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Outline of the Talk

Scalar Fields on AdS Spacetimes

Boundary Conditions and Quantization: Mode Expansion

Unruh-de Witt Detector and anti-Hawking effect

The Hadamard expansion

Based on
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025021

B. Costeri, C. D., B. A. Juárez-Aubry and R. D. Singh, [arXiv:2509.26035 [math-ph]].
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Boundary Conditions in AdS spacetimes

The Poincaré patch of AdSd+1

In the Poincaré chart, PAdSd+1, the metric reads

ds2 =
ℓ2

z2
[−dt2 + dz2 + δijdxidxj ], i , j = 1, ..., d − 1

where z > 0. Observe that

1 PAdSd+1 is conformally related to the upper half plane (H̊d+1, η) with
conformal factor Ω = z

ℓ
.

2 The hyperplane z = 0 in Rd+1 is the conformal boundary of PAdSd+1.
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Boundary Conditions in AdS spacetimes

AQFT - I : Scalar field

Goal: Outline AQFT via a good example!

Basic assumptions:

(M, g) is an arbitrary 4D globally hyperbolic spacetime. Hence, up to an
isometry, M ≃ R× Σ

ds2 = −βdt2 + ht , β ∈ C∞(M;R+) and ht ∈ Riem(Σ), ∀t ∈ R

ϕ : M → R is a conformally coupled real scalar field

Pϕ =

(
−□+

R

6

)
ϕ = 0,

The space of all smooth solutions is

SP(M) = {ϕ ∈ C∞(M) | ∃f ∈ C∞
tc (M) and ϕ = G(f )},

where G = G+ − G− is the causal propagator.
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Boundary Conditions in AdS spacetimes

AQFT - II : Useful facts

It will be useful later to keep in mind that

f ∈ C∞(M) is timelike compact (tc) iff

supp(f ) ∩ J+(p) and supp(f ) ∩ J−(p) is compact ∀p ∈ M.

G± : C∞
tc (M)→ C∞(M) are the advanced (+) and retarded (−)

fundamental solutions for P such that

1 P ◦ G± = G± ◦ P = idC∞
tc (M)

2 ∀f ∈ C∞
tc (M), it holds supp(G±(f )) ⊆ J∓(supp(f ))

• All dynamical configurations of a real scalar field are

SP(M) ≃ C∞
tc (M)

P[C∞
tc (M)]

.
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Boundary Conditions in AdS spacetimes

AQFT - III : Classical Observables

Paradigm: A classical observable is an assignment of a real number to each
dynamical configuration.

• for every α ∈ C∞
0 (M), define Fα : C∞(M)→ R

Fα(ϕ) = (α, ϕ)
.
=

∫
M

dµg ϕ(x)α(x),

• Implement dynamics at a dual level: For all ϕ ∈ SP(M)

0 = Fα(Pϕ) = (α,Pϕ) = (P∗α, ϕ) = (Pα, ϕ).

• We have built the following

∀[α] ∈ C∞
0 (M)

P[C∞
0 (M)]

7→ F[α] : SP(M)→ R

F[α](ϕ)
.
= (α, ϕ) = (α,G(f )), f ∈ C∞

tc (M)

P[C∞
tc (M)]
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Boundary Conditions in AdS spacetimes

AQFT - IV : Algebra of Observables

1 Construct the unital Borchers-Uhlmann ∗-algebra

T (M) =
∞⊕
n=0

Eobs(M)⊗n,

where Eobs(M)0
.
= C and the ∗-operation is complex conjugation.

2 Construct the ideal I(M) ⊂ T (M) generated by elements of the form

[α]⊗ [α′]− [α′]⊗ [α]− iG([α], [α′])I (CCR)

where I is the unit in T (M) and

G([α], [α′])
.
= (α,G(α′)) =

∫
M

dµg (x) α(x)G(α′)(x).

3 Define the Algebra of Fields

F(M)
.
=
T (M)

I(M)
.
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Boundary Conditions in AdS spacetimes

AQFT - V : States

We need still the notion of an algebraic quantum state

For any unital ∗-algebra A, a state is a linear map ω : A → C

ω(I) = 1 (normal .) and ω(a∗a) ≥ 0, ∀a ∈ A (posit.),

where e is the unit in A.

We recover the probabilistic interpretation of quantum theories via:

• GNS theorem: (ω,A) 7→ (Dω, πω,Ωω)

Dω is a dense subspace of a Hilbert space Hω.

