From Polylogs to Calabi–Yau: Canonical Differential Equations and Intersection Theory
par
Amphithéâtre Léon Motchane
IHES
Seed Seminar of Mathematics and Physics
Winter '26: Flavors of Amplitudes
Feynman integrals whose associated geometries extend beyond the Riemann sphere, such as elliptic and Calabi–Yau geometries, are becoming increasingly relevant in modern precision calculations. They arise not only in collider cross-section computations, but also in gravitational-waves scattering.
A powerful approach to compute such integrals is based on systems of differential equations, in particular when these can be brought into a canonical form, in which their singularity structure is manifest. In this talk, I will show that canonical Feynman integrals do enjoy similar properties, albeit different associated geometries, and I will illustrate how intersection theory can be used to further study and constrain the functions appearing in the amplitudes.
Plus d’informations : https://seedseminar.apps.math.cnrs.fr/program/#february-4-2026
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Matteo D’Achille (LMO)
Aymane El Fardi (EIGSI)
Veronica Fantini (LMO)
Emmanuel Kammerer (CMAP)
Sophie Mutzel (LPENS & CAS)
Junchen Rong (CPhT)
Francesco Russo (CPhT)