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o Unruh-de Witt Detector and anti-Hawking effect

@ The Hadamard expansion

Based on

@ C.D. and H. R. C. Ferreira, Phys. Rev. D 94 (2016) no.12, 125016 & Rev. Math. Phys. 30 (2017) no.02,
1850004

@ C. D, N. Drago and H. Ferreira, Lett. Math. Phys. 109 (2019) no.10, 21572186

Q@ L. De Souza Campos and C. D., Phys. Lett. B 816 (2021), 136198 & Phys. Rev. D 103 (2021) no.2,
025021

Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states




Boundary Conditions in AdS spacetimes

The Poincaré patch of AdS,.,

In the Poincaré chart, PAdS4+1, the metric reads
2 P 2 2 i ..
ds® = [—dt” + dz" + ¢'dxidx], i,j=1,....,d—1
z

where z > 0. Observe that
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Boundary Conditions in AdS spacetimes

The Poincaré patch of AdS,.,

In the Poincaré chart, PAdS4+1, the metric reads
2 P 2 2 i ..
ds® = [—dt” + dz" + ¢'dxidx], i,j=1,....,d—1
z

where z > 0. Observe that

@ PAdS,.1 is conformally related to the upper half plane (%", 1) with
conformal factor Q = 7.
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Boundary Conditions in AdS spacetimes

The Poincaré patch of AdS,.,

In the Poincaré chart, PAdS4+1, the metric reads
2 P 2 2 i ..
ds® = [—dt” + dz" + ¢'dxidx], i,j=1,....,d—1
z

where z > 0. Observe that

@ PAdS,.1 is conformally related to the upper half plane (%", 1) with
conformal factor Q = 7.

Rd+1

@ The hyperplane z =0 in is the conformal boundary of PAdS441.
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Boundary Conditions in AdS spacetimes

AQFT - | : Scalar field

Sp(M) ={d € CT(M) | 3f € C.Z (M) and ¢ = G(f)},

where G = G — G~ is the causal propagator.
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Boundary Conditions in AdS spacetimes

AQFT - | : Scalar field

Basic assumptions:

@ (M, g) is an arbitrary 4D globally hyperbolic spacetime. Hence, up to an
isometry, M ~ R x ¥

ds® = —Bdt’ + h,, B e C*(M;R")and h; € Riem(X), Vt € R

@ ¢: M — R is a conformally coupled real scalar field

where G = G — G~ is the causal propagator.
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Boundary Conditions in AdS spacetimes

AQFT - | : Scalar field

Basic assumptions:

@ (M, g) is an arbitrary 4D globally hyperbolic spacetime. Hence, up to an
isometry, M ~ R x ¥

ds® = —Bdt’ + h,, B e C*(M;R")and h; € Riem(X), Vt € R

@ ¢: M — R is a conformally coupled real scalar field
Py = (—D+§)¢=O,

The space of all smooth solutions is

Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states




Boundary Conditions in AdS spacetimes

% AQFT - Il : Useful facts

It will be useful later to keep in mind that

PIC(M)]
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Boundary Conditions in AdS spacetimes

AQFT - Il : Useful facts

It will be useful later to keep in mind that

o f € C*(M) is timelike compact (tc) iff

supp(f) N JT(p) and supp(f) N J~(p) is compact Vp € M.

o GT: CZ(M) — C>(M) are the advanced (4) and retarded (—)
fundamental solutions for P such that
Q PoG* =G 0oP =idceu
Q Vf € C(M), it holds supp(G*(f)) C JT (supp(f))

-~ PICE(M)]
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Boundary Conditions in AdS spacetimes

AQFT - Il : Useful facts

It will be useful later to keep in mind that

o f € C*(M) is timelike compact (tc) iff

supp(f) N JT(p) and supp(f) N J~(p) is compact Vp € M.

o GT: CZ(M) — C>(M) are the advanced (4) and retarded (—)
fundamental solutions for P such that
Q PoG* =G 0oP =idceu
Q Vf € C(M), it holds supp(G*(f)) C JT (supp(f))

e All dynamical configurations of a real scalar field are

. _Ge(M)
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Boundary Conditions in AdS spacetimes

AQFT - Ill : Classical Observables

dynamical configuration.

