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The big picture

Resurgence properties of the topological string amplitudes on
(compact one parameter) Calabi-Yau manifolds are strongly related
to BPS states counting. .
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Topological string and boundary conditions

e Resurgence

Numerical results



One parameter Calabi-Yau 3-fold and Mirror symmetry

X'is a Calabi-Yau 3-fold : 3! non vanishing (3,0) closed form Q.
X can be “deformed” in 2 ways :

e Deformation of the Kihler metric : hY1(X) moduli parameters.

e Deformation of the complex structure : h**(X) moduli parameters.
Mirror symmetry : there exist a Calabi-Yau manifold X* such that

° hl"l(X*) — h2"1(X)

o h2H(X*) = AbY(X)

The two deformations are exchanged.
One parameter Calabi-Yau : h%1(X*) = hb1(X) = 1.



Period geometry on the mirror

Let z' be the complex deformation parameters of X*.
A central role is played by the periods of Q(z),

X@)= [ 2@, P@=[ 2, (1)

JA JB!

defined with regard to a symplectic basis of H3(X*,Z),
ANA;=B'nB’=0, ANB’=-B’nA =4. (2)
In the following, we will organize the periods in a period vector
n=(pP,X". (3)

eiK:I'/Q/\S:Z, C;jk:/Q/\G;@j@kQ, I.,j,k:]......,hl’l(X),



Period geometry on the mirror

We specify the study to the so called one parameter hypergeometric
Calabi-Yau manifold where the period on X* satisfy a Pichard-Fuchs
differential equation.
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z =0 : Large Radius point ( X goes to infinite volume)
z = p : Conifold point, a cycle of X* goes to zero size.



Period geometry on the mirror

z = o classification depending on the exponents

[ (21, dp, az, 34) = (3, b, G d) R—points, X5, X@, Xg, Xlo, X473 and X6,4.

o (a1,a,a3,a1) = (a,b, b, c): C-points, Xq2, X2 and X32..

(a1, a2, a3,a1) = (a,a, b, b) : K-points , X33, Xs4, and X .

o (a1,ay,a3,a4) = (a,a,a,a) : M-points, X22.2.



Period geometry on the mirror

Non trivial monodromy M, around singular points (pt = 0, 41, 00).

At z = 0 ne can find a special basis of solution for which the
monodromies are integral, i.e M, € Sp(4,7Z). This is the large radius
basis M = (P;, X'). A cycle v in H3(X*,Z) is represented by its charge
vectors q.

/QZQ'”:(QOP0+Q1P1+Q2XO+Q3X1) (7)
Y

where q = (o, 41, 42, 4s) are DsDsDoD; charges.
Orbits of a charge q, {MX q} are important.

For some models, very simple monodromy for example : mondromy
group of Xjo around z = oo is Zig i.e M0 = 1.



Special periods at z = ©

We associate a BPS state to a cycle in Hj.

Expanding in the Large radius basis M = (P;, X'). We have the mass
formula

M(q) =e"/*q-n (8)

For certain model can build a 2 dimensional lattice of massless periods
7Zq1 + Zqy (relates to number theory).

e for R-points : Xs, Xs 3 and Xg 4 i.e for X453 q1 = (1,0,0,—-2), q2 =
(1,1,-3,1).

o All K-points i.e for X35 q1 = (1,0,0,-3), g2 = (1,1, -3, 1).
On this subspace M, acts as Z, (n=3 for X3 3).

e All C-points i.e for X» q1 = (2,1,—4,0), g» = (1,0,0, —1).



BPS states counting

Around z = 0, we can compute the BPS invariant associated to the
charge q, Q(q, 2).
[2023, Alexandrov, Pioline, Klemm, Feyzbakhshf , Schimannek]

Known for q of the form (£1, g2, g3, ga)(rank 1) and of the form
(07 q2, g3, Q4)

For q = (0,0, m, d), Q(q,z = 0) = n¢, genus 0 GV invariant.

For g =(1,0,0,0), Q(q,z=10) =1.



