

A Topological Recursion Algorithm for WKB Solutions

Irene Ren

IMJ-PRG/IHES

17 Dec 2025

Eynard–Orantin Topological Recursion

- Framework that recursively computes a set of invariants from a small set of initial data known as a spectral curve.
- First by E-O in 2007, universal structure governing the large N asymptotic expansion of matrix models.
- Correlation functions of the matrix model, when expanded in powers of $1/N^2$, could be computed universally and recursively. The expansion of the correlation function $F = \sum_{g=0}^{\infty} N^{2-2g} F_g$ was interpreted as a sum over the genus of Riemann surfaces.

Eynard–Orantin Topological Recursion

- Input: spectral curve (compact Riemann surface) Σ and $\omega_{0,2}$ and $\omega_{0,1}$
- Output: meromorphic n -forms $\omega_{g,n}$ on Σ^n for $2g - 2 + n > 0$.
- Mirzaknani's recursion formula for Weil-Peterson volume forms.
- Enumerative geometry: Gromov-Witten invariants, Hurwitz numbers...

$$\omega_{g,n+1}(z_0, z_I) = \sum_{a \in \text{Ram}(x)} \text{Res}_{z \rightarrow a} K(z_0, z) \left(\omega_{g-1,n+2}(z, \sigma(z), z_I) + \sum'_{\substack{h+h'=g \\ I \sqcup J=I}} \omega_{h,|I|+1}(z, z_I) \omega_{h',|J|+1}(\sigma(z), z_J) \right) \quad (1)$$

Airy Structures

- An Airy structure (Kontsevich–Soibelman) is a family of at most quadratic operators $\{H_i\}$ satisfying relations

$$[H_i, H_j] = \hbar \sum_k f_{ij}^k H_k.$$

- One seeks a partition function

$$Z = \exp \left(\sum_{g \geq 0} \hbar^{g-1} F_g \right)$$

such that $H_i Z = 0$ for all i .

- Z is uniquely determined and encodes TR invariants of a spectral curve.
- Deformation of spectral curves gives residue constraints, which produce the A, B, C, ε tensors.

Part II: Context and Goal

- In this part, we study WKB solutions of differential operators

$$P(x, \hbar \partial_x; \hbar) \in \mathbb{C}[x][\hbar \partial_x][[\hbar]].$$

- We assume that the associated spectral curve has only simple ramification.
- Goal: construct a formal WKB solution of $P\psi = 0$ using a topological recursion algorithm.

Spectral Curves from Differential Operators

- Write

$$P(x, \hbar \partial_x; \hbar) = \sum_{i \geq 0} \hbar^i \sum_{j, k \geq 0} P_{ijk} x^j (\hbar \partial_x)^k. \quad (2)$$

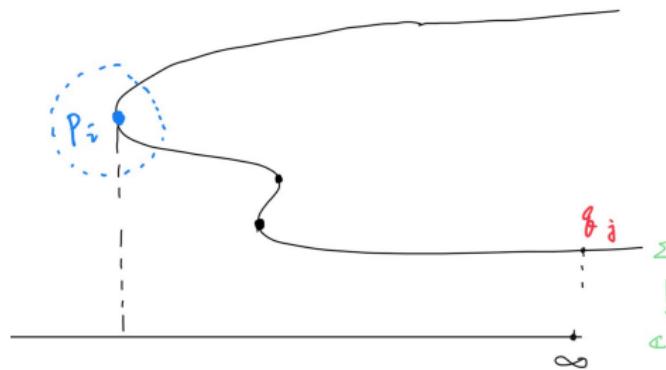
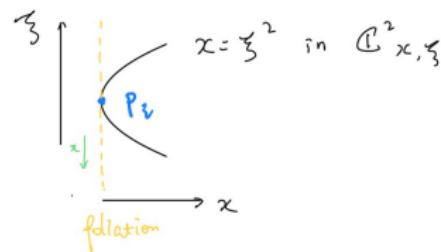
- Phase space: $\hbar \partial_x \sim \xi$. The principal symbol $P_0(x, \xi)$ is defined as the \hbar zeroth-order term.
- The *spectral curve* is

$$\Sigma = \{(x, \xi) \in T^* \mathbb{C} \mid P_0(x, \xi) = 0\}.$$

- Symplectic structure on $T^* \mathbb{C}$ is $dx \wedge d\xi$, and the foliation $x = \text{const.}$
- Simple ramification $\partial_\xi P_0 = 0$, $\partial_x P_0 \neq 0$ and $\partial_\xi^2 P_0 \neq 0$.

