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Why polygons/polyhedra?

1 - In many situations, the mesh cannot be adapted to the numerical
method but must be taken as a datum  ex. in subsurface modeling

Figure : Courtesy of IFPEn

Figure : Simplified 2D example of CPG
mesh with LGR, erosions and faults



Why polygons/polyhedra?

2 - They provide geometric flexibility in the modeling. . .  ex. of filled
elastomers

Figure : In [Chi, Talischi, Lopez-Pamies and Paulino, 15]



Why polygons/polyhedra?

3 - . . . and can even provide more accurate solutions!

Figure : In [Chi, Talischi, Lopez-Pamies and Paulino, 15]



Why new-generation methods?

 We are interested in the arbitrary-order approximation of elliptic
problems on polytopal meshes

Classical approaches

‚ (Polytopal) Finite Element (FE) methods [Wachspress, 75 + Tabarraei and
Sukumar, 04 + Gillette, Rand and Bajaj, 16 + Christiansen and Gillette, 16]

‚ Discontinuous Galerkin (DG) methods [Arnold, Brezzi, Cockburn and Marini, 02
+ Di Pietro and Ern, 12 + Bassi, Botti, Colombo, Di Pietro and Tesini, 12 +
Antonietti, Giani and Houston, 13 + Cangiani, Georgoulis and Houston, 14]

Limitations

‚ for FE: basis functions are hard to construct (due to continuity requirements)
and non-polynomial, local conservativity is not ensured, stencils are large
(vertex-based)

‚ for DG: the number of DoFs rapidly explodes with the order of approximation
(„ k3 in 3D), mesh-dependent parameters must be tuned by the end-user to
ensure stability



New-generation polytopal discretization methods

Hybridizable DG (HDG) methods [Cockburn, Gopalakrishnan and Lazarov, 09]

‚ skeletal methods: number of globally coupled DoFs „ k2 in 3D (after local
elimination of cell unknowns)

‚ compact (face-based) stencil

‚ conservativity at the discrete level

‚ polynomial basis functions

‚ BUT non-optimally convergent on general element shapes for equal-order trace
and potential unknowns

Virtual Element (VE) methods
[Beirão da Veiga, Brezzi, Cangiani, Manzini, Marini and Russo, 13]

Weak Galerkin (WG) methods [Wang and Ye, 13]

‚ proved equivalent to HDG methods [Cockburn, 16]

Hybrid High-Order (HHO) methods [Di Pietro, Ern and SL, 14]

‚ bridged to HDG methods [Cockburn, Di Pietro and Ern, 16]

‚ HHO = HDG on steroids!
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Model problem

Let Ω Ă Rd, d P t2, 3u, be an open, connected, bounded polytopal
domain.

Problem: Let f P L2pΩq. Find a potential u : Ω Ñ R such that�
�

�



´divpA∇uq “ f in Ω

u “ 0 on BΩ

Assumption: A is a symmetric matrix field on Ω s.t. A P L8pΩ,Sβαq,
i.e. for a.e. x P Ω and for all ξ P Rd s.t. |ξ| “ 1,

0 ă α ď Apxqξ¨ξ ď β ă `8.

We let ρ :“ β{α denote the (global) heterogeneity/anisotropy ratio of A.



Admissible meshes

Definition
The mesh Th is admissible if (i) Th is a finite collection of disjoint
polygons/polyhedra T s.t. Ω “

Ť

TPTh
T , (ii) Th admits a matching

simplicial submesh Th that is
‚ shape-regular in the usual sense of Ciarlet;
‚ contact-regular: every simplex S Ď T of Th is s.t. hS « hT .

On any T P Th, we let ρT :“ βT {αT denote the (local)
heterogeneity/anisotropy ratio of A|T .

Figure : Admissible meshes in 2D



Discrete unknowns
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Figure : DoFs associated with local unknowns, d “ 2

Local hybrid set of unknowns�� ��Uk
T :“ PkdpT q ˆ Pkd´1pFT q

Local reduction operator

IkT : H1pT q Ñ Uk
T s.t., for any v P H1pT q, IkT v :“

`

Πk
T v,Π

k
BT v

˘

, with
pΠk
BT vq|F :“ Πk

F v for all F P FT



Reconstruction operator

Local reconstruction operator pk`1
T : Uk

T Ñ Pk`1
d pT q

For vT “ pvT , vBT q P Uk
T , pk`1

T vT P Pk`1
d pT q s.t.