Topological A and B model

Non-linear sigma model on X (Calabi-Yau metric g;; and coordinates ®")
S(Xz) = / g,-jé(f)"@q?—kfermionic. (9)
JXg
Make the theory topological (independent of world-sheet metric) by

twisting : lead to two models, A and B.

e A-model : space of marginal deformation of the theory = space of
Kahler deformation of X.

e B-model : space of marginal deformation of the theory = space of
complex structure deformation of X.

From mirror symmetry : A model on X = B model on X*.



Holomorphic anomaly equation

Let z be a deformation parameter of the theory. One deform the action
by adding marginal operator to the action

Slz,Z]=S+2'0;+ Z 0. (10)

Topological amplitudes

Fu(z.2) = [ [ Do, ui0frTes, (1)
M, -
Satisfies an holomorphic anomaly equations
1 . g1
8,;Fg = EC}(J[D,'DJ'Fg,;rFZ D,‘FrDng,r], D;Fg = (8,-+(2g72)8,-K)Fg.
r=1

(12)
Fg can be computed up to an holomorphic ambiguity f,.
Associated with Boundary conditions : can solve for F, to high genus (up
to 64 for Xs). [2006, Huang, Klemm, Quackenbush]



Frame, Boundary conditions

An holomorphic limit of Fz(z,Z) — F,(X!) is specified by a choice of
A-period (X!).
At z =0, i : universal behavior of F, in certain frames.

e z =0 : Gopakumar-Vafa formula, in the large radius frame specified
by the A periods (X).

2g—2

—1)&71B, (27i)Y/?
F (X% X)) = o £ .
(X5, X0) d;:m o 2g(2g —2) \ dX! + mXO o (13)

(d, m) are Dy, Dy charges.
e z = : the period Py goes to 0 at this point, in the frame (Pp, X1)
we have the singular “gap” behavior

2g—2

_1)e-1 wi)1/2
Fg(Po, X1) = (2g1()2g B22)g <(2 P()) ) + regular. (14)




Resurgence in a nutshell

From Boundary conditions F; ~ (2g —2)l. F=3__Fg 262 js
asymptotic.

Borel transform

Fe 2g—2 54 Ff‘l
B[F](C):Egzmc N—E(C7A+L0g(C—A)B[FA(C—A)])
(15)
Fa(gs) =) Flgl. (16)
n>0

A = Borel singularity.
5S4 =Stokes Constant.
(A, S4)= Resurgence data.

FA can be computed in term of Fg using an operator formalism.
[2023, Gu, Kashani-Poor, Klemm, Marino]



Resurgence in a nut-shell

Borel re-summation provides a family of well defined functions (i.e non
perturbative) whose expansion around g5 = 0 equal to F

S fl e Xe*X/gs
0(F) = — / BIF](x)e /. (17)

Discontinuity when 6 = Arg(.Ap)

DiSCArg(AO)(F) = 5Arg(.Ao)+(F) — 5Arg(Ao)* (F)

g LA —LAo/gs
= |S.A05Arg(.,40)* E Fn Ogsne v/
n>—1,0>0



Resurgence data of F from boundary conditions

Asymptotics of Fz from resurgence data

A
SA {FA1+ fe' A

~ — | -
Fe~ (26 =2)! < A2-1 28 -2

+. (18)

From boundary conditions one can can reads off some of the resurgence
dataatz=0and z=p, (¢ € N)

e at z=10, A = N{(dX + mX°), Sp.4.m = n§ = Q((0,0,m, d),z=0)
e at z=p, LA=RPy, Sy =1=Q(Py,z=0).

Resurgence data at z = 0, v is of the form
(Neq - M,Q2(q,z =0)). (19)
Hypothesis : For any z the resurgence data is of the form
(Neq - M,Q(q, 2)). (20)

And if Sq # Q(q,z = 0) it is because of wall-crossing.



e What about z =00 ?

e What about the resurgence of

2g—2

reg __ (71)gilB g (27Tf)1/2
fo =Fe - 2g(2g—2‘2)< Po ) S

atz=p7?

= no analytical control for most models : need to use numerics.



Numerical tools to extract Resurgence Data

, . . P, (g .
Padé approximation : B[F] ~ oi((ii' Pg, Qg polynomial.
Roots of Qg accumulate around line starting at A.
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Figure 1: Example of Borel plane for Xs around z = p (left) and around

z = oo (right).