πω : A → L(Dω) is a representation

Ωω ∈ Dω such that ∥Ωω∥ = 1 and Hω = πω(A)Ω.

ω(a) = (Ωω, πω(a)Ωω)Hω
.
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Boundary Conditions in AdS spacetimes

AQFT - VI : Hadamard States - why?

Are all states physically acceptable?

Not in the slightest

• Minimal requirements are:

existence of a mathematically well-behaved, covariant notion of Wick
polynomials to deal with interactions,

same UV behaviour of the Minkowski vacuum ,

quantum fluctuations of all observables finite.

Answer: Hadamard States

• Add-on: Invariance under the action of all isometries.
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Boundary Conditions in AdS spacetimes

AQFT - VII : Hadamard States - how?

How do we characterize Hadamard states?

• Notice that choosing a state ω : F(M)→ C is equivalent to assigning

ωn(α1, ..., αn), ∀n ∈ N and ∀αi ∈ C∞
0 (M)

so that ω is normalized, positive and accounts for the CCRs and dynamics.

• A special class of states are quasi-free/Gaussian, i.e., for all n ∈ N

ω2n+1 = 0, ω2n(α1, ..., αn) =
∑

π2n∈S′
2n

n∏
i=1

ω2

(
απ2n(i−1), απ2n(i)

)
.

ω is constructed out of the two-point function ω2 ∈ D′(M ×M).

Definition
A quasi-free state ω is called Hadamard (Radzikowski (1996)) iff

WF (ω2) =
{
(x , y , kx ,−ky ) ∈ T ∗M2 \ {0} | (x , kx) ∼ (y , ky ), kx ▷ 0

}
.
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Boundary Conditions in AdS spacetimes

Building Hadamard states

How many Hadamard states do we know?

• Existence: Known for free fields via deformation arguments (S. A. Fulling,
F. J. Narcowich and R. M. Wald, (1981)) or on static spacetimes (Sahlmann &
Verch - 2000)

• Explicit construction: Known in highly symmetric spacetimes, e.g., Bunch
Davies state in de Sitter or states for scalar fields on FRW (Olbermann -
(2007), Them & Brum (2013), Degner (2013), Brum & Fredenhagen (2014))

• Functional Analytic method: Exploit pseudodifferential calculus:

Gérard & Wrochna - Comm. Math. Phys. 325 (2014), 713

Gérard & Wrochna - Anal. Part. Diff. Eq. 9 (2016) no.1, 111

Gérard & Wrochna - Comm. Math. Phys. 352 (2017) no.2, 519

Exploit the asymptotic structure.
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Boundary Conditions in AdS spacetimes

Klein-Gordon field in PAdSd+1

Consider ϕ : PAdSd+1 → R

Pϕ = (□PAdS −m2
0 − ξR)ϕ = 0 ξ ∈ R and R = −d(d + 1)

• Conformal rescaling −→ Φ
.
= Ω

1−d
2 ϕ : H̊d+1 → R obeys

PηΦ
.
=

(
□η −

m2

z2

)
Φ = 0, m2 = m2

0 + (ξ − d − 1

4d
R).

• We can expand

Φ(x , z) =

∫
Rd

ddk

(2π)
d
2

e ik·x Φ̂k(z)

yields (λ
.
= ω2 −

∑d−1
i=1 k2

i )

PηΦ = 0⇐⇒ LΦ̂k =

(
− d2

dz2
+

m2

z2
− λ

)
Φ̂k = 0.

This is a singular Sturm-Liouville equation on (0,∞).

12 / 37
Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states

▲



Boundary Conditions in AdS spacetimes

Klein-Gordon field in PAdSd+1

Consider ϕ : PAdSd+1 → R

Pϕ = (□PAdS −m2
0 − ξR)ϕ = 0 ξ ∈ R and R = −d(d + 1)

• Conformal rescaling −→ Φ
.
= Ω

1−d
2 ϕ : H̊d+1 → R obeys

PηΦ
.
=

(
□η −

m2

z2

)
Φ = 0, m2 = m2

0 + (ξ − d − 1

4d
R).

• We can expand

Φ(x , z) =

∫
Rd

ddk

(2π)
d
2

e ik·x Φ̂k(z)

yields (λ
.
= ω2 −

∑d−1
i=1 k2

i )
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(
− d2

dz2
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m2

z2
− λ

)
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Sturm-Liouville Theory and Ground States

The Endpoint Classification - I

The most general solution of LΦ̂k = λΦ̂k is for λ > 0

Φ̂k(z) = a(k)
√
zJν(
√
λz) + b(k)

√
zYν(

√
λz),

where ν = 1
2

√
1 + 4m2 ≥ 0.... m2 ∈ [− 1

4
,∞) , the BF bound.

