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Many applications of two-phase flows to nuclear engineering;

Transient accidental scenarios: fearing CHF;

Prediction requires:

 Accurate modeling of all the intermediate regimes;

 Understanding of local phenomena.

Context

Boiling flows in Nuclear Reactor Safety analysis
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DNS advantages: 

 To access to very local information hardly accessible via experiments:

 Temperature – velocity fluctuations at high pressure;

 Interfacial transfers…

 To understand physical mechanism – to decompose phenomena (one-by-one analysis).

Experiments play a key role in models’ validation at any step. 

 Up-scaling : extract information/closures for averaged models from local simulations

The role of Direct Numerical Simulation
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How does DNS work? 

 Resolving all the interfaces;

 Generally resolving all scales in each phase;

 We restrict our discussion to continuum fluid mechanics;

 One still has to model:

 Wall interactions.

 Coalescence and break-up.

 Nucleation and collapse.

Talk overview:

1. The numerical method

2. Quest for up-scaled models 

The role of Direct Numerical Simulation
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PART 1. 

THE NUMERICAL METHOD: 

FRONT-TRACKING ALGORITHM

|  PAGE 8

CEA | December 2015



OUTLINE

1. Introduction & context

2. Part 1. The numerical method: Front-Tracking algorithm

 Governing equations: The One-fluid formulation

 General algorithm
 Remeshing
 Mass & momentum conservation
 Sharp discontinuities & interfacial source term
 Ghost Fluid Method for phase change

3. Part 2. Quest for up-scaled models 

 Objectives

 Working cases: Bubbly upward turbulent flows

 Averaged analysis 
 Shear stress budget
 Void fraction & velocity profiles

 Two-fluid Model
 Formulation
 Closure relations

4. Conclusion & prospects
BOIS Guillaume | CEA |  PAGE 9



• Local instantaneous description (continuum fluid mechanics)
Navier-Stokes equations: 

𝛻 ⋅ 𝒖𝑘 = 0𝜕𝜌𝑘𝒖𝑘
𝜕𝑡

+ 𝛻 ⋅ 𝜌𝑘𝒖𝑘𝒖𝑘 = −𝛻𝑝𝑘 + 𝜌𝑘𝒈 + 𝛻 ⋅ 𝝉𝑘 with 𝝉𝑘  = 𝜇𝑘 𝛻𝒖𝑘 + 𝛻𝑇𝒖𝑘

Interfacial jump conditions:

 Velocity continuity: 𝑢1
𝑛 = 𝑢2

𝑛 and 𝑢1
𝑡 = 𝑢2

𝑡

 Interfacial normal stress balance:  𝑘 𝑝𝑘𝒏𝒌 − 𝝉𝑘 ⋅ 𝒏𝑘 = −𝜎𝜅𝒏

• Extension to full space 
Multiply by phase indicator function 𝜒𝑘: 1 in phase k, 0 otherwise.

𝜕𝜒𝑘𝜌𝑘𝒖𝑘
𝜕𝑡

+ 𝛻 ⋅ 𝜒𝑘𝜌𝑘𝒖𝑘𝒖𝑘 = −𝛻 𝜒𝑘𝑝𝑘 + 𝜒𝑘𝜌𝑘𝒈 + 𝛻 ⋅ 𝜒𝑘𝜇𝑘 𝛻𝒖𝑘 + 𝛻𝑇𝒖𝑘 − 𝑝𝑘𝒏𝒌 − 𝝉𝑘 ⋅ 𝒏𝑘 ⋅ 𝛻𝜒𝑘

• One-fluid formulation 
Definition of “one-fluid” fields: 𝜙  =  𝑘 𝜒𝑘𝜙𝑘

Adding up and using jump conditions:

𝛻 ⋅ 𝒖 = 0𝜕𝜌𝒖

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝒖𝒖 = −𝛻𝑝 + 𝛻 ⋅ 𝜇 𝛻𝒖 + 𝛻𝑇𝒖 + 𝜎𝜅𝒏 𝛿𝑖

Combined “one-fluid” formulation valid at any point in the sense of distributions

Phase-indicator function 𝜒𝑘 is advected by the local velocity field (mixed VOF/FT algorithm) 