Numerical tools to extract resurgence data

From asymptotic

-1

or ((2g —2)IFA (28 — 3)!IF
sun < ok ) R (@)
when A is leading (i.e smallest singularity).
S~ —ieA/s DiCarsA(F) (23)

Engq Filegr

Discy is computed numerically from the residue of the Padé
approximation. Removing contribution of singularity

S Fs* A
_ _ |

A

+..l. (24)



Numerical results : Xg
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Figure 2: Borel plane of Xs at z = 10* in the frame (q1, (0,1, 7170)). The
(light) blue points are orbits of (—)XPy under Mo, the (light) green points of
(—)RX®, the (gray) black points of (—)XX*.



Numerical results : Xg

e The massless periods are not Borel singularities i.e S4 = 0 but at
z=0, Q(q,z=0) = 0 so not stable at z =0 and not stable at
z = 00 as well.

e Monodromy invariance : if q - I is a singularity then MX (q) - I is.

e Stokes constant of orbits of X°, Py and X! are equal to
Q(X°/Py/ X1,z = 0).

20



Numerical results : X,

20
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Figure 3: Borel plane of X in the frame (Po,Xl) at z = 10%/. On the right,
the leading singularities are subtracted. Blue dots indicate orbit elements of
NPy under Mo, green dots orbit elements of NXO.

Stokes constant of orbits of X%, Py and X! are equal to Q(Py/X°, z = 0).
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Numerical results : X, 3
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Figure 4: Borel plane of Xi3 at z = 10% in the frame (qi,(0,1,—2,0)). On
the right, the leading singularities are subtracted. The (light) blue dots indicate
the orbit elements of Rq1 - I (—Xqy - M) under the monodromy M., the (light)
green dots the orbit elements of X(q1 — q2) - M (NX(g2 — q1) - M).

Sman = 27 = Q(q1, z = 0).
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Numerical results : X, 4
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Figure 5: Borel plane of X4 4 at z = 106,u in the frame (g1 - M, Py). On the
right, the leading singularities are subtracted. The blue dots indicate the orbit
elements of Rq1 - M (—q1 =q1 - I\/Igo) under the monodromy M., the green
dots the orbit elements of X(q: — q2) - .

SM’;cfh = 1408 = Q(ql,z = 0) SM&(qlJrqz) = 0984 7& Q(ql + o,z = 0)

Wall crossing 7 =



C-point : analytical behaviour

For those models : lattice of vanishing periods Zq; + Zq>.
In a A-frame containing q - [1.z. we have the following behaviour of F,

for X4 and Xgo

—1)e71B,, ((2mi)/2\ 2
= (=1) = 2 ((2mi) + regular, (25)
2g(2¢ —2) \a1-Mir

with S =2 for X3 and S =1 for Xg». = A=Nlq; - Mg, S =S.
No more singular terms = Sq, = 0, coherent with the fact that for the
two models (qz,z = 0) = 0, no wall crossing. Also verified numerically.

24



Wall-crossing around conifold point
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Figure 6: Borel plane of X5 in the frame (Po, X') upon removing the leading

gap singularity, at z = 1.3p on the right, z = 0.7p on the left . (Light) blue

dots : (—)R{X?, Py — X% X', X'+ X% X' — X°}. At z = 0.7y there is no

red points associated to #(Py — X°) (number 1). At z = 1.3u we have enough
precision to identify R(X* + X°) and R(X* — X©). 28



Wall-crossing around conifold point

Decay of X0 — Py = v1 4+ 72, 71 = X0, 72 = —P.
Qi +72,47)=0.

Q1 +72,47) = QU +2,07) = (—1)<71’A’2>_1|<71-, ¥2) |71, )2, 1)
(27)
:>Q(X07 PO?/'L+) :Q(Xovu)v (28)

verified numerically for almost all model.
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Conclusion and questions

Numerical evidence for our hypothesis :
For any z the resurgence data is of the form

(Rlq - Mg, Q(q, 2)). (29)

And if Q(q,z) = 5q # Q(q,z = 0) it is because of wall-crossing.
e Can we get those results analytically 7

Are all BPS states present in the resurgence data ? Or only a

“topological " sub-sector ?

Importance of choice of frame

27