Flog(@

< Plce(M)]
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Boundary Conditions in AdS spacetimes

AQFT - Ill : Classical Observables

dynamical configuration.
o for every a € Cg°(M), define F, : C*°(M) — R

Folé) = (0,0) = | di dx)a(x)

Flag(@

€ PlC (M)]
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Boundary Conditions in AdS spacetimes

AQFT - Ill : Classical Observables

dynamical configration.

o for every a € Cg°(M), define F, : C*°(M) — R

Folé) = (0,0) = | di dx)a(x)
Y

e Implement dynamics at a dual level: For all ¢ € Sp(M)

0= Fa(P9) = (a, PP) = (P"a, ¢) = (Pa, ).

< P[Ce (M)]
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Boundary Conditions in AdS spacetimes

AQFT - Ill : Classical Observables

dynamical configration.
o for every a € Cg°(M), define F, : C*°(M) — R
Folé) = (0,0) = | di dx)a(x)
M
e Implement dynamics at a dual level: For all ¢ € Sp(M)

0= Fa(P9) = (a, PP) = (P"a, ¢) = (Pa, ).

e We have built the following

V]a] % b Flap : Sp(M) = R
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Boundary Conditions in AdS spacetimes

AQFT - IV : Algebra of Observables

oo

T(M) = P e (M)=",

n=0

where £°%(M)° = C and the *-operation is complex conjugation.

F(M) =

(M)
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Boundary Conditions in AdS spacetimes

AQFT - IV : Algebra of Observables

T(M) = D e (m)®,
n=0

where £°%(M)° = C and the *-operation is complex conjugation.
@ Construct the ideal Z(M) C T (M) generated by elements of the form
[a] @ [a] = [o] ® [o] = iG([a], [T (CCR)
where I is the unit in 7(M) and

G(lal, [0]) = (o, G(a)) = /dug(X) a(x)G(a)(x).

=My
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Boundary Conditions in AdS spacetimes

AQFT - IV : Algebra of Observables

T(M) = D e (m)®,
n=0

where £°%(M)° = C and the *-operation is complex conjugation.
@ Construct the ideal Z(M) C T (M) generated by elements of the form
[a] @ [a] = [o] ® [o] = iG([a], [T (CCR)
where I is the unit in 7(M) and
G(lal, [0]) = (o, G(a)) = /dug(x) a(x)G(a')(x).
i

© Define the Algebra of Fields
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Boundary Conditions in AdS spacetimes

w(a) = (U, 1w (a)20)5,, -
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Boundary Conditions in AdS spacetimes

AQFT - V : States

For any unital x-algebra A, a state is a linear map w: A — C
w() =1 (normal.) and w(a*a) >0, Vae A (posit.),
where e is the unit in A.
We recover the probabilistic interpretation of quantum theories via:
e GNS theorem: (w, A) — (Dy, 7w, Q)
@ D, is a dense subspace of a Hilbert space H.,.
o 7w, : A— L(D,) is a representation

o Q, € D, such that ||Qu|| =1 and H., = 7, (A)Q.

Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states




Boundary Conditions in AdS spacetimes

» AQFT - VI : Hadamard States - why?

Are all states physically acceptable?

e Add-on: Invariance under the action of all isometries.
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Boundary Conditions in AdS spacetimes

AQFT - VI : Hadamard States - why?

Are all states physically acceptable?

Not in the slightest
e Minimal requirements are:

@ existence of a mathematically well-behaved, covariant notion of Wick
polynomials to deal with interactions,

@ same UV behaviour of the Minkowski vacuum ,

@ quantum fluctuations of all observables finite.

Answer: Hadamard States
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Boundary Conditions in AdS spacetimes

% AQFT - VIl : Hadamard States - how?
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Boundary Conditions in AdS spacetimes

AQFT - VIl : Hadamard States - how?

e Notice that choosing a state w : F(M) — C is equivalent to assigning
wn(aa, ...,;an), ¥n € N and Va; € G5 (M)

so that w is normalized, positive and accounts for the CCRs and dynamics.
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Boundary Conditions in AdS spacetimes

AQFT - VIl : Hadamard States - how?

e Notice that choosing a state w : F(M) — C is equivalent to assigning
wn(aa, ...,;an), ¥n € N and Va; € G5 (M)
so that w is normalized, positive and accounts for the CCRs and dynamics.
e A special class of states are quasi-free/Gaussian, i.e., for all n € N
n
wony1 =0,  won(aa, ..., an) = Z sz (a,,Zn(,-,l),a,rzn(,»)) .
mn €55, =1

w is constructed out of the two-point function w, € D'(M x M).
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Boundary Conditions in AdS spacetimes