Governing equations

One-fluid formulation (local instantaneous description)
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Vapor : 

𝜒𝑙 = 0 = 1 − 𝜒𝑣

Liquid : 𝜒𝑙 = 1
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1. Mass: 
• Phase incompressibility: 𝛻 ⋅ 𝒖 = 1/𝜌  𝑚𝛿𝑖

• Interfacial transport: 
𝜕𝜒

𝜕𝑡
+ 𝒖𝑖 ⋅ 𝛻𝜒 = 0 with  𝒖𝑖 = 𝒖 −

1

𝜌
 𝑚𝒏𝛿𝑖

2. Momentum:
𝜕𝜌𝒖

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝒖⊗ 𝒖 = −𝛻𝑃 + 𝛻 ⋅ μ𝛻𝒖 + 𝜌𝒈 + 𝜎𝜅𝒏𝛿𝑖

3. Energy:
𝜕𝜌𝑐𝑝𝑇

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝑐𝑝𝒖𝑇 = 𝛻 ⋅ 𝑘𝛻𝑇 + ℒ𝑣𝑎𝑝  𝑚𝛿𝑖

The One-fluid formulation contains the following jump relations…
1. Mass :  𝑚1𝛿

𝑖 +  𝑚2𝛿
𝑖 = 0

2. Momentum :  𝑚𝑘𝒖𝑘 + 𝑝𝑘𝒏𝑘 − 𝝉𝑘 ⋅ 𝒏𝑘 ⋅ 𝛻𝜒𝑘 = −𝜎𝜅𝒏𝛿𝑖

3. Energy : 𝑘𝑘𝛻𝑇𝑘 ⋅ 𝛻𝜒𝑘 =  𝑚ℒ𝑣𝑎𝑝𝛿𝑖

…but the interfacial entropy principle must be supplied to complete the description: 
 Interfacial thermo-dynamic equilibrium : 𝑇 − 𝑇𝑠𝑎𝑡 𝛿𝑖= 0
 Continuity of tangential velocity : 𝑢1

𝑡 = 𝑢2
𝑡

The general method implemented in TrioCFD is able to deal with: 
 Coalescence and break-up;

 Phase change : velocity and temperature gradient discontinuities dealt with Ghost Fluid Method (GFM);

 Contact lines;

 But unfortunately, no periodic boundary conditions for interfaces… 

Periodicity has been implemented in a separated module dedicated to structured Cartesian 

eulerian meshes and parallel efficiency (IJK_FT).

TrioCFD: Front-Tracking algorithm

One-fluid formulation (with phase-change)
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• Time-stepping: 
Fully coupled fractional time-step algorithm (3rd order, Runge-Kutta low storage)

For the 3 sub-steps of each time step : 

1. Update the marker’s position (Interfacial transport): 𝒙⋆ = 𝑓(𝒙𝑛, 𝒖𝑛, Δ𝑡)

2. Remeshing* and mass preserving* algorithms: 𝒙𝑛+1 = 𝑔(𝒙⋆)

3. Update the new phase indicator function : 𝜒𝑛+1 = ℎ(𝒙𝑛+1)

4. Update physical properties : 𝜌𝑛+1 = 𝜌(𝜒𝑛+1) and 𝜇𝑛+1 = 𝜇 𝜒𝑛+1

5. Velocity prediction : 
𝜌𝑛+1𝒖⋆−𝝆𝒏𝒖n

Δ𝑡
= 𝑭𝑛 𝑭𝑛 = −𝛻 ⋅ 𝜌𝒖𝒖 + 𝛻 ⋅ μ𝛻𝒖 + 𝑆𝑖∗

6. Pressure projection : 𝛻 ⋅
1

𝜌𝑛
𝛻𝑃𝑛+1 =

𝛻⋅𝒖⋆

Δ𝑡

7. Velocity correction : 𝒖𝑛+1= 𝒖𝑛 −
1

Δ𝑡
𝛻𝑃𝑛+1

𝑓 and 𝑔 are the keys of the method. They represent interpolations of the velocity field 

and all the tricky functions to preserve the mesh qualities, the volumes of each phases… 

We use the MAC discretization and the density and viscosity are interpolated to faces 

using a simple arithmetic mean.

