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Summary

Orthogonal Polynomials

Elliptic curves

Elliptic Orthogonality

Decomposition of EOP in terms of OPRL

Based on “Elliptic orthogonal polynomials and OPRL”, joint work with
Martinez-Finkelshtein, to appear in Journal of Mathematical Analysis and
Applications.
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What are Orthogonal Polynomials?
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What are Orthogonal Polynomials?

Let d(x) be a borel finite positive measure on C with finite
moments.

A polynomial p,(z) = 7" + lower order terms is orthogonal when
J pa(x)2du(x) =0, o<k<n
C

Equivalently, p, is orthogonal to every polynomial of degree < n.

Above is called non-hermitian orthogonality (the integral is not a
well defined inner product - unless supp u C R).
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Existence of orthogonal polynomials

The existence of p, is equivalent to the non-vanishing of the
determinant

Dn — det(miJri)Zji:lol my, = Jzk d]_,L(Z)

It can be immediately verified from the determinantal identity

Mo my - my—1 my,
1 my m, .- my My 4
pn(z) = —det
D,
My—1 My - Mayp—y Myp—

1 z ... z"
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The Three Term Recurrence Relation

There exists two sequences a, and b, such that
XPn (X) - pn+1(x) + bnpn (x) + AnPn—1 (X),
where p_, = 0. Moreover, for h, := [ p,(x)* du(x), we have

h, 1
ey T h

a, =

[ duto
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Other properties.

e Zeroes of p, lie in the convex hull of supp p.

e The reproducing Kernel of OPs
_ "Zl b (*)p ()
- "

satisfies the Christoffel Darboux Identity

K, (x.y) :hi X)Pn—1 () — P (2)Pn(y).
n %0




Orthogonal polynomial in the real line (OPRL)

When supp p C IR we say that p, is an orthogonal polynomial in the
real line (OPRL). In this case:

e p, hasreal coefficients. In particular p,(z) = p,(z);

e The zeros of p, are simple and interlace with those of p,,

200

-200

-400

Figure: Plot of the 5-th and the 6-th Hermite polynomials.
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Genus 1 Compact Riemann Surfaces

Every compact Riemann surface of genus 1 T is a torus.

2

@&

Figure: “Survey of Graph Embeddings into Compact Surfaces”
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Genus 1 Compact Riemann Surfaces

For each such T, there exists a representation of the form

C
‘I:A—, Ao =2Z+1tZ, ImT>o0.

Meromorphic functions in T are identified with elliptic functions -
meromorphic functions in C with two linearly independent
periods, in this case, 1and T.
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Fundamental paralellogram

Elliptic functions of T are completely determined by their values
in the fundamental parallelogram

A:={t+sts,telo1)}




Meromorphic functions on T
e Weierstrass g function
1 1
A ( e w)
weA\{o}

g is an even elliptic function with periods 1 and T and a unique
pole of order two at 0.

g satisfies the ODE
p'(2)" = 4(p(z) —e)(p(2z) —e.)(9(2) —e5), ¢ := p(w))

where wj is the j-th half period of the lattice A+, i.e.,
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Meromorphic functions on T

The Weierstrass g function can be understood as a uniformizing
parameter: the map

z— (p(2), 9'(2))

is a biholomorphism between T and the elliptic curve C of

equation
2

V' =4x—e)x—e)(x—e).
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Meromorphic functions on T

e Weiestrass ( (zeta) function
1 V2
@) =2 = [ [otn -] aw
z o

where the path of integration does not intersect any element
of A;. (satisfies ('(z) = —p(z).

Cis NOT an elliptic function, but it is an odd meromorphic
quasi-periodic function satisfying

Clu+2w;) = C(u) +m;, M= C(w;).




“Polynomial-like” functions on T

A polynomial p on C is a meromorphic function with a unique
single pole at oo, whose order of the pole is exactly its degree.

We use above definition as a motivator to define polynomial-like
functions on . We fix a point to act as co in this setup, i.e., the

degree of our functions shall correspond to the order of the pole at this
point.

o € T is anatural candidate since it corresponds to the unique
point at infinity of C.

Definition. The polynomial degree of a meromorphic function f
is the order of its pole at o € 7.

Example: p has polynomial degree 2, ((z) — {(z — a) has
polynomial degree 1.




ELLIPTIC CURVES
0000000800

Degree 1 polynomials in T

There is no meromorphic function f of polynomial degree 1 that
is analyticon T\ {o}.

1 . .
o= pym LAf(s) ds = Z residues inside A.

To allow the possibility of degree 1 polynomial functions, we
shall admit the possibility of an extra simple pole a # o.