ş

T
pk`1
T vT “

ş

T
vT

solves, for all w P Pk`1
d pT q,�� ��`

A∇pk`1
T vT ,∇w

˘

T
“ ´pvT ,divpA∇wqqT ` pvBT ,A∇w¨nBT qBT

 heterogeneity/anisotropy included in the reconstruction procedure

Computation

Requires to invert a SPD matrix of size Nk`1
d , with Nq

l :“ dimpPql q

Approximation properties of pk`1
T IkT

‚ A|T P
“

P0
dpT q

‰dˆd: }A1{2∇pv ´ pk`1
T IkT vq}0,T “ inf

wPPk`1
d

pT q

}A1{2∇pv ´ wq}0,T

‚ A|T P rLipspT qsdˆd: with γ “ 1{2 if A|T is constant, γ “ 1 otherwise,
}v ´ pk`1

T IkT v}0,T ` hT }∇pv ´ pk`1
T IkT vq}0,T À ργT h

k`2
T }v}k`2,T



Stabilization

�� ��aT puT , vT q :“
`

A∇pk`1
T uT ,∇pk`1

T vT
˘

T
` jT puT , vT q

Local stabilization jT : Uk
T ˆUk

T Ñ R

For any uT , vT P Uk
T , and with κT,F :“ }A|TnT,F ¨nT,F }8,F ,

jT puT , vT q :“
ÿ

FPFT

κT,F
hF

`

Πk
F

`

qk`1
T uT ´ uF

˘

,Πk
F

`

qk`1
T vT ´ vF

˘˘

F
,

where qk`1
T wT :“ wT `

`

pk`1
T wT ´Πk

Tpk`1
T wT

˘

 the use of ΠkF is reminiscent of Lehrenfeld-Schöberl stabilization for HDG with cell
unknowns of order pk ` 1q [Lehrenfeld, 10]
 the operator qk`1

T is new and opens the door to cell unknowns of order tpk ´ 1q, ku

Approximation properties

jT pI
k
T v, I

k
T vq

1{2 À β
1{2

T ργTh
k`1
T }v}k`2,T



Discrete problem

Global hybrid set of unknowns�� ��Uk
h :“ PkdpThq ˆ Pkd´1pFhq

Discrete problem

Find uh P Uk
h,0 s.t.

ahpuh, vhq “ pf, vΩh
qΩ for all vh “ pvΩh

, vBTh
q P Uk

h,0

with ahpuh, vhq :“
ř

TPTh
aT puT , vT q

Stability

ρ´1
T

˜

}A1{2∇vT }
2

0,T `
ÿ

FPFT

κT,F
hF

}Πk
F pvT ´ vF q}

2

0,F

¸

À aT pvT , vT q



Guaranteed error estimates

Theorem (Energy-norm error estimate)
Assume A P

“

PldpThq
‰dˆd for some l P N, and u P H1

0 pΩq XH
k`2pThq.

}A1{2p∇u´∇hpk`1
Ωh

uhq}0,Ω À

#

ÿ

TPTh

βT ρ
2γ
T h

2pk`1q
T }u}

2
k`2,T

+1{2

Theorem (L2-norm error estimate)
Assume A P

“

P0
dpThq

‰dˆd, elliptic regularity }zpgq}2,Th
À α´1}g}0,Ω, and

f P Hk`δpΩq with δ “ 1 if k “ 0 and δ “ 0 if k ě 1.

α}u´ pk`1
Ωh

uh}0,Ω À β
1{2ρ

1{2 h

#

ÿ

TPTh

βT ρTh
2pk`1q
T }u}

2
k`2,T

+1{2

`hk`2}f}k`δ,Ω
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A multi-scale medium: the human cornea

(a) Healthy cornea (b) Oedematous cornea

Figure : Cross-section of the corneal stroma (courtesy of K. Plamann,
Laboratoire d’Optique Appliquée, Palaiseau)



Model oscillatory problem

Problem: Let f P L2pΩq. Find a potential uε : Ω Ñ R such that�
�

�



´divpAε∇uεq “ f in Ω

uε “ 0 on BΩ

Assumption: Aεp¨q “ Ap¨{εq in Ω, for A a symmetric Zd-periodic matrix
field on Rd such that A P L8pRd;Sβαq

The theory of homogenization ensures the existence of A0 P Sβα s.t. the
(whole) family pAεqεą0 G-converges to A0. The homogenized problem is

#

´divpA0∇u0q “ f in Ω

u0 “ 0 on BΩ



Background on multi-scale numerical methods (1/2)

‚ The Hk`2-norm of uε scales as ε´pk`1q.

‚ Mono-scale methods hence provide an energy-norm decay of the
error of order

`

h
ε

˘k`1
.

‚ To be accurate, mono-scale methods must rely on a mesh resolving
the fine scale, i.e. with h ! ε.

‚ Since ε is supposedly much smaller than the size of Ω (that is
assumed to be of order one), an accurate approximation implies an
overwhelming number of DoFs.