*detailed afterward

------- actual beginning of a timestep

TrioCFD: Front-Tracking algorithm

General algorithm

| PAGE 12
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TrioCFD: Front-Tracking algorithm

Remeshing algorithm
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Remeshing is compulsory to keep a good description of the interface;

Markers’ density : 
 High ⇒ accurate prediction of interfacial area, forces…

 But lower than the eulerian mesh ⇒ unstable if too many dof…

 … unless interface smoothing FTIS (A. Toutant & al, 2012) is used.
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Size of elements (« facteur_longueur_ideal »)

 Too long edge (blue) 

/ element addition (red):

 Too short edge (blue) 

/ element deletion (red): 

Rebalancing (« barycentrage »):

Smoothing of the interface (« lissage »):

(conservative mass/volume redistribution)

(equivalent to a 4th order space-filter)

Iterative procedure.

TrioCFD: Front-Tracking algorithm

Remeshing algorithm
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The density is a function of the markers’ positions. 

The advection scheme of the markers is not “consistent” with the equation for mass:
𝜕𝜌

𝜕𝑡
= 𝛻 ⋅ 𝜌𝒖 ⇒

𝜕

𝜕𝑡
 Ω 𝜌𝑑𝑣 =  𝜕Ω 𝜌𝒖 ⋅ 𝒏 ds (not verified by FT)

Instead we have:  
𝜕

𝜕𝑡
 Ω 𝜌𝑑𝑣 = 𝑓

𝜕𝒙𝑖

𝜕𝑡
≠  𝜕Ω𝜌𝒖 ⋅ 𝒏ds

Hence, mass preservation is different from momentum and energy preservation.

The volume variation through the transport equation is computed for each bubble… (step 1)

… and corrected (step 2) with an iterative procedure because: 

TrioCFD: Front-Tracking algorithm

Semi-local mass conservation

PAGE 15

Step 1: Transport by interpolated 

velocity (not conservative)

Step 2: Correction moving the markers 

along the normal direction
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There are 2 reasons for the non-conservation of momentum : 

 The volumetric discretization of the surface tension source term is not strictly conservative :  𝑆𝑖𝑑𝑠 ≠ 0

 The density used in the velocity’s prediction and projection steps : 

 Velocity prediction:  
𝒖⋆−𝒖𝑛

Δ𝑡
= 𝑭𝑛 ⟹ 𝒖⋆ ≈ 𝒖𝑛 + Δ𝑡𝑭𝑛 with 𝑭𝑛= − 𝜌𝑛𝛻 ⋅ 𝒖𝒖 𝒏 + 𝛻 ⋅ 𝜇𝑛𝛻𝒖𝑛 + 𝑆𝑖

 Velocity correction: 𝒖𝑛+1= 𝒖⋆ −Δ𝑡
1

 𝜌𝑛
𝛻𝑃𝑛+1

Where P comes from the pressure projection : 𝛻 ⋅
1

 𝜌𝑛
𝛻𝑃𝑛+1 =

𝛻⋅𝒖⋆

Δ𝑡

Cell-to-face interpolation of the density (discontinuous) is required… not very accurate. 

The density at different timesteps could be used in a conservative formulation of the non-linear term.

To the best of our knowledge:

 no LS or FT algorithm preserves momentum to the computer accuracy;

 There is no clear recommendation in the literature on the best formulation.

So far, the conservation of momentum has been accurate enough in most cases.

TrioCFD: Front-Tracking algorithm

Momentum: Conservation
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First order interpolation of the MAC velocity;

The resulting marker velocity is then modified to 

eliminate the tangential motion of markers (based 

on the mean velocity of connected markers) in 

order to limit the need for remeshing algorithms (in 

particular barycentring)

Inter-mesh communication

Phase indicator function and velocity interpolation
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Geometric computation of the phase 

indicator function based on the Front 

position.