This can be further justified by the theory of Padé approximation.
This was the initial framework utilized by Bertola to consider
these orthogonal meromorphic functions in higher genus.




ELLIPTIC CURVES
0000000080

Elliptic a-polynomials

Definition. An elliptic a-polynomial f is a meromorphic function
on 7, thatis analytic on T \ {0, a}, whose possible pole at a is of
maximum order 1.

There are unique ¢ € C and n > o such that

1
o

flz) = . (c+0(z)), z—o.

we call n and ¢ the degree and the leading coefficient of f,
respectively.

When ¢ = 1we say that f is monic.
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Space of elliptic a-polynomials

The space of elliptic a-polynomials is the Riemann-Roch space
L(n-o+a).

A monic basis for this base is given by

bo(z) =1
b\(z) = C(z) — C(z—a) — C(a)
bo(2) == p(2)",

buss(z) = =9/ (2)6"(2). k>0
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Orthogonality
Let I" be a contour on T, W a function defined on I" and

a positive probability measure.

We say that an elliptic a-polynomial f, of polynomial degree n is
orthogonal (shortly, an EOP) with respect to u when

Jrfn(z)bj(z) du(z) =0, o<j<n

We fix the notation F, for the n-th monic EOP.
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Analogous properties to usual orthogonality

The n-th monic orthogonal elliptic a-polynomial F, exists if, and
only if,

D, = det(p ) £0, = J bi(2)b;(2) dys(z).

Similarly, f, admits a determinamtal formula

Ho,o Ho,1 T Hon—1 Hon
Hio ul,l T ul,nfl Hl,n
1 . . . .
Fn(z) - H : : o : :
! Hp—10 Hp—11 " Hp—1n—1 Hn—1n

bo(z) bi(z) -+ bya(z) bu(2)
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Five Term Recurrence Relation

Assume D, # o for all n > o and let f, be the n-th orthonormal
EOP. There exists constants Ay, By, C;, € C such that

(2)fk(2) = Aufies2(2) 4 Bifier1(2)+Cifi (2)+Bre—fi—1 (2) +-Ar—fi—a (

where f | = f , = 0. Moreover,
Ay = "r D (2)fora(DW(2) dz

B = | p@fi@fin0W() dz

Cr = ) o (2)fi(2)*W(z) dz.
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Why we cannot find a three term recurrence

In general we cannot multiply f; by by, the pole at a can become
of order 2 and, in that case, f;b, is not an EOP anymore.

The five term recurrence reduces to three term when we heavily
restrict W, I" and a. An analogous phenomena to OPRL with
even weights.




Christoffel-Darboux Formula

The reproducing Kernel of EOP

w) =) f(z)fi(w)
j=o0
satisfies the CD-like identity

fn+1 fn 1(W) fn+1 ﬁ'l—l(z)
p(z) — p(w)
(2)fa2(2) — fu(2)f2(2) fo(2)fu (W) — fu(W)fy 1 (2)
p(z) — p(w) p(z) — p(w)

K, (Z, W) =A,

+An—2 +By—;




EOP and Real Orthogonality

The real locus of T
{ze T;z=172}

has at maximum 2 connected components (Harnack’s Theorem).
Itis exactly 2 if, and only if, T € iR™ = 0, and in this case they
are given by

v, : Definitions:
B 5 1 e v, =[0,1);
1 *v.=[5.5+1);
Y1 |




EOP and Real Orthogonality

The analogous case of OPRL in T comes by taking the following
assumptions:

e The orthogonality curve I' is one of the contours y,, v,;
e The point a lies in the set (y, Uy,) \ T.

Consequences:

e bjisrealvaluediny, Uvy,;

e [, can be obtained by Gram-Schmidt;

e Schwarzidentity F,(5) = F,(s)




EOP and Real Orthogonality

Under this assumptions one can prove an Andriéief-type
identity:

1 " 2 "
0 ; Jsupp u" <det [bjil(Xi)]i'jzl) :zlj!: du(xj)'

Therefore, since the basis b; is real-valued over y, U y,, the fact
that

i = | B2z dulz) € R

implies that D, # o and thus the n-th EOP exists.
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Setup of interest

Assumptions: - I }
® acy; 2 i
o ['=17v,; :
oe = 1
a
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Zeroes
Theorem
o Whennisodd, then f, has a pole at a, and has exactly n + 1 simple
zeroes aty,, that interlace with those of f,,11.;

o When nis even, f, has exactly n simple zeroes aty,, and a zero aty,

iffit has a pole at a.
S ELTTTEREEEEREE
|
W3 -------.:w3+zw1
!
|
|
oe ® > 20,

Figure: n = 3. Blue points marks zeros of Fy, the green of F,, ;.
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Decomposition of EOP in
terms of OPRL



Behavior of p overy,

The Weierstrass p function maps vy, twice over the interval
(e5,€,).

