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Part I: Introduction to Finite Element Exterior Calculus

Abstract:

In this lecture we will introduce the geometrical concepts needed 
for Finite Element Exterior Calculus, the theory introduced by 
Arnold, Falk and Winther for the discretization of differential 
forms. We will in particular introduce the notions of manifolds, 
tangent vectors, differential forms, wedge product, interior 
product, pullback, metric and a scalar product for differential 
forms and show how they can be discretized using the Finite Element 
concept. This will lead to a discrete Hilbert complex of 
differential forms that can be reproduced at the discrete level 
yielding natural stability properties.  
We will also see how Finite Element spaces of differential forms 
relate to more classical finite element spaces.
We will focus on spline based Finite Element, which are in 
particular used in isogeometric analysis and very convenient for 
the coupling with particle methods for the Vlasov equation.

Part II: A discrete variational framework for the Vlasov-Maxwell 
equations

Abstract:

Starting either from the action principle proposed by Low or the 
non canonical hamiltonian formulation of the Vlasov-Maxwell system 
by Morrison, Marsden and Weinstein, we shall show that using a 
particle discretization of the Vlasov equation and a compatible 
Finite Element approximation of Maxwell’s equations based on 
Arnold, Falk and Winther’s Finite Element Exterior Calculus, the 
semi-discrete equations form a finite dimensional Poisson system, 
which is the non canonical extension of a symplectic system. This 
system features Casimir invariants, which are the Gauss law and div 
B, as well as energy and momentum conservation, which yields 
enhanced stability properties compared to standard Particle In Cell 
codes.
The derivation and analysis of the discrete system will be 
presented as well as numerical results illustrating its properties.



Part III: Modern gyrokinetic theory and its implementation

Abstract:

The Vlasov-Maxwell equations can be derived from an action 
principle, which allows to derive conservation laws from symmetries 
of the Lagrangian. Gyrokinetic theory is an asymptotic reduction of 
the Vlasov-Maxwell equations in the presence of a large magnetic 
field. What is called modern gyrokinetic theory, following Brizard, 
Qin, Scott, Sugama and others, aims at retaining the same 
structure. More precisely, starting from the Vlasov-Maxwell 
Lagrangian consisting of a particle and a field part, the 
asymptotic reduction is performed on the single particle Lagrangian 
via a series of near identity coordinate transforms, called Lie 
transforms, and possibly on other terms of the Lagrangian. Then the 
gyrokinetic equations are derived as the Euler-Lagrange equations 
of the modified Lagrangian without further approximations. This 
yields gyrokinetic conservation laws, which can be compared to the 
Vlasov-Maxwell conservation laws.
In this lecture we will introduce the derivation of modern 
gyrokinetic theory detailing a few of its variants and see how this 
can be related to models implemented in actual gyrokinetic codes. A 
code verification effort based on this theory will also be 
presented.