In contrast with other codes or methods, 

the sharp phase indicator function is used 

without smoothing.
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Inter-mesh communication
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Interfacial source term

The surface tension force is computed along with the gravity as a potential: 

−𝛻𝑃 + 𝜌𝒈 = −𝛻 𝑃 − 𝜌𝒈 ⋅ 𝒙 − Δ𝜌𝒈 ⋅ 𝒙 𝛻𝜒
The interfacial potential 𝜙 (computed at the front markers) is defined by:

𝜙 = 𝜎𝜅 − Δ𝜌𝒈 ⋅ 𝒙 − 𝜙𝑟 ⇒ 𝐹𝑖 = 𝜙𝛻𝜒𝑙
𝑃𝑛𝑢𝑚 = 𝑃 − 𝜌𝒈 ⋅ 𝒙

 Discrete curvature : surface over volume differential :  𝜅 = −
𝒏𝑠⋅𝑛𝑣

𝒏𝑣⋅𝒏𝑣
(such that a minimal potential energy

can be achieved with a given pressure field and a zero velocity field: no spurious currents).

 The marker position

 A possible repellant potential numerically fitted and computed from the markers from other entities.

The interfacial force is then computed on the fixed grid:



Velocity: build a continuous field for the interfacial velocity (markers’ transport).

Extend away from the interface using an

eulerian field for the normal to the interface:

TrioCFD: Front-Tracking algorithm

Ghost Fluid method (for the interfacial velocity)
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Temperature: 

 Continuous extension 𝐶1 of the liquid temperature into the vapor;

 Ensure 𝑇𝑖 = 𝑇𝑠𝑎𝑡;

 Evaluate the phase-change rate accurately from the gradient of the liquid temperature.

Algorithm:

1. Compute the normal liquid temperature gradient at the interface;

2. Determine the ghost temperature;

3. Compute the phase-change rate

TrioCFD: Front-Tracking algorithm

Ghost Fluid method (for the temperature)
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• Some advantages of the FT: 
Accuracy;

Capacity to deal with jumps conditions very locally

(without smoothing or smearing of density jumps or interfacial forces);

Control over the coalescence and break-up phenomena 

(criteria not necessarily equal to one mesh size);

Capability to deal with surfactants and variable surface tension or saturation temperature 

(towards more complex physics or more accurate descriptions);

Offers nice possibilities to introduce sub-grid models. 

• Some drawbacks or technical issues: 
Heavy implementation (especially for 3D parallel computations);

Periodic boundary conditions hard to treat;

Remeshing & control of lagrangian mesh quality;

Convergence of the pressure solver for highly discontinuous fluids or high interfacial forces 

(if no smoothing of forces and properties are used);

Computational cost? It is generally hard to compare different codes and what is the same 

accuracy (not necessarily the same resolution).

TrioCFD: Front-Tracking algorithm

Summary
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PART 2. 

QUEST FOR UP-SCALED MODELS
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2-phase RANS CFD modelling of bubbly flows:

 The only practical tool able to deal with industrial applications (high Reynolds number, complex geometry);

 Strong modeling and validation efforts were made;

 Further progress is now limited by the lack of precise knowledge of local phenomena:  interfaces & 

turbulence interactions… ⇒ Related to limited measurement techniques;

Our proposal: 

 To use DNS as “numerical experiments” in reactor core conditions;

 To analyze DNS results to improve modeling of 2-phase RANS CFD. 

Working test case: plane channel – turbulent bubbly flow.

Objectives 

|  PAGE 25
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Back to the most simple two-phase physics: 

 No phase-change;

 Constant physical properties;

 No coalescence.

Bubbles in a turbulent flow: 

 Study the mechanical equilibrium;

 Momentum analysis;

 Interfacial momentum exchange terms.

Two studies: 

 Water & Steam in PWR conditions (155 bars)

⇒ Very high fluctuations, relative velocities and 

void fraction.

 Lu & Tryggvason (Physics of Fluids, 20,  2008). 

⇒ Code benchmark for validation;

⇒ Additional statistical analysis.

Local scale

Working cases: upward turbulent bubbly flows (1/2)
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WS155 LT2008

S D

𝑅𝑒𝜏 = 𝑢𝜏ℎ/𝜈𝑙 180 127

𝐸𝑜 = 𝜌𝑔𝑑2/𝜎 1 0.45 4.5

𝛼𝑣 (%) 10 3

𝐷𝑏/ℎ 0.2 0.3

𝑁𝑏 936 21

Size (/ℎ) 2𝜋 × 2 × 𝜋 𝜋 × 2 × 𝜋/2

Resolution

(uniform)

396 × 1152 × 192

≈ 87.6Mons

256 × 192 × 128

≈ 6.2Mons

Mesh size

(in wall-unit)

1w. u. = ℎ/𝑅𝑒𝜏

0.3 to 3 w.u. 1.3 to 1.6 w.u.