‚ In a multi-query context (the solution is needed for a large number
of rhs), a mono-scale solve is unaffordable!

‚ Multi-scale methods aim at resolving the fine scale in an offline
stage.



Background on multi-scale numerical methods (2/2)

Let TH be a coarse matching simplicial mesh of Ω, and let k “ 0.
The Multi-scale Finite Element Method (MsFEM) [Hou and Wu, 97]
‚ Offline stage: for each node xn of TH , solve, for each cell T

s.t. xn P T ,

´divpAε∇ϕnε|T q “ 0 in T , ϕnε|T “ Φn|T on BT

 this stage is independent of the rhs and fully parallelizable
‚ Online stage: for any rhs f P L2pΩq, solve

pAε∇uε,H ,∇vε,HqΩ “ pf, vε,HqΩ (+ BC) @vε,H P V
1
ε,H

where V 1
ε,H :“ Spantpϕnε qnu

 the linear system to solve has a reduced size
‚ Error estimate: assuming Aε periodic and adequate regularity,

}∇puε ´ uε,Hq}0,Ω ď cpρq

ˆ

?
ε`H `

c

ε

H

˙

NΩpu0q

The Heterogeneous Multi-scale Method (HMM) [E and Engquist, 03]
 compute an approximation of u0 by means of local averages of Aε



Oscillatory basis functions

Let TH be an admissible mesh, with mehsize H ą ε.

For any T P TH , we denote by pΦiT q1ďiďNk
d
a set of basis functions of PkdpT q, and for

any F P FH , we let pΦjF q1ďjďNk
d´1

be a set of basis functions of Pkd´1pF q.

Cell-based basis functions pϕiε,T q1ďiďNk
d

For T P TH , and 1 ď i ď Nkd , ϕ
i
ε,T P H

1pT q solves the local problem

inf

"
ż

T

„

1

2
Aε∇ϕ¨∇ϕ´ ΦiT ϕ



, ϕ P H1pT q, ΠkFϕ “ 0 @F P FT
*

.

Face-based basis functions pϕjε,F q1ďjďNk
d´1

For F P FH (if F P F i
H with F Ď BT1 X BT2 we let P :“ t1, 2u, if F P Fb

H with
F Ď BT1 X BΩ we let P :“ t1u), p P P, and 1 ď j ď Nkd´1, ϕ

j
ε,F,Tp

P H1pTpq

solves the local problem

inf

#

ż

Tp

„

1

2
Aε∇ϕ¨∇ϕ



, ϕ P H1pTpq, ΠkFϕ “ ΦjF , Πkσϕ “ 0 @σ P FTpztF u

+

.

We introduce ϕjε,F defined on
ď

pPP
Tp s.t. ϕj

ε,F |Tp
:“ ϕjε,F,Tp

for all p P P.



Fine-scale approximation space

For any T P TH , we introduce the space

V k`1
ε,T

:“
!

vε P H
1pT q | divpAε∇vεq P PkdpT q, Aε∇vε¨nBT P Pkd´1pFT q

)

,

of dimension
´

Nkd ` cardpFT q ˆNkd´1

¯

.

Characterization of V k`1
ε,T�



�
	V k`1

ε,T “ Span

"

pϕiε,T q1ďiďNk
d

, pϕj
ε,F |T

q
FPFT , 1ďjďNk

d´1

*

 generalizes the ideas of MsFEM à la Crouzeix–Raviart [Le Bris, Legoll and
Lozinski, 13&14] to arbitrary approximation orders and general element shapes

Approximation in V k`1
ε,T

Let πk`1
ε,T pu0q P V

k`1
ε,T such that

ż

T
πk`1
ε,T pu0q “

ż

T
uε and

$

&

%

´divpAε∇πk`1
ε,T pu0qq “ ´divpA0∇Πk`1

T u0q P PkdpT q in T ,

Aε∇πk`1
ε,T pu0q¨nBT “ A0∇Πk`1

T u0¨nBT P Pkd´1pFT q on BT .

}A
1{2
ε ∇puε ´ πk`1

ε,T pu0qq}0,T
À }A

1{2
ε ∇puε ´ L1

εpu0qq}0,T`β
1{2ρ

1{2

ˆ

?
ε`Hk`1

T `

c

ε

HT

˙

NT pu0q



Discrete unknowns [SAME SLIDE]
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Figure : DoFs associated with local unknowns, d “ 2

Local hybrid set of unknowns�� ��Uk
T :“ PkdpT q ˆ Pkd´1pFT q

Local reduction operator

IkT : H1pT q Ñ Uk
T s.t., for any v P H1pT q, IkT v :“

`

Πk
T v,Π

k
BT v

˘

, with
pΠk
BT vq|F :“ Πk

F v for all F P FT



Multi-scale reconstruction operator

Local multi-scale reconstruction operator pk`1
ε,T : Uk

T Ñ V k`1
ε,T

For vT “ pvT , vBT q P Uk
T , p

k`1
ε,T vT P V

k`1
ε,T s.t.

