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Based on “Elliptic orthogonal polynomials and OPRL”, joint work with
Martinez-Finkelshtein, to appear in Journal ofMathematical Analysis and
Applications.
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What are Orthogonal Polynomials?

pm(x) = bmxm+bm−1xm−1+· · ·+b0

p n
(x
)
=
a n
xn
+
a n

−
1x
n−

1 +
··
·+
a 0
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What are Orthogonal Polynomials?

Let dµ(x) be a borel finite positive measure onCwith finite
moments.

A polynomial pn(z) = zn + lower order terms is orthogonalwhen∫
C

pn(x)zk dµ(x) = 0, 0 ⩽ k < n.

Equivalently, pn is orthogonal to every polynomial of degree< n.

Above is called non-hermitian orthogonality (the integral is not a
well defined inner product - unless supp µ ⊂ R).
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Existence of orthogonal polynomials

The existence of pn is equivalent to the non-vanishing of the
determinant

Dn ..= det(mi+j)
n−1
i,j=0, mk

..=

∫
zk dµ(z).

It can be immediately verified from the determinantal identity

pn(z) =
1
Dn

det


m0 m1 · · · mn−1 mn
m1 m2 · · · mn mn+1
...

... · · · ...
...

mn−1 mn · · · m2n−2 m2n−1
1 z · · · zn−1 zn

 .
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TheThree TermRecurrence Relation

There exists two sequences an and bn such that

xpn(x) = pn+1(x) + bnpn(x) + anpn−1(x),

where p−1 ≡ 0. Moreover, for hn ..=
∫
pn(x)2 dµ(x), we have

an =
hn
hn−1

, bn =
1
hn

∫
xpn(x)2 dµ(x).



Orthogonal Polynomials Elliptic curves Elliptic Orthogonality Decomposition of EOP in terms of OPRL

Other properties.

• Zeroes of pn lie in the convex hull of supp µ.

• The reproducing Kernel of OPs

Kn(z,w) =
n−1∑
j=0

pj(x)pj(y)
hj

satisfies the Christoffel Darboux Identity

Kn(x, y) =
1
hn
pn(x)pn−1(y) − pn−1(x)pn(y)

x − y
.
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Orthogonal polynomial in the real line (OPRL)

When supp µ ⊂ R we say that pn is an orthogonal polynomial in the
real line (OPRL). In this case:

• pn has real coefficients. In particular pn(z) = pn(z);

• The zeros of pn are simple and interlace with those of pn+1
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Figure: Plot of the 5-th and the 6-th Hermite polynomials.
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Genus 1 Compact Riemann Surfaces

Every compact Riemann surface of genus 1 T is a torus.

Figure: “Survey of Graph Embeddings into Compact Surfaces”
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Genus 1 Compact Riemann Surfaces

For each such T, there exists a representation of the form

T =
C

Λτ

, Λτ
..= Z + τZ, Im τ > 0.

Meromorphic functions in T are identified with elliptic functions -
meromorphic functions inCwith two linearly independent
periods, in this case, 1 and τ.
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Fundamental paralellogram

Elliptic functions of T are completely determined by their values
in the fundamental parallelogram

∆ ..= {t + sτ; s, t ∈ [0, 1)}.

0

τ

1
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Meromorphic functions on T:
• Weierstrass ℘ function

℘(z) ..=
1
z2

+
∑

w∈Λτ\{0}

(
1

(z− w)2
−

1
w2

)

℘ is an even elliptic function with periods 1 and τ and a unique
pole of order two at 0.

℘ satisfies the ODE

℘ ′(z)2 = 4(℘(z) − e1)(℘(z) − e2)(℘(z) − e3), ej ..= ℘(ωj)

whereωj is the j-th half period of the latticeΛτ, i.e.,

ω1
..=

1
2

, ω2
..=

1
2
+

τ

2
, ω3

..=
τ

2
.
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Meromorphic functions on T:

TheWeierstrass ℘ function can be understood as a uniformizing
parameter: the map

z 7→ (℘(z), ℘ ′(z))

is a biholomorphism between T and the elliptic curve C of
equation

y2 = 4(x − e1)(x − e2)(x − e3).
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Meromorphic functions on T

• Weiestrass ζ (zeta) function

ζ(z) ..=
1
z
−

∫ z
0

[
℘(w) −

1
w2

]
dw

where the path of integration does not intersect any element
ofΛτ. ζ satisfies ζ ′(z) = −℘(z).

