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Motivations

Analysis of complex integrals 
describing generic physical systems

I = ∫Γ
F(x1, x2, . . . ; μ1, μ2, . . . )dx2

1 dx2
2 . . .

Direct computation

Resolution of 
systems of differential 
equations

Geometric interpretation 
in order to simplify the 
integral.
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Periods
[Kontsevich, Zagier 2001]

Values of integrals of algebraically defined differential forms over certain chains in algebraic varieties

I = ∫Γ
F(x1, x2, . . . , xn; μ1, μ2, . . . )dx1 dx2 . . . dxn

PERIOD = - chain in the complex 
algebraic variety X 

n - form in the complex 
algebraic variety X 

n⊗

∼ ∼∼
Non-degenarete 
pairing = HOMOLOGY

Hn(X)
COHOMOLOGY

Hn(X)
⊗

Moduli of the integration 
contours

Convergente
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The advantages

There is a non-degenerate internal 
product in homology given by topological 
intersection among cycles and its dual in 
cohomology 

Γ1

Γ3

Γ5

Γ2

Γ4
Γ6

X

topological intersections

    I = ∫Γ
ω(x; μ) =

  Element of a finite dimensional 
vector space

with a double projection.

The value of the integral only depends on the homology 
class of the integration cycle and the cohomology class 
of the integration form, but it does not depend on the 

specific representatives.

The homology and cohomology rings are finitely 
generated

Hn(X, ∙ ) = ⟨Γ1, . . . , ΓN⟩
Hn(X, ∙ ) = ⟨ω1 , ω2 , . . . , ωN⟩

equipped
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The Master Integrals

I = ∫Γ
ω = (Γ, Γ1) ⋅ ∫Γ1

ω + (Γ, Γ2) ⋅ ∫Γ2

ω + . . . + (Γ, ΓN) ⋅ ∫ΓN

ω

Intersection numbers 
in homology

Master Integrals

Double projection:

Fix a basis:  Hn(X, ∙ ) = ⟨Γ1, . . . , ΓN⟩
and an internal product:  (Γi , Γj) = Iij

Γ = (Γ , Γ1) Γ1 + (Γ , Γ2) Γ2 + . . . + (Γ , ΓN) ΓN

Fix a basis:  Hn(X, ∙ ) = ⟨ω1, . . . , ωN⟩
and an internal product:  (ωi , ωj) = Ĩij

ω = (ω , ω1) ω1 + (ω , ω2) ω2 + . . . + (ω , ωN) ωN

I = (ω, ω1) ⋅ ∫Γ
ω1 + (ω, ω2) ⋅ ∫Γ

ω2 + . . . + (ω, ωN) ⋅ ∫Γ
ωNIntersection numbers 

in cohomology

Master Integrals
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The problems

Feynman integral in 
Baikov representation

Baikov polynomial

In dimensional regularization 
γ(D) ≠ ℤ

Rational formI = ∫Γ
ℬ(xi, μj)−γ ω

Multivalued integral with a potentially complicate monodromy

…

Special values of the parameters at which the manifold X becomes singular

To indentify the right homology/cohomology to define the pairing

Main Task
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The problems

Feynman integral in 
Baikov representation

Baikov polynomial

In dimensional regularization 
γ(D) ≠ ℤ

Rational formI = ∫Γ
ℬ(xi, μj)−γ ω

In the case of Feynman integrals, this idea to exploit the period interpretation [Pham, 1981/1985] 
and intersection theory methods to perform the MIs decomposition is not new [Mastrolia, Mizera 
- 2018]. 
And many computational algorithms has been developed in the meantime:

Hawever many cases (as limits of singular varieties) are still unsolved.

