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Why polygons/polyhedra?

1 - In many situations, the mesh cannot be adapted to the numerical
method but must be taken as a datum ~» ex. in subsurface modeling

Figure : Courtesy of IFPEn
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Figure : Simplified 2D example of CPG
mesh with LGR, erosions and faults




Why polygons/polyhedra?

2 - They provide geometric flexibility in the modeling. .. ~» ex. of filled
elastomers
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Figure : In [Chi, Talischi, Lopez-Pamies and Paulino, 15]



Why polygons/polyhedra?

3 - ...and can even provide more accurate solutions!
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Figure : In [Chi, Talischi, Lopez-Pamies and Paulino, 15]

()



Why new-generation methods?

~ We are interested in the arbitrary-order approximation of elliptic
problems on polytopal meshes

Classical approaches

o (Polytopal) Finite Element (FE) methods [Wachspress, 75 + Tabarraei and
Sukumar, 04 + Gillette, Rand and Bajaj, 16 + Christiansen and Gillette, 16]

e Discontinuous Galerkin (DG) methods [Arnold, Brezzi, Cockburn and Marini, 02
+ Di Pietro and Ern, 12 + Bassi, Botti, Colombo, Di Pietro and Tesini, 12 +
Antonietti, Giani and Houston, 13 + Cangiani, Georgoulis and Houston, 14]

Limitations

e for FE: basis functions are hard to construct (due to continuity requirements)
and non-polynomial, local conservativity is not ensured, stencils are large
(vertex-based)

e for DG: the number of DoFs rapidly explodes with the order of approximation
(~ k3 in 3D), mesh-dependent parameters must be tuned by the end-user to
ensure stability



New-generation polytopal discretization methods

Hybridizable DG (HDG) methods [Cockburn, Gopalakrishnan and Lazarov, 09]

skeletal methods: number of globally coupled DoFs ~ k2 in 3D (after local
elimination of cell unknowns)

compact (face-based) stencil
conservativity at the discrete level
polynomial basis functions

BUT non-optimally convergent on general element shapes for equal-order trace
and potential unknowns

Virtual Element (VE) methods

[Beirdo da Veiga, Brezzi, Cangiani, Manzini, Marini and Russo, 13]

Weak Galerkin (WG) methods [Wang and Ye, 13]

proved equivalent to HDG methods [Cockburn, 16]

Hybrid High-Order (HHO) methods [Di Pietro, Ern and SL, 14]

bridged to HDG methods [Cockburn, Di Pietro and Ern, 16]

e HHO = HDG on steroids!
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Model problem

Let Q = R%, d e {2,3}, be an open, connected, bounded polytopal
domain.

Problem: Let f € L?(2). Find a potential u : Q@ — R such that
—div(AVu) = f inQ
u=0 ondQ

Assumption: A is a symmetric matrix field on Q s.t. Ae L*(Q,S7),
i.e. fora.e. zeQandforall §eR¥st. [¢ =1,

0<a<A(@)EE<[f<+om.

We let p := [/ denote the (global) heterogeneity/anisotropy ratio of A.



Admissible meshes

Definition
The mesh 7y, is admissible if (i) 75, is a finite collection of disjoint

polygons/polyhedra T s.t. = Urer, T, (ii) Tn admits a matching
simplicial submesh T}, that is

e shape-regular in the usual sense of Ciarlet;
e contact-regular: every simplex S € T of T, is s.t. hg ~ hr.

