Catal = U Middleware client
atalog Generator |

YML Worker j

Fusion/MDLS

Architecture of the 1.0.5 Version
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Abstract Component

<?xml version="1.0" ?>

<component type="abstract" name="prodMat" description=“Matrix
Matrix Product” >

<params>
<param name="matrixBkk" type="Matrix" mode="in" />
<param name="matrixAki« type="Matrix" mode="inout" />
<param name="blocksize" type="integer" mode="in" />
</params>

</component>



Implementation Component

<?xml version="1.0"?>
<component type="impl" name="prodMat" abstract="prodMat" description="Implementation
component of a Matrix Product">

<impl lang="CXx"> End users may add some
<header /> \ expertise here (we’ll see example)

ssource> <impl lang="XMP" libs="" >
<I[CDATA]
inti,j,k; hame
double ** tempMat; align |
//Allocation name ; align
for(k = 0 ; k< blocksize ; k++)

for (i = 0 ;i <blocksize ; i++)
for (j = 0 ;j <blocksize ; j++)
tempMat[i][j] = tempMat[i][j] + matrixBkk.data[i][k] * matrixAki.data[k][j];

for (i = 0 ;i < blocksize ; i++)

for (j = 0;j < blocksize ; j++) Several possible implementation
matrixAki.datali][j] = tempMat][i]jl; components for each abstract one,
//De]S]allocatlon using different languages
>
</source>
<footer />
</Imp|> Fusion/MDLS 44
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Graph component of Block Gauss-Jordan Method

<?xml version="1.0"2>

<application name="Gauss-Jordan">

<description>produit matriciel pour deux matrice carree
</description>

<graph>

blocksize:=4;

blockcount:=4;

par (k:=0;blockcount - 1)
do
#inversion
if (k neq 0) then
wailt (prodDiffA (k] [k] [k - 11):
endif
compute inversion{A[k][k],B[k][k],blocksize,blocksize);
notify(bInversed[k][k]):

#step 1

par (i:=k + 1; blockcount - 1)

do
walt (bInversed (k] [k]):
compute prodMat(B[k] [k],A[k][1],blocksize);
notify(prodafk][i]):

enddo

par{i:=0;blockcount - 1)

do
#step 2.1
if(i neq k) then
walt (bInversed[k] [k]);
compute mProdMat (A[1][k],B[k][k],B[1][k],blocksize):
notify (mProdB (k] [1] [k]):
endif
#step 2.2
if(k gt 1) then
walt (bInversed[k] [k]);
compute prodMat(B[k] [k],B[k][1],blocksize);
notify(prodBk](i]):
endif
enddo

#Step3
par( i:= 0:blockcount - 1)
do
if (i neq k) then
if (k neq blockcount - 1) then
#step 3.1
par (j:=k + l:blockcount - 1)
do
wait (prodA[k] [j]1):
compute
prodDiff (A[i] [k],A[k][]j],A[1]([]],blocksize);
notify (prodDiffA[i] [j] [k]):
enddo
endif
#step 3.2
if (k neq 0) then
par(j:=0:;k - 1)
do
wait (prodB[k] [j]):
compute
prodDiff (A[i] [k],B[k][j],B[i][]] ,blocksize):
enddo
endif
endif
enddo
enddo
</graph>
</application>
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Multi-Level Parallelism Integration:
YML-XMP

N dimension graphs available

<TASK 1>

NODE NODE NODE

NODE NODE

for(i=0;i<n;i++){
for(j=0;j<n;j++){
tmpl[i][j]=0.0;
#pragma xmp loop (k) on t(k)
for(k=0;k<n;k++){

<TASK 2> <TASK 3> <TASK 4>

<TASK 5> <TASK 6>

<TASK 7> tmpli] [jl+=(m1[i][K]*m2[K][j]);
ik
YML provides a workflow programming #pragma xmp reduction (+:tmp)
environment and high level graph description
language called YvetteML Each task is a parallel program over several nodes.

XMP language can be used to descript parallel program easily!

YML/XMP/StarPu expriments on T2K in Japan, project FP3C
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FP2C : YML-XMP
on the K computer at AICS
Processes management. OmniRPC Extension, on MPI

mpirun -n 1 -hostfile host.txt ymi_scheduler
_ node-01
node-02
N (7 \
node-03
yml_ -----
SRl G (reserved nodes)

node-01 node-02 node-03 ...
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Implementation Component Extension

* Topology and number of processors are declared to be used at compile and run-time.
e Data distribution and mapping are declared

e Automatic generation for distributed language (XMP, CAF, ...)

 Used at run-time to distribute data over processes

<?xml version="1.0"?>
<component type="impl" name="Ex" abstract="Ex" description= "Example">
<impl lang="XMP" nodes="CPU:(5,5)" libs="" >
<distribute>
<param template=" block,block " name="A(100,100) " align="[il[j]:(j,i) " />
<param template=" block " name="Y(100);X(100)" align="[i]:(i,*) "/>
</distribute>
<header /> \
<source>
<![CDATA[
/* Computation Code */
11>
</source>
<footer />
</impl>
</component>

|I|

Information for XMP
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Experiments (2) BGJ on K-Computer ﬁs’
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Then,

Such programming paradigm (with some scheduled adaptations) is well-adapted for
multi-level programming and unite-and-conquer methods

We may also consider the I/O and other data movements using some software as AIDOS
(and others works done with DDN and TOTAL) as we have both the data and the control flow
Graphs which allow data migration anticipations

We have a fault tolerent version of YML (talk at a SC15 workshop) developed mainly at AICS

For the same “task”, we have different components and the end-users may give some
expertise which will may be used at any level of the software stack and at runtime by the
scheduler, the middleware and others....