ş

T
pk`1
ε,T vT “

ş

T
vT solves,

for all wε P V k`1
ε,T ,�

�
�
�pAε∇pk`1

ε,T vT ,∇wεqT “ ´pvT ,divpAε∇wεqqT ` pvBT ,Aε∇wε¨nBT qBT

Computation

Requires to invert a SPD matrix of size
`

Nk
d ` cardpFT q ˆNk

d´1

˘

Approximation properties of pk`1
ε,T IkT

‚ }A
1{2
ε ∇puε ´ pk`1

ε,T IkTuεq}0,T “ infwεPV
k`1
ε,T

}A
1{2
ε ∇puε ´ wεq}0,T

‚ }A
1{2
ε ∇puε ´ pk`1

ε,T IkTuεq}0,T ď }A
1{2
ε ∇puε ´ πk`1

ε,T pu0qq}0,T

‚ }uε ´ p
k`1
ε,T IkTuε}0,T À α´1{2HT }A

1{2
ε ∇puε ´ pk`1

ε,T IkTuεq}0,T



Stabilization

�
�

�
�aε,T puT , vT q :“ pAε∇pk`1

ε,T uT ,∇pk`1
ε,T vT qT ` jε,T puT , vT q

Local stabilization jε,T : Uk
T ˆUk

T Ñ R

For any uT , vT P Uk
T ,

jε,T puT , vT q :“
ÿ

FPFT

α

HF

´

Πk
F pq

k`1
ε,T uT ´ uF q,Π

k
F pq

k`1
ε,T vT ´ vF q

¯

F
,

where qk`1
ε,T wT :“ wT ` pp

k`1
ε,T wT ´Πk

T p
k`1
ε,T wT q

Approximation properties

jε,T pI
k
Tuε, I

k
Tuεq

1{2 À }A1{2
ε ∇puε ´ pk`1

ε,T IkTuεq}0,T



Discrete problem

Global hybrid set of unknowns�� ��Uk
H :“ PkdpTHq ˆ Pkd´1pFHq

Discrete problem

Find uε,H P Uk
H,0 s.t.

aε,Hpuε,H , vHq “ pf, vΩH
qΩ for all vH “ pvΩH

, vBTH
q P Uk

H,0

with aε,Hpuε,H , vHq :“
ř

TPTH
aε,T puε,T , vT q

Stability

α

˜

}∇vT }
2
0,T `

ÿ

FPFT

H´1
F }Πk

F pvT ´ vF q}
2

0,F

¸

À aε,T pvT , vT q



Guaranteed error estimate

Theorem (Energy-norm error estimate)
Assume A is Hölder continuous on Rd, and u0 P H

k`2`δpΩq with δ “ 1 if
k “ 0, δ “ 0 if k ě 1 (we also assume TH quasi-uniform for simplicity).

}A1{2
ε p∇uε ´∇Hp

k`1
ε,ΩH

uε,Hq}0,Ω À β
1{2ρ

ˆ

?
ε`Hk`1 `

c

ε

H

˙

}u0}k`2`δ,Ω

Hε 1

Figure : Overall behavior of the energy-norm error as a function of H, for k “ 0,
k “ 2 and k “ 8
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Features of HHO (1/2)

Discontinuous skeletal method
‚ arbitrary order (k ě 0) of approximation

‚ applicable to general meshes (including tetra/hexa-hedra!)

‚ dimension-independent construction

‚ optimal (k ` 1) energy- and (k ` 2) L2-norms error estimates for arbitrary
element shapes for all (admissible) orders of cell unknowns

Attractive computational features

‚ design from primal formulation (SPD matrix in coercive case)

‚ reduced number of DoFs (in 3D, NHHO
DoFs «

1
2
k2cardpFhq, to compare with

NDG
DoFs «

1
6
k3cardpThq) and compact (face-based) stencil

‚ polynomial basis functions

‚ no user-dependent parameter to tune

‚ (fully parallelizable) offline/online structure of computations

‚ easily implementable in working HDG codes



Features of HHO (2/2)

Physical fidelity

‚ local conservativity

‚ reproduction of desirable continuum properties (integration by parts formulas,
symmetries, kernels of operators)

‚ robustness w.r.t. physical parameters in various situations:
heterogeneous/anisotropic diffusion, quasi-incompressible linear elasticity,
advection-dominated transport. . .



THANK YOU FOR YOUR
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