Which boundary conditions are allowed? How do we implement them?

•
√
zJν(
√
λz) ∝z→0 z

ν+ 1
2 and

√
zYν(

√
λz) ∝z→0 z

−ν+ 1
2

How to impose standard (Robin) boundary conditions at z = 0?

Singular Sturm-Liouville theory is the answer
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Sturm-Liouville Theory and Ground States

Boundary Conditions - I

Goal: Implement boundary conditions at z = 0

1 Choose Φ1(z) the principal solution at z = 0, i.e. the unique one (up to
scalar multiples)

lim
z→0

Φ1(z)

Φ(z)
= 0 ∀Φ(z) | LΦ = λΦ, λ ∈ C.

2 Pick a second L2-solution Φ2(z), linearly indep. from Φ1 (non unique)

3 Observe that, up to a scalar multiple, ∃α ∈ [0, π) such that

Φ(z) = cosαΦ1(z) + sinαΦ2(z),

and that, for a regular endpoint at z = 0,

cosαΦ(0) + sinαΦ′(0) = 0⇐⇒ cosαWz [Φ,Φ1] + sinαWz [Φ,Φ2] = 0

where Wz [Φ,Φi ] = Φ(z)Φ′
i (z)− Φ′(z)Φi (z) is the Wronskian.
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Sturm-Liouville Theory and Ground States

Boundary Conditions - II

Recall that we consider L = − d2

dz2
+ m2

z2
and λ = q2 .

= ω2 −
d−1∑
i=1

k2
i .

The fundamental pair of solutions (Φ̂1
k , Φ̂

2
k) is

Φ̂1
k(z) =

√
π

2
q−ν√z Jν(qz) ,

Φ̂2
k(z) =


−
√

π

2
qν√z J−ν(qz) , ν ∈ (0, 1) ,

−
√

π

2

√
z

[
Y0(qz)−

2

π
log(q)

]
, ν = 0 .

ν = 1
2

√
1 + 4m2 Classification of z = 0 Boundary condition at z = 0

ν = 1
2

Regular (R) cot(α) Φ̂k(0) + Φ̂′
k(0) = 0

ν ∈ [0, 1), ν ̸= 1
2

Limit-circle (LC) − cot(α)Wz

[
Φ̂k , Φ̂

1
k

]
+Wz

[
Φ̂k , Φ̂

2
k

]
= 0

ν ∈ [1,∞) Limit-point (LP) Not required
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Sturm-Liouville Theory and Ground States

Ground States - Mode Expansion I

1 Let ω2,H
.
= (zz ′)

1−d
2 ω2 ∈ D′(H̊d+1 × H̊d+1). It holds

(Pη ⊗ I)ω2,H = (I⊗ Pη)ω2,H = 0.

2 Consider the Fourier transform along Rd ∋ x . Integral kernel:

ω2,H(x , x
′) = lim

ϵ→0+

∞∫
0

dω√
2π

e iω(t−t′−iϵ)

∞∫
0

dk

(
k

r

) d−3
2

J d−3
2
(kr)ω̂2,k(z , z

′).

with

(L⊗ I)ω̂2,k = (I⊗ L)ω̂2,k = λω̂2,k , L = − d2

dz2
+

m2

z2
.
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Sturm-Liouville Theory and Ground States

The case with ν ∈ (0, 1)

In order to construct ω̂2,k , we need that iG(x , x ′)
.
= ω2,H(x , x

′)− ω2,H(x
′, x),

G(x , x ′)|t=t′ = 0, ∂tG(x , x ′) = −∂t′G(x , x ′)|t=t′ = δ(x , x ′).

Setting c = cotα

ω̂2,k =
√
zz ′

∫ ∞

0

dq q
[cJν(qz)− q2νJ−ν(qz)][cJν(qz

′)− q2νJ−ν(qz
′)]

c2 − 2cq2ν cos(πν) + q4ν
, c ≤ 0

The state is

locally Hadamard and quasi-free/Gaussian
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Sturm-Liouville Theory and Ground States

Open Questions

Unknown Properties:

1 What is the most general class of allowed boundary conditions?

2 Setting G+ = Θ(t − t′)G and G− = −Θ(t′ − t)G is it true that

supp(G±(f )) ⊆ J±(supp(f )) ∀f ∈ C∞
0 (H̊d+1).

