

French Technological Watch Group: General overview and first results

gabriel.hautreux@genci.fr

Fusion workshop at « Maison de la Simulation » 29/11/2016

Led by GENCI and its partners

- Share and mutualise expertise of partners at the national level
- Anticipate upcoming Exascale architectures and provide orientations for future procurements
 - ⇒ Manycore/heterogeneous processors
 ⇒ Deeper and more complex memory hierarchies
 ⇒ Fault Tolerance
 ⇒ Energy optimisation

Organise code modernization for scientific communities

⇒Ease migration to these new platforms
 ⇒Preserve code legacy by using standards – OpenMP
 ⇒Enable potential specific optimisations with low level languages

TECHNOLOGICAL WATCH GROUP Led by GENCI and its partners

Link to developers of representative applications

Climate : DYNAMICO, MesoNH
Astro & Geophysics : RAMSES, EMMA, SPECFEM3D
Combustion : YALES2, AVBP, TRUST
Fusion : GYSELA5D
Materials : METALWALLS
Particle Physics : SMILEI, CMS-MEM
Kernels : PATMOS, HYDRO, QR MUMPS, QMC=Chem

• Deep/Machine Learning

Link to developers of tools and libraries

- System (runtime, checkpoint/restart ...)
- Profiling perf, energy
- Numercial solvers
- Data management/analysis

Core of the group : HPC expertise

- National centers: CINES, IDRIS and TGCC
- Inria
- Maison de la Simulation
- · « Groupe Calcul »
- GENCI
- Vendors support

Direct link between communities

FRENCH TECHNOLOGICAL WATCH GROUP Led by GENCI and its partners

Deployment of 2 early technology platforms

- A Bull sequana platform at CINES based on Intel® KNL
 - 48 KNL nodes => 146 Tflop/s peak performance
- An IBM OpenPOWER platform at IDRIS based on P8+ Nvidia GPU
 - 4*P100 GPU (latest generation) per node
 - Nvlink between P8 and GPU
 - 12 nodes => 254 Tflop/s peak performance (GPU only)
 - More than 400GB/s bandwidth per node
 - Software stack is not at its highest maturity

□ Tight collaboration between :

Vendors, integrators, developers, HPC centres

Evaluation of real time performance/energy profiling tools

- Allinea Performance Report / MAQAO / Others
- Intel® Vtune[™] Amplifier and MPI Performance Snapshot (MPS)
- Nvprof for the OpenPOWER solution

B11

Programming on Intel Knight Landing

- Straightforward:
 - Intel Compiler, Intel MPI, OpenMP

Programming options for OpenPOWER

- Not as straightforward as Intel KNL
 - Low-level languages General availibility High-level pragma languages Full control over architectural Easy porting by adding pragmas to legacy code for OpenMP is scheduled details Not necessary to deal with low-level details Many application-specific Performance portable for the end of 2016 optimizations shown in literature Some low-level abstractions are exposed Cumbersome programming
 - Full support is scheduled

for 2017

Complex code synthesis performed by compiler Not portable to other Code transformations available architectures Requires compiler support Limited support Some low-level details are unnaccessible OpenACC OpenMP Language or Pragmas Pranmas Based on C/C++ or Fortran

Pragmas	i raginao	raginae	
High-Level Constructs	Parallel, loop-like, şimd, tasking, etc.	Parallel, loop-like, şimd	None
Companies/Organizations Actively Involved	IBM, AMD, Intel, Cray, Pathscale, Texas Instruments, etc.	Cray, PGI, gcc	NVIDIA, PGI, IBM
Features	Architecture-independent Flexible Parallelism	Targeted for GPU-like accelerators	Only available on GPUs

Porting & optimisation workshops with Atos & Intel support

- Workshop on Colfax® Ninja developer platforms (Intel processor Xeon Phi 7210)
- Workshop using the 48 Intel Xeon Phi 7250 nodes machine "Frioul "

□Porting efficiency:

Effective mean speed up obtained after 2 workshops (Haswell vs KNL)

Genci, code KNL speedup

□MesoNH: weather forecasting code

- 60% of the code has been ported using OpenACC
- Results with 16 MPI processes and MPS (multi-process service)

□Vasp (an IBM ported app)

Results reflect the first results, the whole application still have to be ported

□Work has just began on GPU with Altimesh

Very first results

□ First lessons (= general good practices)

- Avoid buffers:
 - That store addition/multiplication
 - That are reused once
- →Prefer recomputing than precomputing
- Use stack vs heap
 - Malloc is very expensive (especially with many cores)
- Use "zero-copy" for data that you acces/write once

TECHNOLOGICAL WATCH GROUP OPENING -Phase 3 – Q2 2017

Opening to a wider panel of applications in May 2017

Applications will be reviewed through the « DARI » preparatory access

Thank you for your attention