Simple Ramification Assumption

- $\pi : \Sigma \rightarrow \mathbb{C}$.
- Locally the spectral curve looks like a fold: $x \sim z^2$.



Local Factorisation to an Airy-Type Operator

- Weierstrass division theorem implies:
 - Microlocally near each simple ramification point, P can be factorised as

$$P = U \circ Q,$$

where U is microlocally invertible.

- Q is a second-order operator of the form

$$Q = (\hbar \partial_x)^2 + A(x; \hbar) \hbar \partial_x + B(x; \hbar),$$

further eliminate the first derivative, and after a normalisation, Q can be simplified to *Airy type* $(\hbar \partial_x)^2 - X$.

- Thus, locally near a ramification point, the WKB problem for P reduces to an Airy-type WKB problem.

WKB Ansatz and WKB 1-Forms

- We look for formal WKB solutions of $P\psi = 0$:

$$\psi(x, \hbar) = \exp \left(\hbar^{-1} (F_0(x) + \hbar F_1(x) + \hbar^2 F_2(x) + \dots) \right). \quad (3)$$

- Define WKB 1-forms

$$\alpha_g(x) = dF_g(x), \quad g \geq 0.$$

- For the Airy equation

$$(\hbar \partial_x)^2 \text{Ai}(x) = x \text{Ai}(x),$$

the α_g^{Airy} are explicitly known.

The Tate Symplectic Space H

- In a neighbourhood of a given ramification point with local coordinate z ,

$$\alpha^{Airy} = \left(2z^2 - \frac{\hbar}{2z} - \frac{5\hbar^2}{16z^4} - \frac{15\hbar^3}{32z^7} - \frac{1105\hbar^4}{1024z^{10}} - \frac{1695\hbar^5}{512z^{13}} - \dots \right) dz \quad (4)$$

- Consider the infinite-dimensional Tate space

$$H = \mathbb{C}[[z]] dz \oplus z^{-2}\mathbb{C}[z^{-1}] dz; \quad \mathcal{U}^* := \mathbb{C}[[z]] dz, \quad \mathcal{V} := z^{-2}\mathbb{C}[z^{-1}] dz.$$

- A meromorphic 1 form with 0 residue can be considered as a point in \mathcal{H} .

Lie Algebra \mathfrak{g} and Orbits

- There is a Lie algebra \mathfrak{g} of formal vector fields on $\mathbb{C}_{x,y}^2$, acting (locally) transitively on H .
- The action of \mathfrak{g} preserves the symplectic structure and the foliation.
- $\mathfrak{g} = \mathbb{C}[[x]]\partial_x \ltimes \mathbb{C}[[x]]/\mathbb{C}$.
- define $L_{m-1} := x^m \partial_x$, and $T_n = x^n$. Then the commutation relation:

$$\begin{aligned}[L_{n_1}, L_{n_2}] &= -(n_1 - n_2)L_{n_1+n_2} \\ [L_{n_1}, T_{n_2}] &= n_2 T_{n_1+n_2} \\ [T_{n_1}, T_{n_2}] &= 0.\end{aligned}\tag{5}$$

- For any 1 form $\eta dz = \sum_i \eta_i z^i dz$, we have the \mathfrak{g} -action

$$L_{m-1} \cdot \eta dz = \sum_{i \in \mathbb{Z}} \left(n - 1 + \frac{i}{2} \right) \eta_i z^{i+2n-2} dz, \quad n \geq 0, \tag{6}$$

$$T_n \cdot \eta dz = \eta dz + d(x^n), \quad n \geq 1.$$

- \mathfrak{g} action preserves the residue of the 1 form.