We may use this to allow the end-users to give expertise for future numerical methods

Nov 28th Fusion/MDLS 51



Outline

* Introduction

* Krylov subspace auto-tuned restarted methods

* Asynchronous Unite-and-Conquer methods

e Multilevel programming paradigm : Graph of components/PGAS
 What Intelligent Krylov methods for extreme computing?

e Conclusion
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Interface between different languages
We already saw that:

<?xml version="1.0"?>
<component type="impl" name="Ex" abstract="Ex" description= "Example">
<impl lang="XMP" nodes="CPU:(5,5)" libs="" >
<distribute>
<param template=" block,block " name="A(100,100) " align="[i][j]:(j,i) " />
<param template=" block " name="Y(100);X(100)" align="[il:(i,*) "/>
</distribute>
<header />
<source>
<![CDATA[
/* Computation Code */
11>
</source>
<footer />
</impl>
</component>
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Implementation Component and smart-tuning
associated to a language and an implemntation

* Range of parameters to tuned
LL(1) languages may allow

* Expertise from end-users _ _
end-users to give expertise

* Learning

<?xml version="1.0"?>
<component type="impl" name= " GMRES_Tuned " abstract= " GMRES_Tuned"
description="Example">
<range m = {15,100} />
<Algo_tuning = is method_1 in libX if size larger than 1000, is method_2 otherwise />
<impl lang="XMP" nodes="CPU:(5,5)" libs="" >
<distribute>
<param template=" block,block " name="A(100,100) " align="[i][j1:(j,i) " />
<param template=" block " name="Y(100);X(100)" align="[i]:(i,*) "/>
</distribute>
<header />
<source>
<I[CDATA[
/* Computation Code */
11>
</source>
<footer />
</impl>
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Abstract Component
associated with the method

<?xml version="1.0" ?>

<component type="abstract" name=»GMRES_Tuned" description="restarted
GMRES method" >

<Smart_tunings>

<param name=“m" type=“subspace_size” />

<param name=“q”, type=“orthogonalization_parameter />

</Smart_tunings>

<params>
<param name="matrixA" type="Matrix" mode="in" />
<param name="matrixV' type="Matrix" mode="out" />
<param name="size" type="integer" mode="in" />

</params>

</component>

Future (allowing to change the graph at runtime depending of the result):

<param name="conv" type="graph_param_float" mode="inout" />
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Abstract Component

<?xml version="1.0" ?>

<component type="abstract" name=»GMRES_Tuned" description="restarted
GMRES method" >

<Smart_tunings>

<param name=“m" type=“subspace_size” />

<param name=“q”, type=“orthogonalization_parameter />

</Smart_tunings>

<params>
<param name="matrixA" type="Matrix" mode="in" />
<param name="matrixV' type="Matrix" mode="out" />
<param name="size" type="integer" mode="in" />

</params>

</component>

Future :

<param name="conv" type=" graph_param_float" mode= "inout" />
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Implementation Component and smarrt-tuning

* Range of parameters to tuned

* Expertise from end-users
LL(1) languages may allow

* Learning : i
end-users to give expertise

<?xml version="1.0"?>
<component type="impl" name= " GMRES_Tuned " abstract= " GMRES_Tuned"
description="Example">
<range m = {15,100} />
<Algo_tuning = is method_1 if size larger than 1000, is method_2 otherwise />
<impl lang="XMP" nodes="CPU:(5,5)" libs="" >
<distribute>
<param template=" block,block " name="A(100,100) " align="[i][j1:(j,i) " />
<param template=" block " name="Y(100);X(100)" align="[i]:(i,*) "/>
</distribute>
<header />
<source>
<I[CDATA[
/* Computation Code */
11>
</source>
<footer />
</impl>
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Tuning for extreme computing

* Each parameters of each method may be auto-tuned,

* Each modification of a parameter in one method have to be analyse by the
others methods

 We have to analyse the convergence, the efficiency of each iteration, the
energy consumed, the accuracy, the stability variation,....

We propose high level programming paradigms which allow the end-user and/or
the applied mathematician to give some expertise (range of the subspace size,
dominant eigenvalue clustering, condition number, ....).

YML is such a programming langage (we have a virtual machine with tutorial and
documentation, send me email : serge.petiton@univ-lillel.fr)

We have to use components and high level software strategies to propose tools
and language for future numerical analysis methods, who will have to take
decisison at runtime : to smart-tune but also tp chose methods and
preconditionning, for example

Nevertheless, the important challenge is to propose new intelligent methods for
such programming paradigms

Nov 28th Fusion/MDLS 58



Outline

* Introduction

* Krylov subspace auto-tuned restarted methods

e Asynchronous Unite-and-Conquere methods

e Multilevel programming paradigm : Graph of components/PGAS
 What Intelligent Krylov methods for extreme computing?

e Conclusion
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Conclusion

* Auto-tunning at runtime and unite-and-conquer methods are important
propositions to develop methods to announced extreme computing
machine ; leading to “intelligent linear algebra”

* High level programming paradigms are required

 We propose both a framework based on multi-level programming and

programming paradigm, and allowing end-users/scientists to give
expertise

* Introducing learning into numerical methods would be an important
improvements

* International collaboration are important to be able to evaluate and
improve those approaches.

After HPC, High Performance Artificial Intelligence,
High-Performance Data Analytics,.....

Next step, more general :
High Performance Intelligent Computing
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