Fluid Pressurized 

Water & steam

Fictitious

Gravity 9.81 0.1

Goal Push boundaries

towards industrial 

configurations 

Validation &

tractable 

computations
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• Numerical method:
Mixed Front-Tracking/VOF method implemented in TRUST_IJK;

Discretization: 3rd order in time (RK3) and 4th order in space 

Optimized use of cache memory 

(Multi-grid solver and high efficiency operators).

• Steady-state control:
Flow-rate: fluctuating momentum source term

𝜕𝑆𝑥
𝑓

𝜕𝑡
=

𝜔0

ℎ
𝜏0 − 𝜏𝑤 or 𝑆𝑥

𝑓
= 𝜌 𝑔 +

𝜏𝑤

ℎ
= cste

To reach a statistical steady-state, coalescence and wall-contact are not considered

 Nothing specific was needed for the moderate Reynolds number cases (LT2008);

 For the higher Reynolds number and strong gravitational case (WS155),  

small artificial repellant forces were required: 

𝑭𝑟 = 𝜙𝑟𝛻𝜒𝑙 with 𝜙𝑟 = max 𝐼𝑟
𝛿𝑟−𝑑𝑚𝑖𝑛

𝛿𝑟
, 0

Local scale

Working cases: upward turbulent bubbly flows (2/2)
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Wall friction: expected                   instantaneous measurement 

Relaxation parameter

𝝓𝑟𝐼𝑟
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Local scale

Observations & averaging
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LT2008_Sphe LT2008_DefoWS155

On-the-fly computation of (xz)-plane (and time) average: 

 void fraction, pressures and velocities;

 Correlations, interfacial area, mean curvature… 

No clear behavior

Very high fluctuations and 

relative velocities

Wall-peaking

Horizontal bubble clustering

Homogeneous core distribution

Increased pseudo-turbulence

Lift

Lift

Averaging plane
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Very good agreements; 

Small discrepancies can reasonably be attributed to:

 Higher statistical convergence of our results (longer time);

 Small differences in lagrangian mesh management;

 Discontinuous properties and sharp interfacial force treatment;

 Uniform vs. non-uniform eulerian mesh.

Averaged scale

Code validation
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Averaged scale

Velocity profiles
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In order to understand the global behavior of the flow, we take the average of the “one-fluid” 

formulation to assess the balance of forces in the channel;

Integrating with respect to the wall-normal coordinate, we get the budget for shear-stress.

 Streamwise:
−𝜌𝑢𝑣 + 𝜇

𝜕𝑢

𝜕𝑦
+ 

0

𝑦

𝜎𝜅𝑛𝑥𝑣𝛿
𝑖𝑑𝑦′ + Δ𝜌𝑔 

0

𝑦

𝛼 − 𝛼 𝑑𝑦′ = 𝜏𝑤0 1 −
𝑦

ℎ

 Wall-normal:
−𝜌𝑣𝑣 + 𝜇

𝜕𝑣

𝜕𝑦
−  𝑃 −  𝑃𝑤𝑎𝑙𝑙 + 

0

𝑦

𝜎𝜅𝑛𝑦𝑣𝛿
𝑖𝑑𝑦′ = 0

In incompressible single-phase flow, the streamwise budget for shear-stress simply reduce to 

the simplified equilibrium between turbulent and laminar shear:

−𝜌𝑢𝑣 + 𝜇
𝜕𝑢

𝜕𝑦
= 𝜏𝑤0 1 −

𝑦

ℎ

Averaged scale

Mechanistic analysis: mixture budget for shear stress (1/2)
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J. Kim, P. Moin, and R. Moser,

J. Fluid Mech. 177, 133–166 (1987).

Viscous

Turbulent
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Averaged scale

Mechanistic analysis: mixture budget for shear stress (2/2)
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𝜕𝜌𝑘𝒖𝑘
𝜕𝑡