Lie Algebra \mathfrak{g} and Orbits

- The above \mathfrak{g} action defines a map

$$\mathfrak{g} \rightarrow \text{Hom}(U, U) \oplus \text{Hom}(V, V) \oplus (U \otimes V) \oplus (U \otimes V)^* \oplus U^* \oplus V. \quad (7)$$

- The map to the summand U^* is an isomorphism, and the map is 0 to the summand V .
- The morphism therefore can be encoded in the following tensors in terms of U, V :

1. $\mathfrak{g} \rightarrow \text{Hom}(U, U) \subset \text{Hom}(U^*, U^*) \iff a : U \rightarrow U \otimes U$.
2. $\mathfrak{g} \rightarrow (U \otimes V)^* = \text{Hom}(V, U^*) \iff b : U \otimes V \rightarrow U$.
3. $\mathfrak{g} \rightarrow U \otimes V \subset \text{Hom}(U^*, V) \iff c \in U \otimes U \otimes V$.
4. $\mathfrak{g} \rightarrow \text{Hom}(V, V) \iff d : V \rightarrow U \otimes V$.

Lie Algebra \mathfrak{g} and Orbits

- The formal orbit passing through point $0 \in \mathcal{H}$ gives a graph of the formal germ at 0 of a map from U to V , whose Taylor coefficients are *tensors*:

$$\forall n \geq 2 : T_n : \text{Sym}^n(U^*) \rightarrow V \iff T_n \in \text{Sym}^n(U) \otimes V, \quad T_2 = c + c^t.$$

- Proposition: These tensors T_2, T_3, \dots are given as certain sums over trees comprising copies of tensors a, b, c, d .
- Recursion formula:

$$\begin{aligned} & \sum_{n \geq 2} T_n \left(x, \dots, x, a(g, x) + b(g, \sum_{n \geq 2} T_n(x, \dots, x)) + g \right) \\ &= c(g, x) + d(g, \sum_{n \geq 2} T_n(x, \dots, x)) \end{aligned} \tag{8}$$

Lie Algebra \mathfrak{g} and Orbits

- α^{Airy} contains a non-zero residue, therefore we need to consider a deformed orbit of a shift $\alpha \mapsto \alpha - \frac{\hbar}{2z} \frac{dz}{z}$.
- We have a similar definition for tensor T_n , but T_n in this case admits a formal \hbar expansion $T_n = \sum_{m \geq 0} \hbar^m T_{n,m}$.
- $T_{0,0} = 0$, $T_{1,0} = 0$ and $T_0 = \alpha^{Airy} - 2z^2 dz + \frac{\hbar}{2z} \frac{dz}{z}$.
- Recursion formula:

$$\begin{aligned} & \sum_{n \geq 0} T_n \left(x, \dots, x, a(g, x) + b(g, \sum_{n \geq 0} T_n(x, \dots, x)) + g \right) \\ &= c(g, x) + d(g, \sum_{n \geq 0} T_n(x, \dots, x)) \end{aligned} \tag{9}$$

Calculation

- $J_n = \sum_n C_{k,[n]} J_-^{[n]}$
- $J_-^{[d]}$ is homogeneous of total degree d , and $C_{k,[n]}$ the corresponding Taylor coefficient.
- Set $\deg(\hbar) = 1$, therefore $\deg(x) = \frac{2}{3}$, $\deg(y) = \deg(z) = \frac{1}{3}$, and accordingly $\deg(J_{i-1}) = \frac{2-i}{3}$.