3 What are the singularities of ω2,H:

WF(ω2,H) =?

4 Can we construct a local form for ω2,H and for G±?
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Unruh-de Witt Detectors and anti-Hawking effect

Unruh-De Witt Detectors

Given Φ : M → R a real scalar field

Detector ←→ 2 level system {|0⟩, |Ω⟩}

Hint = cχ(τ)Φ(x(τ))⊗ µ(τ), c ∈ R and χ ∈ C∞
0 (R),

x(τ) is the detector worldline (stationary),

µ(τ) = |Ω⟩⟨0|e iΩτ + |0⟩⟨Ω|e−iΩτ – monopole-moment operator

H = HΦ ⊗ I+ I⊗ HD + Hint .
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Unruh-de Witt Detectors and anti-Hawking effect

Quantities of Interest
We are interested in the detector response function

F =

τf∫
τi

dτ

τf∫
τi

dτ ′e−iΩ(τ−τ ′)χ(τ)χ(τ ′)ω2(x(τ)x
′(τ ′)),

where ω2 is the two-point function of Φ.

Assuming infinite interaction time, i.e., χ(τ)→ 1 we look at

detector response function∫
R2

dτdτ ′e−iΩ(τ−τ ′)ω2(x(τ)x
′(τ ′)),

transition rate

Ḟ =

∫
R

dse−iΩsω2(x(s)).
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Unruh-de Witt Detectors and anti-Hawking effect

Anti-Hawking effect1

Consider a static black-hole spacetime M = R× I × Σj

ds2 = −f (r)dt2 + h(r)dr 2 + r 2dΣj(θ1, . . . , θn−2)

1 M has a bifurcate horizon with surface gravity κh,

2 The detector measures a local Hawking temperature TD = κh

2π
√

f (r)
.

3 The response function of the detector satisfies detailed balance at T−1
D

Ḟ(Ω)
Ḟ(−Ω)

= e−β
√

f (r)Ω

Anti-Hawking Effect ⇐⇒ ∂Ḟ(TD )
∂TD

< 0

1Brenna, Mann & Martinez-Martinez PLB (2016) – Henderson & al. PRD
(2020)
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∂TD

< 0

1Brenna, Mann & Martinez-Martinez PLB (2016) – Henderson & al. PRD
(2020)

21 / 37
Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states

▲



Unruh-de Witt Detectors and anti-Hawking effect

Anti-Hawking effect1

Consider a static black-hole spacetime M = R× I × Σj

ds2 = −f (r)dt2 + h(r)dr 2 + r 2dΣj(θ1, . . . , θn−2)

1 M has a bifurcate horizon with surface gravity κh,

2 The detector measures a local Hawking temperature TD = κh

2π
√

f (r)
.

3 The response function of the detector satisfies detailed balance at T−1
D
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∂TD

< 0

1Brenna, Mann & Martinez-Martinez PLB (2016) – Henderson & al. PRD
(2020)

21 / 37
Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states

▲



Anti-Hawking Effect on BTZ spacetime

Static BTZ - Geometry

It is a 3D black hole spacetime:

ds2 = −
(
r 2

L2
−M

)
dt2 +

dr 2

r2

L2
−M

+ r 2dθ2.

It has a bifurcate Killing horizon at rH = L
√
M,

The Hawking temperature is T =
√
M

2πL
.

It has a conformal timelike boundary at r →∞

Two-point functions can be constructed as in PAdSd+1.
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Two-point Function - I

Consider a massless, conformally coupled, real scalar field

Φ : BTZ→ R,
(
□g −

3

4

)
Φ = 0.

We consider z = r2−L2M
L2M

∈ (0, 1) and

Φ(t, z , θ) =

∫
R

dω
∑
l∈Z

e i(ωt+lθ)Rω,l,γ(z)

where

Rω,l,γ(z) = z
iω
2rH (1− z)

3
4 (cos γF1(1− z) + sin γ(1− z)−

1
2 F2(1− z))

where F1,F2 are hypergeometric functions depending on ω,M, l .
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Two-point Function - II
Ground and thermal states with Robin boundary conditions at T =

√
M

2πL

ω2(x , x
′) = lim

ϵ→0+

∑
l∈Z

∫
R

dω

2π
Θ(ω)e−iω(t−t′−iϵ)NlRω,l,γ(z)Rω,l,γ(z

′)e il(θ−θ′)