AQFT - VIl : Hadamard States - how?

e Notice that choosing a state w : F(M) — C is equivalent to assigning
wn(aa, ...,;an), ¥n € N and Va; € G5 (M)
so that w is normalized, positive and accounts for the CCRs and dynamics.
e A special class of states are quasi-free/Gaussian, i.e., for all n € N
W2n+1 = 07 (4.)2,-,(051, ey a") = Z HWZ (a7"2n("*1)7a7"2n([)) °
m20 €S}, i=1
w is constructed out of the two-point function w, € D'(M x M).
Definition
A quasi-free state w is called Hadamard (Radzikowski (1996)) iff

WE(w2) = {(x,y, ke, k) € T'M? \ {0} | (x, k) ~ (v, k), ke 0} .
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Boundary Conditions in AdS spacetimes

Building Hadamard states

Exploit the asymptotic structure.
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Boundary Conditions in AdS spacetimes

Building Hadamard states

e [xistence: Known for free fields via deformation arguments (S. A. Fulling,
F. J. Narcowich and R. M. Wald, (1981)) or on static spacetimes (Sahlmann &
Verch - 2000)

Exploit the asymptotic structure.
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Boundary Conditions in AdS spacetimes

Building Hadamard states

e [xistence: Known for free fields via deformation arguments (S. A. Fulling,
F. J. Narcowich and R. M. Wald, (1981)) or on static spacetimes (Sahlmann &
Verch - 2000)

e [xplicit construction: Known in highly symmetric spacetimes, e.g., Bunch
Davies state in de Sitter or states for scalar fields on FRW (Olbermann -
(2007), Them & Brum (2013), Degner (2013), Brum & Fredenhagen (2014))

Exploit the asymptotic structure.
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Boundary Conditions in AdS spacetimes

Building Hadamard states

e [xistence: Known for free fields via deformation arguments (S. A. Fulling,
F. J. Narcowich and R. M. Wald, (1981)) or on static spacetimes (Sahlmann &
Verch - 2000)

e [xplicit construction: Known in highly symmetric spacetimes, e.g., Bunch
Davies state in de Sitter or states for scalar fields on FRW (Olbermann -
(2007), Them & Brum (2013), Degner (2013), Brum & Fredenhagen (2014))

e Functional Analytic method: Exploit pseudodifferential calculus:
o Gérard & Wrochna - Comm. Math. Phys. 325 (2014), 713
o Gérard & Wrochna - Anal. Part. Diff. Eq. 9 (2016) no.1, 111
o Gérard & Wrochna - Comm. Math. Phys. 352 (2017) no.2, 519
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Boundary Conditions in AdS spacetimes

Klein-Gordon field in PAdS,.;

P¢ = (Opaas —mg —ER)p =0 e Rand R=—d(d+1)

This is a singular Sturm-Liouville equation on (0, c0).
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Boundary Conditions in AdS spacetimes

Klein-Gordon field in PAdS,.;

= (Opaas — ma —ER)p =0 £ €Rand R=—d(d+1)
e Conformal rescaling —» & = Q¥¢> (M S R obeys

2
P,]d)i(Dn—%)d):o, m2—m0+(§—d R).

This is a singular Sturm-Liouville equation on (0, c0).
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Boundary Conditions in AdS spacetimes

Klein-Gordon field in PAdS, .
(Opaas — ma —ER)p =0 € €Rand R = —d(d +1)

d R)

P
e Conformal rescaling —s ® = Q2 ¢ : H'™' — R obeys
2
)CD—O m2—m0+(§—

. m
an) - <D77 - ?
e We can expand
ddk ikex R
¢(57 z) = d e77¢5(z)
(2m)2
R4

yields (A = w? — 32771 k?)
Py® =0 <= L&, =
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Sturm-Liouville Theory and Ground States

The Endpoint Classification - |

The most general solution of La;K = )\EISK is for A >0
®u(2) = a(k)Vzd (VAzZ) + b(k)vz Y. (VA2),
where v = 1\/1+4m? > 0.... m* € [-1,00) , the BF bound.
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Sturm-Liouville Theory and Ground States

The Endpoint Classification - |

The most general solution of La;K = )\EISK is for A >0
®u(2) = a(k)Vzd (VAzZ) + b(k)vz Y. (VA2),

where v = 1\/1+4m? > 0.... m* € [-1,00) , the BF bound.