On any T € Ty, we let pp := fr/ar denote the (local)
heterogeneity/anisotropy ratio of Ay

T T T
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Figure : Admissible meshes in 2D



Discrete unknowns

k=0 k=1 k=2

Figure : DoFs associated with local unknowns, d = 2

Local hybrid set of unknowns

(w =P <Pl (0))

Local reduction operator

lk s HY(T) - llk s.t., for any v € HY(1 , lkv = Ilkv,ll’;’ v), with
T ~T T T oT
H]:TU P Hkp) v for all F e ./—'T

o |



Reconstruction operator

Local reconstruction operator i : UK. — PRH1(T)

For v = (v, vor) € Uk, p’fﬁlyT € PS“(T) st. §, p’%HyT =§,vr
solves, for all w e PSH(T),

[(AVp]%JrlyT, VW)T = —(vr,div(AVW)), + (V(?T,AVW"I’L,}T)(-}T]

~> heterogeneity/anisotropy included in the reconstruction procedure

Computation

Requires to invert a SPD matrix of size Ni ™, with NY := dim(PY)

Approximation properties of p’%“lfi”\

dxd .
e A€ [PS(T)] xd, HA1/2V(v _ p§~+ll§“v)”0,T :epg‘l*fl(T) HA1/2V(U — W)HO’T
wWeTq

e Arpe [Lips(T)]9*%: with v = 1/2 if AT is constant, v = 1 otherwise,
k+1 k+1 k+2
”’U - pT+ IIIC“UHOYT + hT HV(U - pT+ l]%’U)HO’T < /)}hT+ Hka+2,T



Stabilization

[aT(uT.,yT) = (AVDPS Ty, Vi vy) o+ i (ug, vy) ]

Local stabilization j7 : Q‘T X Q‘T —R

For any uy, vy € UK., and with wp 5 := IArnrFnr el o
. KT F A : . A
Jr(up,vr) = 7(1_[]}? (q]%HET - “F) ’Hl}? (q]%HYT - VF))F’

FG]‘—T hF

where gt wo 1= wp + (py wo — Tph T wy)

~> the use of H’I”; is reminiscent of Lehrenfeld-Schdberl stabilization for HDG with cell
unknowns of order (k + 1) [Lehrenfeld, 10]

~~ the operator ql;fl is new and opens the door to cell unknowns of order {(k — 1), k}

Approximation properties

. 1 / .
]T(llzc"va 1];"”)1/2 < ﬂfp}hé‘fl HUHk+2,T



Discrete problem

Global hybrid set of unknowns

(Uh = P x PE_ () ]

Discrete problem

Find u,, € UF , s.t.
. k
a‘h(gh,v Yh,) = (f VQh)Q for all vy = (VQh ) Vl?Th,) € Qh,o

with ap,(wy,,v,) := Yiper, ar(up, vy)

Stability

_ 2 RT.F 1k 2
pr! (Al/zVVT|o,T + Z hop I (v — VF)|0,F> < ar(Vy, V)
FeFr



Guaranteed error estimates

Theorem (Energy-norm error estimate)
Assume A € [Pé(ﬁl)]dm for some l € N, and u € H} () n H*2(Tp,).

12
2y 2(k+1 2
|A2(Vu = Vgt w,) g < { ST Brodny )||“||k+27T}
TeTy

Theorem (L?-norm error estimate)

Assume A € [PS(E)]dXd, elliptic regularity |2(g)|, 1, < CY—1H9||0,Q' and
fe H(Q) withd =1ifk=0and§ =0 ifk > 1.

1/2

. 2(k+1 2 :

allu =iyl < 870" R { >} Brprh*t >||u||k+2,T} R s
TeTh
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High-Order method.

~~ Cicuttin, M., Ern, A., and SL (In preparation) A Multi-scale Hybrid

«O>» «Fr «=>»

«E)»

DA



A multi-scale medium: the human cornea

(a) Healthy cornea (b) Oedematous cornea

Figure : Cross-section of the corneal stroma (courtesy of K. Plamann,
Laboratoire d'Optique Appliquée, Palaiseau)



Model oscillatory problem
Problem: Let f € L?(2). Find a potential u. : Q — R such that
—div(A.Vus)=f inQ
u: =0 on o)

Assumption: A_(-) = A(-/¢) in Q, for A a symmetric Z%-periodic matrix
field on R? such that A € L*(R%; S¥)