Table

z^i	z^4	z^3	z^2	z^1	z^0	z^{-1}
α	J_{-5}	J_{-4}	$J_{-3} + 2$	J_{-2}	J_{-1}	$\frac{-\hbar}{2}$
$\dot{\alpha}$	\dot{J}_{-5}	\dot{J}_{-4}	\dot{J}_{-3}	\dot{J}_{-2}	\dot{t}_0	0
$L_{-1}\alpha$	$\frac{5}{2}J_{-7}$	$2J_{-6}$	$\frac{3}{2}J_{-5}$	J_{-4}	$\frac{1}{2}(J_{-3} + 2)$	0
$L_0\alpha$	$\frac{5}{2}J_{-5}$	$2J_{-4}$	$\frac{3}{2}(J_{-3} + 2)$	J_{-2}	$\frac{1}{2}J_{-1}$	0
$L_1\alpha$	$\frac{5}{2}(J_{-3} + 2)$	$2J_{-2}$	$\frac{3}{2}J_{-1}$	$\frac{-\hbar}{2}$	$\frac{1}{2}(\sum_{m,[n]} \hbar^m C_{1,m,[n]} J_{-}^n - \beta_1)$	0
$L_2\alpha$	$\frac{5}{2}J_{-1}$	$2\frac{-\hbar}{2}$	$\frac{3}{2} \dots$			

TABLE 4.3 – α , its derivative and the L_i action

z^i	z^{-2}	z^{-3}	z^{-4}
α	$\sum_{m,[n]} \hbar^m C_{1,m,[n]} J_{-}^n - \beta_1$	$\sum_{m,[n]} \hbar^m C_{2,m,[n]} J_{-}^n - \beta_2$	$\sum_{m,[n]} \hbar^m C_{3,m,[n]} J_{-}^n - \beta_3$
$\dot{\alpha}$	$\sum_{m,[n]} \hbar^m C_{1,m,[n]} \dot{J}_{-}^n$	$\sum_{m,[n]} \hbar^m C_{2,m,[n]} \dot{J}_{-}^n$	$\sum_{m,[n]} \hbar^m C_{3,m,[n]} \dot{J}_{-}^n$
$L_{-1}\alpha$	$-\frac{1}{2}J_{-1}$	$-\frac{-\hbar}{2}$	$-\frac{3}{2}(\sum_{m,[n]} \hbar^m C_{1,m,[n]} J_{-}^n - \beta_1)$
$L_0\alpha$	$-\frac{1}{2}(\sum_{m,[n]} \hbar^m C_{1,m,[n]} J_{-}^n - \beta_1)$	$-(\sum_{m,[n]} \hbar^m C_{2,m,[n]} J_{-}^n - \beta_2)$	$-\frac{3}{2}(\sum_{m,[n]} \hbar^m C_{3,m,[n]} J_{-}^n - \beta_3)$
$L_1\alpha$	$-\frac{1}{2}(\sum_{m,[n]} \hbar^m C_{3,m,[n]} J_{-}^n - \beta_3)$	$-(\sum_{m,[n]} \hbar^m C_{4,m,[n]} J_{-}^n - \beta_4)$	

TABLE 4.4 – α , its derivative and the L_i action

Construction of the Global Complement V_{global}

- The final step is to intersect the orbit with a shifted affine subspace, which is specified for each differential equation. The unique intersection point is accordingly the solution for the given differential equation.
- Denote the ramification points p_i , and the points at ∞ as q_j .
- Define

$$\mathcal{H}_{\text{global}} = \bigoplus_i \mathcal{H}_i, \quad \mathcal{U}_{\text{global}}^* := \bigoplus_i \mathcal{U}_i^*.$$

- Ω' : sheaf of meromorphic 1-forms on the compactified spectral curve $\overline{\Sigma}$, which have zero residues at only ramification points $\{p_i\}$ and have no poles at the ∞ .

The intersection

- Theorem: There exists $\mathcal{V}_{global} \subset \Omega'(\overline{\Sigma}_0)$, of codimension g , given by finitely many conditions on jets at all $\{q_j\}$, and such \mathcal{V}_{global} is complementary to \mathcal{U}_{global}^* .
- Proposition: WKB 1-forms $\alpha_k \in \Omega'(\overline{\Sigma})$ for Schrödinger-like differential equation $P\psi = 0$ belong to the subspace \mathcal{V}_{global} for *sufficiently large* k .
- Therefore the formal WKB solution is obtained by the unique intersection of the \mathfrak{g} orbit passing through Airy points and \mathcal{V}_{global} , plus a holomorphic 1 form with finite \hbar expansion.

End

Thank you for your attention!