Which boundary conditions are allowed? How do we implement them?
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Sturm-Liouville Theory and Ground States

The Endpoint Classification - |

The most general solution of L&SK = )\EISK is for A >0
®u(2) = a(k)Vzd (VAzZ) + b(k)vz Y. (VA2),
where v = 1\/1+4m? > 0.... m* € [-1,00) , the BF bound.

4

Which boundary conditions are allowed? How do we implement them?
o /2, (VAz) 20 2"*7 and VZY,(VAz) 20 z7vTE
How to impose standard (Robin) boundary conditions at z = 07

Singular Sturm-Liouville theory is the answer
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Sturm-Liouville Theory and Ground States

Boundary Conditions - |

where W, [®, ®;] = &(z2)di(z) — &'(z)P:(z) is the Wronskian.
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Sturm-Liouville Theory and Ground States

Boundary Conditions - |

@ Choose ®1(z) the principal solution at z = 0, i.e. the unique one (up to
scalar multiples)

L di(z) _
lm o) =0 Ve[ Le =)o AeC.

where W, [®, ®;] = &(2)®](z) — ®'(z)®i(z) is the Wronskian.
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Sturm-Liouville Theory and Ground States

Boundary Conditions - |

@ Choose ®1(z) the principal solution at z = 0, i.e. the unique one (up to
scalar multiples)

L di(z) _
lm o) =0 Ve[ Le =)o AeC.

@ Pick a second L?-solution ®5(z), linearly indep. from ®; (non unique)

where W, [®, ®;] = &(2)®](z) — ®'(z)®i(z) is the Wronskian.
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Sturm-Liouville Theory and Ground States

Boundary Conditions - |

@ Choose ®1(z) the principal solution at z = 0, i.e. the unique one (up to
scalar multiples)

L ®i(2) _ _
ZI@O () =0 VP(z)|Ld=x>, AeC.
@ Pick a second L?-solution ®5(z), linearly indep. from ®; (non unique)
© Observe that, up to a scalar multiple, 3o € [0, 7) such that
®(z) = cosa P1(z) + sin a P(z),
and that, for a regular endpoint at z = 0,

cos o ®(0) + sin a ®'(0) = 0 <= cos aW, [P, d1] + sin a W, [®, d5] =0
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Sturm-Liouville Theory and Ground States

Boundary Conditions - I

The fundamental pair of solutions (CT%7 $§) is

di(z) = @ a"Vz d(qz),

\fq VZdou(a)., ve (1),

\/>f{Yoqz —flog(q) , v=0.

v € [1,00) Limit-point (LP) Not required
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Sturm-Liouville Theory and Ground States

Boundary Conditions - I

az z

The fundamental pair of solutions (CII%7 CTDE) is

di(z) = @ a"Vz d(qz),

\f vz d-(a2). ve (1),

[f{Yoqz —flog() , v=0.

V= % 1+ 4m? Classification of z =0 Boundary condition at z =0
v=1 Regular (R) cot(a) ®4(0) + 4(0) = 0
velo,1),v+#1 Limit-circle (LC) — cot(a) W, [@L, 65 + W, [3@ $ﬂ =0
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Sturm-Liouville Theory and Ground States

7 Ground States - Mode Expansion |

Q Letwo = (zz')¥w2 € D/ (A% x H*?). It holds

(PW ® H)QJZH = (]I (24 P,,)wg,H =0.
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Sturm-Liouville Theory and Ground States

Ground States - Mode Expansion |

Q Letwo = (zz')¥w2 € D/ (A% x H*?). It holds

(PW ® H)w;H = (]I (24 Pn)wg,]m =0.

@ Consider the Fourier transform along R? 5 x. Integral kernel:

d—3

lw(t t/ —ie) k\ 2
wam(x, x") = EILTJr/ \/7 / dk( ) JdT(kr)wz «(z,7').
0

with
(LoD, =1® L)ook = Mook, L=—-——=5+—.
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Sturm-Liouville Theory and Ground States

The case with v € (0,1)

In order to construct @, x, we need that iG(x, x") = wam(x, x") — wam(x’, x),

G(x,X )=y =0, 8:G(x,x") = =0y G(x, X" )|e=er = 6(x,x").
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Sturm-Liouville Theory and Ground States

The case with v € (0,1)

In order to construct @, x, we need that iG(x, x") = wam(x, x") — wam(x’, x),
G(x,X )=y =0, 8:G(x,x") = =0y G(x, X" )|e=er = 6(x,x").