+ 𝛻 ⋅ 𝜌𝑘𝒖𝑘𝒖𝑘 = −𝛻𝑝𝑘 + 𝜌𝑘𝒈 + 𝛻 ⋅ 𝝉𝑘 with 𝝉𝑘  = 𝜇𝑘 𝛻𝒖𝑘 + 𝛻𝑇𝒖𝑘

d 𝜕𝛼𝑘𝜌𝑘 𝒖𝑘
𝑘

𝜕𝑡
+ 𝛻 ⋅ 𝛼𝑘𝜌𝑘  𝒖𝑘

𝑘 𝒖𝑘
𝑘 + 𝑹𝑖𝑗

𝑘 = −𝛻 𝛼𝑘  𝑝𝑘
𝑘 + 𝛼𝑘𝜌𝑘𝒈 + 𝛻 ⋅ 𝛼𝑘 𝝉𝑘

𝑘 − 𝑝𝑘𝒏𝒌 − 𝝉𝑘 ⋅ 𝒏𝑘 ⋅ 𝛻𝜒𝑘

 “Two-fluid” fields: 𝜙𝑘
𝑘
 =

𝜒𝑘𝜙𝑘

𝜒𝑘
(weighted average by the phase indicator)

 Void fraction: 𝛼𝑣 = 𝜒𝑣
 Fluctuating velocities : 𝒖𝑘

′ = 𝒖𝑘 −  𝒖𝑘
𝑘

Constitutive equations on 𝑹𝑖𝑗
𝑘 and 𝑴𝑘 are required to close the system.

• One-fluid versus two-fluid
One-fluid formulation: 

 Interface tracking method : discontinuous fields;

 Description of interfacial transfers.

Two-fluid formulation:

 RANS models : “interpenetrating media” approach, local coexistence of both phases; 

 Modelling non-linearities: turbulence and interfacial transfer (Generalized drag force).

Two-fluid model

Formulation (averaged description) (1/2)
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Correlation between fluctuations, Reynolds stresses : 𝑹𝑖𝑗
𝑘 = 𝑢𝑖

′𝑢𝑗
′𝑘

Momentum interfacial

transfer defined from

local fields: 

𝑴𝑙 = 𝑴𝑙 𝜒, 𝑢, 𝑝

× 𝜒𝑘
+ averaging
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 𝑢𝑙 and  𝑢𝑣 are solved by two coupled averaged momentum equations (for each 𝑘 = 𝑙, 𝑣 ):

 Exact:    
𝜕𝜌𝑙𝛼𝑙 𝒖

𝑙

𝜕𝑡
+ conv/diff − 𝛼𝑙𝜌𝑙𝒈 = −𝛼𝑙𝛻  𝑝𝑙 −  𝑝𝑙𝛻𝛼𝑙 +𝑴𝑙 − 𝛻 ⋅ 𝛼𝑙𝜌𝑙 𝑹𝑖𝑗

𝑙

(liquid)

 Approx.: ≈ −𝛼𝑙𝛻  𝑝𝑙 −  𝑝𝑙 −  𝑝𝑙𝑖
𝑙 𝛻𝛼𝑙 + 𝑰𝑙/𝑣 −𝛻 ⋅ 𝛼𝑙𝜌𝑙  𝑹𝑖𝑗

𝑙

2 closure relations required (3 if pressure differences are considered).

Focus on interfacial transfer (dominant, at least in our cases). 

Standard assumption of the one-pressure two-fluid model: 

 Surface tension effects are neglected;

 Single pressure hypothesis.

⇒ Full transmission of momentum from liquid to vapor (locally and instantaneously):

𝑴𝑖𝑙 +𝑴𝑖𝑣 = 𝑴𝜎 +  𝑝𝑙
𝑙 −  𝑝𝑣

𝑣 𝛻𝛼𝑙 ≈ 0

Two-fluid model

Formulation (averaged description) (2/2)
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Liquid Reynolds stresses : 

𝑹𝑖𝑗
𝑙 = 𝑢𝑖

′𝑢𝑗
′𝑙

Momentum interfacial transfer

defined from local fields: 

𝑴𝑙 = 𝑴𝑙 𝜒, 𝑢, 𝑝

Exacts

Solution of  approx. 