The theory of homogenization ensures the existence of Ay € S” s.t. the

(whole) family (A.)_.., G-converges to Ag. The homogenized problem is

—div(AgVug) = f  inQ
up =0 on 0N



Background on multi-scale numerical methods (1/2)

e The H*"2-norm of u. scales as e~ (F+1),

e Mono-scale methods hence provide an energy-norm decay of the
h k+1
error of order ()"

e To be accurate, mono-scale methods must rely on a mesh resolving
the fine scale, i.e. with h « ¢.

e Since ¢ is supposedly much smaller than the size of Q (that is
assumed to be of order one), an accurate approximation implies an
overwhelming number of DoFs.

e In a multi-query context (the solution is needed for a large number
of rhs), a mono-scale solve is unaffordable!

e Multi-scale methods aim at resolving the fine scale in an offline
stage.



Background on multi-scale numerical methods (2/2)

Let Ty be a coarse matching simplicial mesh of €, and let & = 0.

The Multi-scale Finite Element Method (MsFEM) [Hou and Wu, 97]

e Offline stage: for each node =™ of Tg, solve, for each cell T
st.x"eT,

—div(A-Velp) =0 inT, ohr =@ ondT
~~ this stage is independent of the rhs and fully parallelizable
e Online stage: for any rhs f € L%(Q), solve
(AcVue 1, Ve i)g = (f,ve,m)q (+ BC) Voo e VelH
where V;H := Span{(¢?),,}
~~ the linear system to solve has a reduced size

e Error estimate: assuming A, periodic and adequate regularity,

€
IV (ue = ue, 1)l 0 < c(p) (\E +H + \/Z) Na(uo)
The Heterogeneous Multi-scale Method (HMM) [E and Engquist, 03]

~» compute an approximation of uy by means of local averages of A,



Oscillatory basis functions

Let 7 be an admissible mesh, with mehsize H > ¢.
For any T € Ty, we denote by (%, )1<1<N"’ a set of basis functions of PX(T"), and for

any F' € Fg, we let <¢'j“)1<]<Nf}ﬁ,l be a set of basis functions of P% | (F).

Cell-based basis functions (% T)1<i<N';
ForT'e Ty, and 1 <i < Nd, LpE T € HY(T) solves the local problem

1 ; ,
inf{f [§A5V¢~V<p— ohp|, pe HY(T), ko =0VF e fT}.
T

. . 3
Face-based basis functions (¢! 1')1<1<Nd 1
For ' e Fyy (if F e Fiy with F € 0Ty ~ 0Th we let P = (1,2}, if F e Fb with
FcColy noQwelet P:={1}), pe P, and 1 <j <N~ 1"95/1 e HY(Tp)

solves the local problem

o]

P

1 )
[EAEV@V@] @€ HY(Ty), M = @7, TTEp = 0 Vo € Fr, \{F}}

R
We introduce ¢’ .. defined on U Tp s.t. ,9 FIT, "= e R, forallpe P.
peP



Fine-scale approximation space

For any T' € Ty, we introduce the space
Vi = {vE e HY(T) | div(A-Vv.) € PE(T), A-Vvomar € 5| (fT)},
of dimension <N’c + card(Fr) x Nk 1)

Characterization of V1!

k1 _
[V - Span {(ng T)1<1<Nk7 (»9 F‘T)FEFIu, 1<j<NE_| }]

~~ generalizes the ideas of MsFEM a /la Crouzeix—Raviart [Le Bris, Legoll and

Lozinski, 13&14] to arbitrary approximation orders and general element shapes
Approximation in V;;l
Let 7rk+1( 0) € ng;rl such thatJ 7rk+T1 (uo) :J ue and

! T T

—div(A: Vrt ! (uo)) = —div(A) VI ug) € P(T) in T,

AEVﬂk+1(u0)-naT = A VITE g mor € P5_ (Fr)  on OT.