[Brunello, Chestnov, Crisanti, Fontana, Frallesvig, Gasparotto, Laporta, Mandal, Mastrolia, Matsubara-Heo, Matsumoto, 
Mattiazzi, Mizera, Munch, Peraro, Pokraka, Takayama … ]



Plan of the presentation

Wall Crossing Structure

Holomorphic functions

Exponential Integrals

Multivalued functions

Final remarks
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The exponential period map

∫Γ
e−f μ : HBetti, global

∙ ((X, D0), f) ⊗ H∙
dR, global ((X, D0), f) ⟼ ℂ

[Kontsevich, Soibelman - 2024]

-dim complex algebraic varietynX
f : X ↦ ℂ Complex valued function

μ Holomorphic volume form over X

Γ Open integration chain on X∖D0

Path integral in QFTs CFT correlators

Feynman integrals

Non-perturbative computations 
in String Theory

…

s.t.  is a proper map bounded from belowRe( f ) |Γ : Supp(Γ) ↦ ℝ
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Generalized Exponential Integral

Rescaling the function: f ↦ γf with γ ∈ ℂ* = ℂ∖{0}

Generalized exponential integral:

I(γ) = ∫Γ
e−γf μ : HBetti, global

∙ ((X, D0), γf) ⊗ H∙
dR, global ((X, D0), γf) ⟼ ℂ

To study how the structure of the resulting integral depends on   .γ
Wall Crossing Structure:

By varying the parameter , the homology and the cohomology groups involved in the 
pairing can change, and for special values of  they can even reduce their 
dimensionality leading to a reduced number of MIs.

γ
γ
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De Rham Cohomology

( X, D0, f ) Global Twisted de Rham

H∙
dR(X, D0, f ) ≅ ℍ∙(X, Ω∙

X,D0
, ∇f )

∇f = d + df ∧ = d + α ∧

(Ω∙
X,D0

, ∇f ) : Ω0
X,D0

∇f Ω1
X,D0

∇f …
∇f Ωn

X,D0

where

The integrand -form  is 
represented by a class  in the 
degree  Twisted de Rham group 

n μ
[ μ ]

n

[μ] ∈ Hn
dR (X, D0, f)

Graded abelian group of equivalence classes of 
closed forms on  with respect to the 
differential 

X ∖ D0
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De Rham Cohomology

( X, D0, f ) Global Twisted de Rham

H∙
dR(X, D0, f ) ≅ ℍ∙(X, Ω∙

X,D0
, ∇f )

(Ω∙
X,D0

, ∇f ) : Ω0
X,D0

∇f Ω1
X,D0

∇f …
∇f Ωn

X,D0

where

Generalized version:
H∙

dR, γ(X, D0, f ) ≅ ℍ∙(X, Ω∙
X,D0

, ∇γf )
with respect to the differential

∇f = d + γ df ∧

The integrand -form  is 
represented by a class  in the 
degree  Twisted de Rham group 

n μ
[ μ ]

n

[μ] ∈ Hn
dR (X, D0, f)

Graded abelian group of equivalence classes of 
closed forms on  with respect to the 
differential 

X ∖ D0

∇f = d + df ∧ = d + α ∧
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Global Betti Homology

Graded abelian group which captures the topology of chains on  relative to the level sets 
of  at infinity:

X ∖ D0
f

Let us fix  for simplicity.D0 = ∅
The integration cycle  is a non-compact -dim cycle in the complex variety  with boundaries on the 
subset  . The cycle  is represented by the class  

Γ n X
{z ∈ X | f(z) = ∞} ⊂ X Γ [Γ] ∈ HBetti,global

n (X, f, ℤ)

HBetti,global
∙ ((X, D0), f, ℤ) ≡ H∙ (X, D0 ∪ f −1(∞), ℤ)

11/36
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Global Betti Homology

Graded abelian group which captures the topology of chains on  relative to the level sets 
of  at infinity:

X ∖ D0
f

Let us fix  for simplicity.D0 = ∅
The integration cycle  is a non-compact -dim cycle in the complex variety  with boundaries on the 
subset  . The cycle  is represented by the class  

Γ n X
{z ∈ X | f(z) = ∞} ⊂ X Γ [Γ] ∈ HBetti,global

n (X, f, ℤ)

Generalized version:

HBetti,global,γ
∙ ((X, D0), f, ℤ) ≡ H∙ (X, D0 ∪ (γf )−1(∞), ℤ)