Setting ¢ = cot«

=] _ 2v AN 2 /
Gas = \/;/ dq q12v(92) a qu(qZZ)][cJu(qZ) I CL2) AP
= 0 c? — 2¢cq? cos(mv) + g*

The state is

@ locally Hadamard and quasi-free/Gaussian
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Sturm-Liouville Theory and Ground States

Open Questions

Unknown Properties:
@ What is the most general class of allowed boundary conditions?
@ Setting Gt =O(t — t')G and G~ = —O(t' — t)G is it true that
supp(G*(f)) C J=(supp(f)) VF e Goo(H").
© What are the singularities of wy u:

WF(wz)H) =7

Q Can we construct a local form for wa i and for G*?
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Unruh-de Witt Detectors and anti-Hawking effect

Unruh-De Witt Detectors

Given @ : M — R a real scalar field

Detector «+— 2 level system {|0), |Q)}
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Unruh-de Witt Detectors and anti-Hawking effect

Unruh-De Witt Detectors

Given @ : M — R a real scalar field

Detector «+— 2 level system {|0), |Q)}

Hine = ex(7)®(x(7)) @ u(r), ¢ €Rand x € G~ (R),

@ x(7) is the detector worldline (stationary),

o u(r)= |Q)(O|eiQT + |0)<Q|e’iQT — monopole-moment operator

H=Ho @ T+1® Hp + Hint.
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Unruh-de Witt Detectors and anti-Hawking effect

Quantities of Interest

Kt 7
d =/ "7/ dr'e TN () Yn(x(7)X (7)),

where w» is the two-point function of ®.
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Unruh-de Witt Detectors and anti-Hawking effect

Quantities of Interest

. / dr / dr'e Ty ()7 Y (x ()X (7)),

where w» is the two-point function of ®.

Assuming infinite interaction time, i.e., x(7) — 1 we look at

@ detector response function

/deT' —i9r=7"), 2 (x(7)x' (1),

@ transition rate
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Unruh-de Witt Detectors and anti-Hawking effect

Anti-Hawking effect!

ds®> = —f(r)dt® + h(r)dr® + r*d¥;(61,...,0, 2)
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Unruh-de Witt Detectors and anti-Hawking effect

Anti-Hawking effect!

ds®> = —f(r)dt® + h(r)dr® + r*d¥;(61,...,0, 2)

@ M has a bifurcate horizon with surface gravity s,
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Unruh-de Witt Detectors and anti-Hawking effect

Anti-Hawking effect!

J
2 _ 2 2 Ao
ds® = —f(r)dt + h(r)dr® + r"d%;(01,...,0n_2)

@ M has a bifurcate horizon with surface gravity s,

@ The detector measures a local Hawking temperature Tp = P Oh
™ r
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Unruh-de Witt Detectors and anti-Hawking effect

Anti-Hawking effect!

ds®> = —f(r)dt® + h(r)dr® + r*d¥;(61,...,0, 2)

@ M has a bifurcate horizon with surface gravity s,

@ The detector measures a local Hawking temperature Tp = P Oh
™ r

© The response function of the detector satisfies detailed balance at Tgl

FQ) _ sy/rn
F(-9)

Anti-Hawking Effect <— (TD) <0
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Anti-Hawking Effect on BTZ spacetime

It is a 3D black hole spacetime:

2 2
ds> = — <L2 - M) dt* + 9 4 2de?.
L L -M
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Geometry

It is a 3D black hole spacetime:

2 2
ds> = — <L2 - M) dt* + 9 4 2de?.
L r M

@ It has a bifurcate Killing horizon at ry = LvV' M,
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Geometry

It is a 3D black hole spacetime:

2 2
ds> = — <L2 - M) dt* + 9 4 2de?.
L s-M

@ It has a bifurcate Killing horizon at ry = LvV' M,

Vi

@ The Hawking temperature is T = 3.
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Geometry

It is a 3D black hole spacetime:

2 2
ds> = — <L2 - M) dt* + 9 4 2de?.
L s-M

@ It has a bifurcate Killing horizon at ry = LvV' M,

Vi

@ The Hawking temperature is T = 3.