ω2,T (x , x
′) = lim

ϵ→0+

∑
l∈Z

∫
R

dω

2π
Θ(ω)

[
e

ω
T e−iω(t−t′−iϵ) + e iω(t−t′+iϵ)

e
ω
T − 1

]

NlRω,l,γ(z)Rω,l,γ(z
′)e il(θ−θ′)

On a static trajectory x(τ) = (τ, zD , θD) the response function reads for Ω < 0

Ḟ0 =
∑
l∈Z

Nl

2π
R2
ω,l,γ(zD)

∣∣∣
ω=−
√

|g00(zD )|Ω
,

and

Ḟ =
sign(Ω)

esign(Ω)ω
T − 1

∣∣∣∣
ω=
√

|g00(zD )||Ω|
Ḟ0.
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Anti-Hawking Effect - I2

Figure: l = 0 contribution to Ḟ0 as a function of TH for rh = 1, Ω = 0.1 and
different boundary conditions; from top to bottom, respectively,
γ = (0.50, 0.47, 0.40, 0.25, 0)π.

2L. J. Henderson, R. A. Hennigar, R. B. Mann, A. R. H. Smith and
J. Zhang, Phys. Lett. B 809 (2020), 135732
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Anti-Hawking Effect on BTZ spacetime

Static BTZ - Anti-Hawking Effect - II

Figure: l = 0 contribution to Ḟ as a function of TH for rh = 1, Ω = 0.1 and
different boundary conditions; from top to bottom, respectively,
γ = (0.50, 0.47, 0.40, 0.25, 0)π.
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Anti-Hawking Effect on massless hyperbolic black holes

Massless Hyperbolic Black Holes

These are n-dimensional spacetimes M = R× I × Σn−2

ds2 = −f (r)dt2 + dr 2

f (r)
+ r 2dΣ2

n−2, f (r) = −1− 2M

rn−3
+

r 2

L2
,

where dΣ2
n−2 = dθ2 + sinh2 θdS2

n−3(φ1, . . . , φn−3).

It has a bifurcate Killing horizon at rH such that f (rH) = 0 ,

it is a solution of vacuum Einstein’s equations with Λ = − (n−1)(n−2)

2L2
.

It has a conformal timelike boundary at r →∞

Two-point functions can be constructed as in PAdSd+1 and in BTZ.
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Anti-Hawking Effect on massless hyperbolic black holes

Anti-Hawking Effect - I

Figure: Transition rate, integrated up to ℓ = 100, as a function of the local
Hawking temperature on the three-dimensional hyperbolic black hole for
Ω = −0.1, θ = π−1 and for different boundary conditions. From top to bottom
γ = (0.50, 0.47, 0.40, 0.25, 0)π. On the left, for the ground state; on the right,
for the KMS state.
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Anti-Hawking Effect on massless hyperbolic black holes

Anti-Hawking Effect - II

Figure: Transition rate as a function of the local Hawking temperature,
summed up to m1 = 100 and integrated up to ℓ = 100, on the four-dimensional
hyperbolic black hole for Ω = −0.1, at θD = π−1, φ1,D = 0 and for different
boundary conditions: from top to bottom γ = (0.50, 0.47, 0.40, 0.25, 0)π. On
the left, for the ground state; on the right, for the KMS state.
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Anti-Hawking Effect on massless hyperbolic black holes

The Bondurant-Fulling map

Simplified setting

• (M, g) −→ (Hd , η) with Hd = {(t, x1, . . . , xd−2, z) | z ≥ 0}

• Massive scalar field Φ : Hd → R

PΦ = (□η −m2)Φ = 0,

• Robin boundary conditions

∂zΦ|z=0 = αΦ|z=0, α ∈ R.

• Relevant Spaces:

C∞
D (Rd) = {f ∈ C∞(Rd) | f |z=0 = 0},

C∞
α (Rd) = {f ∈ C∞(R) | ∂z f |z=0 = αf |z=0}.