ζ is NOT an elliptic function, but it is an oddmeromorphic
quasi-periodic function satisfying

ζ(u+ 2ωi) = ζ(u) + ηi, ηi
..= ζ(ωi).
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“Polynomial-like” functions on T

A polynomial p onC is a meromorphic function with a unique
single pole at∞, whose order of the pole is exactly its degree.

We use above definition as a motivator to define polynomial-like
functions on T. We fix a point to act as∞ in this setup, i.e., the
degree of our functions shall correspond to the order of the pole at this
point.

0 ∈ T is a natural candidate since it corresponds to the unique
point at infinity of C.

Definition. The polynomial degree of a meromorphic function f
is the order of its pole at 0 ∈ T.

Example: ℘ has polynomial degree 2, ζ(z) − ζ(z− a) has
polynomial degree 1.
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Degree 1 polynomials in T

There is no meromorphic function f of polynomial degree 1 that
is analytic on T \ {0}.

0 =
1
2πi

∫
∂∆

f (s) ds =
∑

residues inside∆.

To allow the possibility of degree 1 polynomial functions, we
shall admit the possibility of an extra simple pole a ̸= 0.

This can be further justified by the theory of Padé approximation.
This was the initial framework utilized by Bertola to consider
these orthogonal meromorphic functions in higher genus.



Orthogonal Polynomials Elliptic curves Elliptic Orthogonality Decomposition of EOP in terms of OPRL

Elliptic a-polynomials

Definition. An elliptic a-polynomial f is a meromorphic function
on T, that is analytic on T \ {0, a}, whose possible pole at a is of
maximum order 1.

There are unique c ∈ C and n ⩾ 0 such that

f (z) =
1
zn

(c + O(z)) , z→ 0.

we call n and c the degree and the leading coefficient of f ,
respectively.

When c = 1 we say that f ismonic.
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Space of elliptic a-polynomials

The space of elliptic a-polynomials is the Riemann-Roch space
L(n · 0+ a).

A monic basis for this base is given by

b0(z) ..= 1,
b1(z) ..= ζ(z) − ζ(z− a) − ζ(a),
b2k(z) ..= ℘(z)k,

b2k+3(z) ..= −
1
2
℘ ′(z)℘k(z), k ⩾ 0.
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Orthogonality

Let Γ be a contour on T,W a function defined on Γ and

dµ(s) = W(s)ds

a positive probability measure.

We say that an elliptic a-polynomial fn of polynomial degree n is
orthogonal (shortly, an EOP) with respect to µwhen∫

Γ

fn(z)bj(z) dµ(z) = 0, 0 ⩽ j < n.

We fix the notation Fn for the n-th monic EOP.
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Analogous properties to usual orthogonality

The n-th monic orthogonal elliptic a-polynomial Fn exists if, and
only if,

Dn ..= det(µi,j)n−1i,j=0 ̸= 0, µi,j
..=

∫
bi(z)bj(z) dµ(z).

Similarly, fn admits a determinamtal formula

Fn(z) =
1
Dn


µ0,0 µ0,1 · · · µ0,n−1 µ0.n
µ1,0 µ1,1 · · · µ1,n−1 µ1,n
...

... . . . ...
...

µn−1,0 µn−1,1 · · · µn−1,n−1 µn−1,n
b0(z) b1(z) · · · bn−1(z) bn(z)

 .
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Five TermRecurrence Relation

AssumeDn ̸= 0 for all n ⩾ 0 and let fn be the n-th orthonormal
EOP.There exists constants Ak,Bk,Ck ∈ C such that

℘(z)fk(z) = Akfk+2(z)+Bkfk+1(z)+Ckfk(z)+Bk−1fk−1(z)+Ak−2fk−2(z),

where f−1 ≡ f−2 ≡ 0. Moreover,

Ak =
∫
Γ

℘(z)fk(z)fk+2(z)W(z) dz,

Bk =
∫
Γ

℘(z)fk(z)fk+1(z)W(z) dz,

Ck =
∫
Γ

℘(z)fk(z)2W(z) dz.
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Whywe cannot find a three term recurrence

In general we cannot multiply fk by b1, the pole at a can become
of order 2 and, in that case, fkb1 is not an EOP anymore.