@ It has a conformal timelike boundary at r — oo

Two-point functions can be constructed as in PAdSq1.
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Two-point Function - |

Consider a massless, conformally coupled, real scalar field

¢ :BTZ > R, (Dg—%)tbzo.

We consider z =~ L_szM €(0,1) and

d(t,z,0) /dee'(“’Hw Rui~(2)

1€Z
where
Ry (2) = 27 (1 — 2) (cos yFi(1 — 2) + siny(1 — 2) 2 (1 — 2))

where F1, F> are hypergeometric functions depending on w, M, .
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Static BTZ - Two-point Function - |l

Fo.
w=4/g00(zp)||2
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Two-point Function - |l

UJ2(X, Xl) _ Einng Z / (21—:@(w)e_iw(t_tl_ié)MRw,/,fy(Z)RW,/,7(Zl)ei/(9_9/)
1€Z R

e%efiw(tftlfie) + eiw(tft'+ie)

. dw
carte) = fip 3 [ ot |
€L

NiRu 1 (2)Roi(2)e"=)

j: = signQ) T 1 j:o'
= T S lw=y/lgoo(z0)]19
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Two-point Function - |l

UJ2(X, Xl) _ Einng Z / (21—:@(w)e_iw(t_tl_ie)MRw,/,fy(Z)RW,/,’Y(ZI)e”(o_BI)
1€Z R

%efiw(tftlfie) + eiw(tft'+ie)

m
et —1

AT dw e
arlx) = fim 3 / 7o0(w) [

NiR, 1y (Z) R, /,'y(z )e i)

On a static trajectory x(7) = (7, zp, 6p) the response function reads for Q < 0

. N
Fo = 2IR3;/7( D)l

bl
ez |goo(zp) |2

and
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Anti-Hawking Effect - I

0.8

0.6

0.4

0.2

0.0

Ty

Figure: | = 0 contribution to %y as a function of T} for r, =1, 2 = 0.1 and
different boundary conditions; from top to bottom, respectively,
~v = (0.50,0.47,0.40,0.25, 0)7.
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Anti-Hawking Effect - I

Figure: | = 0 contribution to F as a function of Ty for r, =1, Q = 0.1 and
different boundary conditions; from top to bottom, respectively,
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Anti-Hawking Effect on massless hyperbolic black holes

Massless Hyperbolic Black Holes

These are n-dimensional spacetimes M =R X | X ¥,_»

dr? 2M 2
ds® = —f(r)dt® + G +r7dYl,, f(r)=-1- =t

where d¥2_, = d6? + sinh? 0dS2_3(¢01, - - ., Pn—3).
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Anti-Hawking Effect on massless hyperbolic black holes

Massless Hyperbolic Black Holes

These are n-dimensional spacetimes M =R X | X ¥,_»

dr? 2M 2
ds® = —f(r)dt® + G +r7dYl,, f(r)=-1- =t

where d¥2_, = d6? + sinh? 0dS2_3(¢01, - - ., Pn—3).

@ It has a bifurcate Killing horizon at ry such that f(ry) =0,

(n—1)(n—2) ]

@ it is a solution of vacuum Einstein's equations with A = —*—/5

@ It has a conformal timelike boundary at r — oo

Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states




Anti-Hawking Effect on massless hyperbolic black holes

Massless Hyperbolic Black Holes

These are n-dimensional spacetimes M =R X | X ¥,_»

dr? 2M 2
ds® = —f(r)dt® + G +r7dYl,, f(r)=-1- =t

where d¥2_, = d6? + sinh? 0dS2_3(¢01, - - ., Pn—3).

@ It has a bifurcate Killing horizon at ry such that f(ry) =0,

(n—1)(n—2) ]

@ it is a solution of vacuum Einstein's equations with A = —*—/5

@ It has a conformal timelike boundary at r — oo

Two-point functions can be constructed as in PAdSq+1 and in BTZ.
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Anti-Hawking Effect - |

0.8 08
s 0O Fn=s 00
(Y T,
0.2 /—\/ 0.2
0.0 0.0
0 2 1 6 8 10 0 2 1 6 8 10
Tu Tu

Figure: Transition rate, integrated up to £ = 100, as a function of the local
Hawking temperature on the three-dimensional hyperbolic black hole for
Q=-0.1, § = 7! and for different boundary conditions. From top to bottom
~v = (0.50,0.47,0.40,0.25,0)7w. On the left, for the ground state; on the right,
for the KMS state.
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Anti-Hawking Effect - I