C*γ

HBetti,global,γ3
n

HBetti,global,γ2
n

HBetti,global,γ1
n

WCS

γ2

γ1

γ3

HBetti,global
∙ ((X, D0), f, ℤ) ≡ H∙ (X, D0 ∪ f −1(∞), ℤ)
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Master Integrals decomposition

Define a basis of integration contours  for the Betti Homology group  {Γi}N=dimHn

i=1
HBetti,global,γ

n (X, f, ℤ)

Given the exponential integral, with fixed integrand and fixed γ ∈ ℂ*

I = ∫Γ
e−γfμ

Define a non-degenerate internal product on the group  :HBetti,global,γ
n (X, f, ℤ)

such that the integration contour  can be written in terms of the following linear combination:Γ

(Γi, Γj) = cij
Intersection numbers

Γ = (Γ, Γ1) Γ1 + (Γ, Γ2)Γ2 + . . . + (Γ, ΓN)ΓN

leading to the following MIs decomposition for I

I = (Γ, Γ1)∫Γ1

e−γfμ + (Γ, Γ2)∫Γ2

e−γfμ + . . . + (Γ, ΓN)∫ΓN

e−γfμ
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Local to Global isomorphism
( X , f )

HBetti,global,γ
∙ H∙

dR,global,γHBetti,local,γ
∙ H∙

dR,local,γ

Exp. Period Map
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Local to Global isomorphism
( X , f )

HBetti,global,γ
∙ H∙

dR,global,γHBetti,local,γ
∙ H∙

dR,local,γ

Let us assume that   : f
Has finitely many non-degenerate critical points :
All with distinct critical values :

Σ = {σ1 , σ2 , . . . , σN}
S = {f(σ1) = t1 , . . . , f(σN) = tN}
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Local to Global isomorphism
( X , f )

HBetti,global,γ
∙ H∙

dR,global,γHBetti,local,γ
∙ H∙

dR,local,γ

Fixed  and a small positive number , we can associate to each pair  the following homology groupγ ϵ ∈ ℝ (ti, γ)
Local Betti Homology

HBetti,local,ti,γ
∙ ( X, f ) = H∙ (γf −1(D(γti, ϵ)), γf −1(tθγ

); ℤ)
Summing over all the local relative homologies we obtain:

HBetti,local,γ
∙ ( X, f ) =

N

⨁
i=1

HBetti,local,ti,γ
∙ ( X, f )

ℂtti
ϵ

tθγ
θγ

D(ti, ϵ)

f

⊂ X

θγ = arg(γ)
Let us assume that   : f
Has finitely many non-degenerate critical points :
All with distinct critical values :

Σ = {σ1 , σ2 , . . . , σN}
S = {f(σ1) = t1 , . . . , f(σN) = tN}
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Local to Global isomorphism
( X , f )

HBetti,global,γ
∙ H∙

dR,global,γHBetti,local,γ
∙ H∙

dR,local,γ
∼
φθγ

Fixed  and a small positive number , we can associate to each pair  the following homology groupγ ϵ ∈ ℝ (ti, γ)
Local Betti Homology

HBetti,local,ti,γ
∙ ( X, f ) = H∙ (γf −1(D(γti, ϵ)), γf −1(tθγ

); ℤ)
Summing over all the local relative homologies we obtain:

HBetti,local,γ
∙ ( X, f ) =

N

⨁
i=1

HBetti,local,ti,γ
∙ ( X, f )

ℂtti
ϵ

tθγ
θγ

D(ti, ϵ)

f

⊂ X

Let us assume that   : f
Has finitely many non-degenerate critical points :
All with distinct critical values :

Σ = {σ1 , σ2 , . . . , σN}
S = {f(σ1) = t1 , . . . , f(σN) = tN}



Roberta Angius Thimble decomposition and Wall Crossing Structure for Physical Integrals

Local Betti Homology
We can reconstruct the global Betti Homology group using local data. 

1 Consider the level sets associated with the function  :  f γf(z) = t ∈ ℂt

For each value of  this equation defines 
a -dim complex algebraic variety.

t
(n − 1)

As t varies we have an entire family of 
algebraic varieties with different sizes 
for some of their internal 
-dimensional cycles.