PDEs:  𝑹𝑖𝑗
𝑙 , 𝜀Algebraic relations:

𝐼𝑙/𝑣 is a model for: 𝑴𝑖𝑙 =  𝑝𝑙𝛻𝛼𝑙 +𝑴𝑙

𝑴𝑖𝑙 : Generalized drag force

(drag, lift, wall lubrication, turbulent dispersion)

Neglected
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Standard assumption of the one-pressure two-fluid model: 

⇒ Full transmission of momentum from liquid to vapor:

𝑴𝑖𝑙 +𝑴𝑖𝑣 = 𝑴𝜎 +  𝑝𝑙
𝑙 −  𝑝𝑣

𝑣 𝛻𝛼𝑙 ≈ 0 with 𝑴𝑖𝑘 = 𝑴𝑘 +  𝑝𝑘
𝑘𝛻𝛼𝑘

From the local point-of-view…
𝜕𝛼𝑘𝜌𝑘 𝒖𝑘

𝑘

𝜕𝑡
+ 𝛻 ⋅ 𝛼𝑘𝜌𝑘  𝒖𝑘

𝑘 𝒖𝑘
𝑘 + 𝑹𝑖𝑗

𝑘 + 𝛻 𝛼𝑘  𝑝𝑘
𝑘 − 𝛼𝑘𝜌𝑘𝒈 − 𝛻 ⋅ 𝛼𝑘 𝝉𝑘

𝑘

Computed from DNS for 𝑘 ∈ 𝑙,𝑣

= − 𝑝𝑘𝒏𝒌 − 𝝉𝑘 ⋅ 𝒏𝑘 ⋅ 𝛻𝜒𝑘
𝑴𝒌 deduced from balance

 Streamwise: 𝑀𝜎𝑥 is important near the wall where 𝑀𝑖𝑣𝑥 ≠ −𝑀𝑖𝑙𝑥 (  𝑝𝑙
𝑙 −  𝑝𝑣

𝑣 𝛻𝛼𝑙=0);

 Wall-normal: 𝑀𝜎𝑦 is the highest followed by 𝑀𝑖𝑣𝑦 (spherical: 𝑀𝑖𝑙𝑦 ≈ 0; deformable: 𝑀𝑖𝑣𝑦 ≈ 𝑀𝑖𝑙𝑦 ≈ 0.5 𝑀𝜎𝑦

and  𝑝𝑙
𝑙 −  𝑝𝑣

𝑣 𝛻𝛼𝑙 negligible)

⇒ Assumption discarded by DNS results: improved modeling of surface tension required

Two-fluid model

Closure relations (interfacial momentum transfer)

Spherical WS155Deformable
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Two-fluid model

Closure relations (interfacial momentum transfer)
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• Conclusion
Validation of code capabilities by a benchmark with the renown work of Lu & Tryggvason.

DNS of bubbly flow in conditions close to reactor core was achieved;

Upscaling process to 2-phase RANS CFD model;

Main findings:

 Dominant role of the interfacial forces on the flow (models for momentum transfers) over turbulence closure;

 Some basic assumptions questioned: 

 Surface tension and pressure jump are assumed negligible;

 A new model seems necessary;

• Prospects
Look for means of introducing surface tension (and pressure difference) in averaged 

descriptions (a sort of macroscopic Young-Laplace equation and a transport equation);

Evaluate the impact of modified models on averaged to 2-phase RANS CFD calculations.

Other flow conditions (parametric studies on Reynolds number, void fraction and bubble size);

Heavy computational resources required ⇒ work on LES modeling and its validation;

ISS : Interfaces and Subgrid Scales model, 

A. Toutant et al., International Journal of Multiphase Flow 35 (2009) 1100–1118

Conclusion & Prospects
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DNS is too expensive to be used in parametric studies or at high Reynolds numbers;

Single-phase LES has been very useful but what should be done close to interfaces?

 Interfaces and Subgrid Scale modeling (ISS, Toutant 2006, Bois 2011)

Prospects

Interfaces and Sub-grid Scale modeling
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Questions? 
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on 576 processors
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