Tα : C∞
α (Rd)→ C∞

D (Rd) f 7→ Tα(f )
.
= ∂z f − αf .
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Anti-Hawking Effect on massless hyperbolic black holes

Constructing the propagators

Method of images

• Calling G±(x − x ′, z − z ′) the propagators on (Rd , η)

G±
D/N(x − x ′, z , z ′) = G±(x − x ′, z − z ′)∓ G±(x − x ′, z + z ′)

Notice

WF(G±
D/N) =

{(x , kx , x ′, kx′) ∈ T ∗(M×M) \ {0} | (x , kx) ∼± (x ′,−kx′), kx ̸= 0} ∪WF(δ2),
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Anti-Hawking Effect on massless hyperbolic black holes

Constructing the propagators - II

Denote by Lα(z) = Θ(z)e−αz

G±
α := (Lα ⊗ δ) ⋆ G±

D ◦ (I⊗ Tα) = GN + 2κLα ⋆ G(x − x ′, z + z ′),

G±
α coincide with the operator counterparts,

supp(G±
α (f )) ⊆ J∓(supp(f )) for all f ∈ C∞

0 (Hd).

the wavefront set is

WF(G±
α ) =

{(x , kx , x ′, kx′) ∈ T ∗(M×M) \ {0} | (x , kx) ∼± (x ′,−kx′), kx ̸= 0} ∪WF(δ2),
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Anti-Hawking Effect on massless hyperbolic black holes

Propagators - Local Form

G+
α (x , x ′) = Θ(t − t′)

(
U(x , x ′)δ

d−2
2 (σ) + δdV (x , x ′)Θ(σ)+

+U ′(x , x ′)δ
d−2
2 (σ−) + δdV

′(x , x ′)Θ(σ−)
)

where

δd =

{
1 if d is even

0 if d is odd
.
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Anti-Hawking Effect on massless hyperbolic black holes

Propagators - Recursion Relations

In the even-dimensional case:
U(x , x ′) =

∑ d−4
2

j=0 uj(x , z , x
′, z ′)σj

V (x , x ′) =
∑∞

j=0 vj(x , z , x
′, z ′)σj

U ′(x , x ′) =
∑ d−4

2
j=0 u′

j (x , z , x
′, z ′)σj

−

V ′(x , x ′) =
∑∞

j=0 v
′
j (x , z , x

′, z ′)σj
−

,

where, imposing the defining equations for G+
α

(2− d)σµ∂µu0 = 0,

[u0] = 1,

Puj + (2j + 4− d)σµ∂µuj+1 + (j + 1)(2j + 4− d)uj+1 = 0,

[uj+1] = −
[Puj ]

2j+4−d
, 0 ≤ j ≤ d

2
− 3,

34 / 37
Scalar Quantum Field Theory on AdS spacetimes: Boundary conditions and Hadamard states

▲



Anti-Hawking Effect on massless hyperbolic black holes

Propagators - Recursion Relations 2

The reflected components abide by


(2− d)σµ

−∂µu
′
0 = 0,

u′
0|z=0 = u0|z=0,

Pu′
j + (2j + 4− d)σµ

−∂µu
′
j+1 + (j + 1)(2j + 4− d)u′

j+1 = 0,

(∂z + κ)(uj + u′
j )|z=0 +

1
2
(2j + 4− d)∂zσ(uj+1 − u′

j+1)|z=0 = 0, 0 ≤ j ≤ d
2
− 3.

Similar transport equations for vj and v ′
j ,

The series are converging uniformly on compact subsets.
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Anti-Hawking Effect on massless hyperbolic black holes

Global-to-Local Theorem

Theorem (Global-to-Local)

Given (Hd , η) and P := □η + m2, consider ω2,κ ∈ D′(Hd × Hd) abiding

by Robin boundary conditions with κ ≥ 0. The following statements are

equivalent:

1. ω2,κ reads

ω2,κ(x , x
′) = lim

ϵ→0+
U(x , x ′)σ

2−d
2

ϵ + δdV (x , x ′) ln
(σϵ

λ2

)
+

U ′(x , x ′)σ
2−d
2

−,ϵ + δdV
′(x , x ′) ln

(σ−,ϵ

λ2

)
+W (x , x ′),

2. ω2,κ has the following singular structure:

WF(ω2,κ) = {(x , k, x ′,−k ′) ∈ T ∗(H̊d × H̊d) \ {0} |
(x , k) ∼̇ (x ′, k ′) and k ▷ 0},
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Anti-Hawking Effect on massless hyperbolic black holes

Conclusions

Conclusions:

Construction of fundamental solutions and states in PAdSd+1,

Identification of admissible boundary conditions,

Application to black-hole physics,

Characterization of the local form.

Open Questions:

Generalization of the local form to PAdSd+1,

Application of the framework to interacting field theories.
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