The five term recurrence reduces to three termwhen we heavily
restrictW, Γ and a. An analogous phenomena to OPRL with
even weights.
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Christoffel-Darboux Formula

The reproducing Kernel of EOP

Kn(z,w) =
n−1∑
j=0

fj(z)fj(w)

satisfies the CD-like identity

Kn(z,w) = An−1
fn+1(z)fn−1(w) − fn+1(w)fn−1(z)

℘(z) − ℘(w)

+An−2
fn(z)fn−2(2) − fn(2)fn−2(z)

℘(z) − ℘(w)
+Bn−1

fn(z)fn−1(w) − fn(w)fn−1(z)
℘(z) − ℘(w)

.
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EOP and Real Orthogonality

The real locus of T
{z ∈ T; z = z}

has at maximum 2 connected components (Harnack’sTheorem).
It is exactly 2 if, and only if, τ ∈ iR+ = 0, and in this case they
are given by

γ1

γ2

0 1

τ
2

τ
2 + 1

Definitions:
• γ1 = [0, 1);

• γ2 =
[
τ
2 , τ

2 + 1
)
;
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EOP and Real Orthogonality

The analogous case of OPRL in T comes by taking the following
assumptions:

• The orthogonality curve Γ is one of the contours γ1, γ2;

• The point a lies in the set (γ1 ∪ γ2) \ Γ .

Consequences:

• bj is real valued in γ1 ∪ γ2;

• Fn can be obtained by Gram-Schmidt;

• Schwarz identity Fn(s) = Fn(s)
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EOP and Real Orthogonality

Under this assumptions one can prove an Andriéief-type
identity:

Dn =
1
n!

∫
supp µn

(
det

[
bj−1(xi)

]n
i,j=1

)2 n∏
i=1

dµ(xi).

Therefore, since the basis bj is real-valued over γ1 ∪ γ2, the fact
that

µi,j =

∫
Γ

bi(z)bj(z) dµ(z) ∈ R

implies thatDn ̸= 0 and thus the n-th EOP exists.
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Setup of interest

Assumptions:
• a ∈ γ1;

• Γ = γ2;

Γ

0
a

1

τ
2
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Zeroes
Theorem
• When n is odd, then fn has a pole at a, and has exactly n+ 1 simple
zeroes atγ2, that interlace with those of fn+1.;

• When n is even, fn has exactly n simple zeroes atγ2, and a zero atγ1
iff it has a pole at a.

0 2ω1

ω3 ω3 + 2ω1

a

Figure: n = 3. Blue points marks zeros of Fn, the green of Fn+1.
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Decomposition of EOP in
terms of OPRL
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Behavior of ℘ over γ2
TheWeierstrass ℘ function maps γ2 twice over the interval
(e3, e2).

0.2 0.4 0.6 0.8 1.0

-3.296

-3.294

-3.292

-3.290

-3.288

-3.286

-3.284

Figure: Plot of ℘
(
τ
2 + t

)
for τ = 3i

2 .

Let x = ℘(z) for z in the first-half of γ2. Then−z lies in the
second half.

.
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Basis functions in the x variable

b1(z) = −

√∏3
i=1(x − ei) + ℘ ′(a)

2

x − ℘(a)
,

b1(−z) =

√∏3
i=1(x − ei) − ℘ ′(a)

2

x − ℘(a)
,

b2l(z) = xl,

b2l+3(z) = −xl

√√√√ 3∏
i=1

(x − ei).
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General DecompositionTheorem

There exists polynomials p1,n and p2,n such that

Fn(z) = p1,n(x) + b1(z)p2,n(x) +
℘ ′(a)
2

p3,n(x).

where p3,n(x) ..= p2,n(x)−p2,n(℘(a))
x−℘(a) . Let

w±
k (x) ..=

√√√√ 3∏
l=1

(x − el)

k

1
℘(a) − x

W(z)±W(−z)
2

qn(x) ..= p1,n(x)(℘(a) − x) +
℘ ′(a)
2

p2,n(℘(a)).
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Decomposition of EOP in terms of OPRL
Theorem (A.-Martinez-Finkelshtein, 2026)
Let n = 2m+ k, k ∈ {0, 1}. The pair of polynomials pn,2 and qn satisfies
the vector orthogonality relations on the interval [e3, e2]:∫ e2

e3

[
qn(x)w+

−1(x) + pn,2(x)w−
0 (x)

]
xl dx = 0, 0 ⩽ l < m+

k
2

;

∫ e2
e3
[qn(x)w−

0 (x) + pn,2(x)w+
1 (x)] x

l dx = 0, 0 ⩽ l < m− 2;∫ e2
e3
qn(x)

(
w−
0 (x) +

℘ ′(a)
2

w+
−1(x)

)
dx

℘(a) − x
+∫ e2

e3
pn,2(x)