-3.284
-3.286
-3.288
-3.290
-3.292

-3.294

Figure: Plot of p (£ +¢t) fort = Z.

Let x = p(z) for zin the first-half of v,. Then —z lies in the
second half.




DEcoMmPOSITION OF EOP IN TERMS OF OPRL
00®000000000000

Basis functions in the x variable
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General Decomposition Theorem

There exists polynomials p, , and p, , such that

p'la)

Z Psn(X).

Fu(z) = pun(x) + by (2)pyn(x) +

.— Pan (%) —pan(g(a)) Let
x—p(a) ’

where p; ,(x)




Decomposition of EOP in terms of OPRL

Theorem (A.-Martinez-Finkelshtein, 2026)

Letn = 2m + k k € {0, 1}. The pair of polynomials p,, , and q, satisfies
the vector orthogonality relations on the interval [e,, e,]:

JZ [ ()W, (%) + pua ()W (x)] de=o0, o<l<m+ i;

€3

r (4, (X)W, () + pus (X)W, (x)]'dx =0, o<I<m—2

rqn(x) (wo )+ ® '(“)wt(x)) dx
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Assuming that W is even

When W is even

In this case the orthogonality conditions specializes.
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Usual orthogonality when W is even

Corollary
Let W be an even weighton " =y,. Forn = 2m + k, k € {0,1},

J @n(x)x'wl(x) =0, o< I<degq,—2+k

€3

J Pua(X)x'w) (x) =0, o< I<degp,, —1—k

€3

Note that for k even, p,,, is orthogonal and g, is quasi orthogonal.
For k odd, p,, is quasi orthogonal and ¢, is orthogonal.
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Orthogonality when Wis evenand a = ;

In the case we assume full symmetry of W and a. We have

Fj(z) = pjlx),  Fy(z) = bi(2)pj(x)

where p; and p; is a polynomial of degree j orthogonal with
respect to the weight

in [e;, e,], respectivelly.
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Example: EOP coming from OPRL

Let p be the Weierstrass g function of the torus defined by the
square lattice

327
40
"(3)
4

Denote by P!*P) the n-th monic OP with respect to

A =20, Z+2iw, 272, W, =

wx)=(1—x)*1+x%)P, op>-—1L




Example: EOP coming from OPRL
For n = 2j + k, define:

A
P]-(“H’BH)(ZZQ(S) 1) — 7\.] Pj(jclﬂ,ﬁﬂ)(zp(s) +1)|, k=1
j—1

(o+1,B3+1)
(%) (1— )oc—H( +x)f5+1dx




EOP coming from OPRL

Theorem (A.-Martinez-Finkelshtein, 2026)
F, is the n-th EOP with a = w,, with respect to the weight

W(s) = lp(s)“= (p(s) +1)P:(1— p(s))> >0, seT.

e This is the first explicit family of a-EOP in literature.
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Open questions

e For general orthogonality in T, can you still find some
information regarding localization of zeros without the real
orthogonality assumption?

In the complex plane, the position of the zeros in the convex hull
comes from the fact that the orthogonal polynomials minimize
the L* norm in the space of polynomials. This later property is
satisfied for the EOPs by definition (for the appropriate space)

A more general question is what is the convex hull in the torus?
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Open questions

e Can this be utilized to construct an EOP ensemble in the
torus?

Avery important application of orthogonal polynomials is in the
theory of random matrices, as the OP ensemble describes the
eigenvalues of unitary ensembles over Hermitian matrices.

Can a similar thing be done in the elliptic setup? A
Riemann-Hilbert formulation for these polynomials was
presented by Marco Bertola (and there is a similar construction

for elliptic functions without the pole at a, given by Desiraju et
alD.

Asymptotic analysis have already been done by Bertola. Can this
be utilized with the CD-like formula to find anything?
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.
Open questions

e What about even higher genus?

Most of the arguments of the work can be generalized for
hyperelliptic curves.

e How this relates with other forms of higher genus
orthogonality that appears in recent literature?

In particular in the recent developments concerning the
decomposition of Matrix Valued Orthogonal Polynomials in
terms of scalar orthogonality in higher genus (works of Bertola,
Charlier, Kuijlaars and Duits, for example).

Even in genus o you can find different orthogonality types -
Hermite orthogonality becomes Laurent orthogonality, for
example.
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