Figure: Transition rate as a function of the local Hawking temperature,
summed up to m; = 100 and integrated up to ¢ = 100, on the four-dimensional
hyperbolic black hole for Q = —0.1, at 6p = a1 1,0 = 0 and for different
boundary conditions: from top to bottom v = (0.50, 0.47, 0.40, 0.25,0)7. On
the left, for the ground state; on the right, for the KMS state.
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The Bondurant-Fulling map

implified setting

o (M, g) — (H9,n) with HY = {(t,x1,...,xd—2,2) | z> 0}

o Massive scalar field ¢ : H* — R
P® = (0, — m’)® =0,
e Robin boundary conditions
0,P|,=0 = aP|,—0, a €R.
e Relevant Spaces:

Co°(RY) = {f € C™(R’) | f|o=0 = 0},
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Anti-Hawking Effect on massless hyperbolic black holes

Constructing the propagators

Method of images
e Calling G*(x — x/, z — 2') the propagators on (R9, n)

Gon(x—x,2,2) =G (x—x,z-Z)F G (x—x,z+7)
Notice
WF(Gpy) =
{(x, ki, X', ke) € TH(M x M)\ {0} ] (x, k«) ~+ (x’, —kyr), ke # 0} UWEF(62),
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Constructing the propagators - ||

Denote by L4(z) = ©(z)e™**
CE =(La®8)*xGEo(I® Ta)=Gn+2kLaxG(x—x,z+7),

@ G coincide with the operator counterparts,
o supp(Gya (f)) € S (supp(f)) for all £ € Co°(HY).
@ the wavefront set is
WF(GY) =
{(x, ke, X' k) € T (M x M)\ {0} | (%, kx) ~x (X, —kyr), ke 7 0} U WF(62),

Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states T



Anti-Hawking Effect on massless hyperbolic black holes

Propagators - Local Form

GHix,x') = ©(t — t') (U(x, X167 (0) + 84V (x, X' )O(0)+
FU (%, X)8 (o) + 84V (x, x')e(a,))

where

_ 1if d is even
7 oifdis odd
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Propagators - Recursion Relations

In the even-dimensional case:

U(x,x") =35 uilx, z,x',2")o’

V(x,x") = Z}io vi(x,z,x', 2" )0’
d—4 f

U'(x,x') = ) uj(x,z,x',2")o’

Vl(val) = zo:o Vj,(l’ Z’K/’ Z/)OJ

J

where, imposing the defining equations for G}

(2—=d)o"d,up =0,
[uo] =1,
Puj + (2j + 4 — d)o"Ouujpr + (j +1)(2j + 4 — d)uj41 =0,

Pu; .
[Uj+1] = _2_,‘[++]da OSJ < % =3;
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Propagators - Recursion Relations 2

The reflected components abide by

(2 —d)o"d,up =0,

Up|z=0 = uo|2=0,

Puj + (2j +4 = d)o Oty + ( + 1)(2 + 4 — d)uj, =0,

(0: + &) (uj + )| z=0 + 3(2j + 4 — d)d:0(uj1 — Ujy1)lz=0 =0, 0<j<§ -3

@ Similar transport equations for v; and vj',

@ The series are converging uniformly on compact subsets.
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Global-to-Local Theorem

Theorem (Global-to-Local)

Given (HY,n) and P := O, 4+ m?, consider w, € D'(HY x HY) abiding
by Robin boundary conditions with k > 0. The following statements are
equivalent:

1. wy . reads

wa,k(x,x') = Ilm U(xx)a6 +6dV( x')In (ﬁ)_,_

U(XX)UZ +6dV(xx)|n( )—i—W(X,x'),

)\2

2. wa, has the following singular structure:

WF(wa.) = {(x, k,x', —Kk') € T*(H¢ x )\ {0} ]
(x, k)~ (x', k") and k > 0},
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Conclusions

Conclusions:
@ Construction of fundamental solutions and states in PAdSg+1,
@ ldentification of admissible boundary conditions,
@ Application to black-hole physics,
@ Characterization of the local form.
Open Questions:
@ Generalization of the local form to PAdSy41,

@ Application of the framework to interacting field theories.
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