1AL2% (e — a5 (o)) 1 S ALV (e — £2(wo)) o 7 +6"p" (x/E+H§“+« e )Nr(ua)



Discrete unknowns [SAME SLIDE]

k=0 k=1 k=2

Figure : DoFs associated with local unknowns, d = 2

Local hybrid set of unknowns

(w =P <Pl (0))

Local reduction operator

I . HY(T) — U s.t., for any ve HY(T), v := (I, I15,0), with
(H§T77)|F =I5 for all F e Fr



Multi-scale reconstruction operator

Local multi-scale reconstruction operator p"+1 Hk’ — V;;l

k+1

k41 Rl
For vy = (v, vor) € Uk, P v e VI st §oplhivy = (v solves,

for all w, e VFEL,

[(AEVp’;i}lvT, VwE)T = —(vr,div(A: Vwe))p + (Vvor, A-Vwe-nor) o ]

Computation
Requires to invert a SPD matrix of size (N% + card(Fr) x Nk_ )
Approximation properties of p"*lIT’
. HAEZV(ug - k+1IT71 >H0,T = infwaev:f,yl HA;/EV(U,E —we)|op
o ALV (ue — PR ) o < IALV (e — 75 (o)),

o Jue — DA Tl < 0 HA ALY (e — b5 )



Stabilization

{a’E,T(gTvyT) = (AEVPIQFHT, Vpi‘}lYT)T + js,T(HTvYT) ]

Local stabilization j. ¢ :Q’} X Q’} —-R
For any ur, vy € H?:
) a .k )
jerlur,ve) = Y o= (Wh(@E S ur = ue) (a5 ey = ve)

FG]'-T F

k+1 . Sk+1 k, k+1
where ¢. 7wy = wr + (pE,T wp — Ipl 7 wr)

Approximation properties

je,T(Ig“usvll;“us)l/z S HA;/ZV(“E - ]’5,?]1§7‘6)“() T



Discrete problem

Global hybrid set of unknowns

(Uh 1= PETI) x Py (F) |

Discrete problem
Find u. 5 € Uf , st.

ai,H(HE,Hﬂ YH) = (f’ VQH)Q for all Vg = (VQH 5 VOTH) € Hl}:{_()
with ae g (0. g, V) = 2per, @ 1, V)

Stability

_ 2
a (WVTMS,T + > Hp' | (vr —vF>|o,F> < aer(vy,vy)
FE]:T



Guaranteed error estimate
Theorem (Energy-norm error estimate)

Assume A is Hélder continuous on RY, and ug € HF*29(Q) with 6 = 1 if
k=0,0=0ifk>=1 (we also assume Ty quasi-uniform for simplicity).

] | €
|AZ (V. — VHpIEC}_)lHEE,H)Ho7Q < B%”p (\@ +H 4 H) [uollyi24s0

_—
—

€ 1 H

Figure : Overall behavior of the energy-norm error as a function of H, for k = 0,
k=2and k=38
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Features of HHO (1/2)

Discontinuous skeletal method
e arbitrary order (k = 0) of approximation
o applicable to general meshes (including tetra/hexa-hedra!)
e dimension-independent construction

o optimal (k + 1) energy- and (k + 2) L2-norms error estimates for arbitrary
element shapes for all (admissible) orders of cell unknowns

Attractive computational features

o design from primal formulation (SPD matrix in coercive case)

e reduced number of DoFs (in 3D, NHHO ~ %k%ard(]—'h), to compare with

NB&., ~ tk3card(T,)) and compact (face-based) stencil
e polynomial basis functions
e no user-dependent parameter to tune
o (fully parallelizable) offline/online structure of computations

e easily implementable in working HDG codes



Features of HHO (2/2)

Physical fidelity

e local conservativity

o reproduction of desirable continuum properties (integration by parts formulas,
symmetries, kernels of operators)

e robustness w.r.t. physical parameters in various situations:
heterogeneous/anisotropic diffusion, quasi-incompressible linear elasticity,
advection-dominated transport. . .
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