(
w+
1 (x) +

℘ ′(a)
2

w−
0 (x)

)
dx

℘(a) − x
= 0.
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Assuming thatW is even

WhenW is even

w−
k (x) =

√√√√ 3∏
l=1

(x − el)

k

1
℘(a) − x

W(z) −W(−z)
2

= 0

In this case the orthogonality conditions specializes.
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Usual orthogonality whenW is even

Corollary
LetW be an even weight on Γ = γ2. For n = 2m+ k, k ∈ {0, 1},∫ e2

e3
qn(x)xlw+

−1(x) = 0, 0 ⩽ l ⩽ deg qn − 2+ k

∫ e2
e3
pn,2(x)xlw+

1 (x) = 0, 0 ⩽ l ⩽ deg pn,2 − 1− k

Note that for k even, pn,2 is orthogonal and qn is quasi orthogonal.
For k odd, pn,2 is quasi orthogonal and qn is orthogonal.
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Orthogonality whenW is even and a = 1
2

In the case we assume full symmetry ofW and a. We have

F2j(z) = pj(x), F2j+1(z) = b1(z)p̂j(x)

where pj and p̂j is a polynomial of degree j orthogonal with
respect to the weight

w(x) =
W(z)√

(e1 − x)(e2 − x)(x − e3)
,

w̃(x) =

√
(x − e3)(e2 − x)

(e1 − x)3
W(z).

in [e3, e2], respectivelly.



Orthogonal Polynomials Elliptic curves Elliptic Orthogonality Decomposition of EOP in terms of OPRL

Example: EOP coming fromOPRL

Let ℘ be theWeierstrass ℘ function of the torus defined by the
square lattice

Λ = 2ω1Z+2iω1Z, ω1 =
32π

Γ
(
1
4

)4 , e3 = −1 = −e1, e2 = 0.

Denote by P(α,β)
n the n-th monic OP with respect to

w(x) = (1− x)α(1+ x)β, α, β > −1.
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Example: EOP coming fromOPRL
For n = 2j+ k, define:

Fn(s) =
1
2j
P(α,β)
j (2℘(s) + 1), k = 0,

Fn(s) =
1
2j+1

℘ ′(s)
1− ℘(s)[

P(α+1,β+1)
j (2℘(s) + 1) −

λj

λj−1
P(α+1,β+1)
j−1 (2℘(s) + 1)

]
, k = 1.

Where

λn = λn(α, β) =
∫ 1
−1

P(α+1,β+1)
n (x)
3− x

(1− x)α+1(1+ x)β+1 dx.
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EOP coming fromOPRL

Theorem (A.-Martinez-Finkelshtein, 2026)
Fn is the n-th EOPwith a = ω1, with respect to the weight

W(s) = |℘(s)|α+ 1
2 (℘(s) + 1)β+ 1

2 (1− ℘(s))
1
2 > 0, s ∈ Γ .

• This is the first explicit family of a-EOP in literature.
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Open questions

• For general orthogonality in T, can you still find some
information regarding localization of zeros without the real
orthogonality assumption?

In the complex plane, the position of the zeros in the convex hull
comes from the fact that the orthogonal polynomials minimize
the L2 norm in the space of polynomials. This later property is
satisfied for the EOPs by definition (for the appropriate space)

A more general question is what is the convex hull in the torus?



Orthogonal Polynomials Elliptic curves Elliptic Orthogonality Decomposition of EOP in terms of OPRL

Open questions

• Can this be utilized to construct an EOP ensemble in the
torus?

A very important application of orthogonal polynomials is in the
theory of randommatrices, as the OP ensemble describes the
eigenvalues of unitary ensembles over Hermitian matrices.

Can a similar thing be done in the elliptic setup? A
Riemann-Hilbert formulation for these polynomials was
presented by Marco Bertola (and there is a similar construction
for elliptic functions without the pole at a, given by Desiraju et
all).

Asymptotic analysis have already been done by Bertola. Can this
be utilized with the CD-like formula to find anything?
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Open questions

• What about even higher genus?

Most of the arguments of the work can be generalized for
hyperelliptic curves.

• How this relates with other forms of higher genus
orthogonality that appears in recent literature?

In particular in the recent developments concerning the
decomposition of Matrix Valued Orthogonal Polynomials in
terms of scalar orthogonality in higher genus (works of Bertola,
Charlier, Kuijlaars and Duits, for example).

Even in genus 0 you can find different orthogonality types –
Hermite orthogonality becomes Laurent orthogonality, for
example.
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