(n − 1)

ℂt

f

Geometric point of view: n = 2

14/36
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Define the set of critical loci of  and the corresponding 

set of critical values  (we are assuming 
non-degenaracy)

f : Σ = {σi ∈ X |df(σi) = 0}
S = {f(σ1) = t1, f(σ2) = t2, . . . , f(σN) = tN}

Local Betti Homology
2

In correspondence of these critical values 
the algebraic variety on the fiber is singular. 

Some of the internal -cycles shrink 
to zero size.

(n − 1)

ℂt

n = 2

f

t1t2

Δ2 Δ1

t0

Geometric point of view: 

Vanishing cycles Δi

15/36
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Local Betti Homology

3 Consider the direction  in the -plane and define the set of thimbles .θ = arg(γ) t {Thi,θ}N
i=1

For each critical point  there is a vanishing cycle . ti Δi

Thimble  = Trace of the vanishing 

cycle  along the direction  
starting from the critical point .

Thi,θ
Δi θ = arg(γ)

ti

t1t2 ℂt

f

θ

Th2,θ
Δ2 ∼ Sn−1

Th1,θ

Δ1 ∼ Sn−1

NOTE: Thimbles are -dimensional. They have 
the right dimension to be integration cycles!

n

The whole set of thimbles constructed along the 
direction  form a basis for the Betti homologyarg(γ)

HBetti,γ
n (X, f, ℤ) ≃ ⟨Th1,θ, Th2,θ, . . . , ThN,θ⟩

16/36
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Master Integrals decomposition

Define a basis of integration contours  for the Betti Homology group  {Γi}N=dimHn

i=1
HBetti,global,γ

n (X, f, ℤ)

Given the exponential integral, with fixed integrand and fixed γ ∈ ℂ*

I = ∫Γ
e−γfμ

Define a non-degenerate internal product on the group  :HBetti,global,γ
n (X, f, ℤ)

such that the integration contour  can be written in terms of the following linear combination:Γ

(Γi, Γj) = cij
Intersection numbers

Γ = (Γ, Γ1) Γ1 + (Γ, Γ2)Γ2 + . . . + (Γ, ΓN)ΓN

leading to the following MIs decomposition for I

I = (Γ, Γ1)∫Γ1

e−γfμ + (Γ, Γ2)∫Γ2

e−γfμ + . . . + (Γ, ΓN)∫ΓN

e−γfμ

17/36
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Internal product in Betti Homology
For generic values of the angle , thimbles associated with different critical values never intersectθ = arg(γ)

We can define an intersection pairing:

⟨ ⋅ , ⋅ ⟩ : HBetti,global,γ
n (X, f, ℤ) × HBetti,global,eiπγ

n (X, f, ℤ) ⟼ ℤ

Betti homology

{Thi,θ}N
i=1

Dual Betti homology

{Thi,θ+π}N
i=1

With respect to these basis the intersection pairing is given by:   ⟨Thi,θ, Thj,θ+π⟩ = δij

ti θθ + π

Thi,θThi,θ+π

18/36
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Thimbles degeneration
Problems appear for special values of  for which the lines with direction  in the plane  intersect  
two or more critical points.

γ θ = arg(γ) ℂt

Degeneration of the corresponding thimbles
Appearence of Stokes rays in the plane . In correspondence of this lines we have a 
wrong number of thimbles, then a corresponding wrong computation of the number of MIs.

ℂ*γ

ℂ*γ ℂtt2

t1

t3

θ

arg(γ) = θ

Stokes’ ray

19/36

Stokes’ line



Roberta Angius Thimble decomposition and Wall Crossing Structure for Physical Integrals

Wall Crossing Structure (WCS)
Stokes’rays divide the plane  in different sectors.ℂ*γ

Study how the basis of thimbles change when we 
cross these rays = WCS.

20/36
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Wall Crossing Structure (WCS)
Stokes’rays divide the plane  in different sectors.ℂ*γ

Study how the basis of thimbles change when we 
cross these rays = WCS.

To cross a Stokes ray corresponding to a Stokes line in the  plane connecting the critical values  and   
imposes a discontinuity jump for the corresponding thimbles  and  described by matrix of the form:

ℂt ti tj
Γi Γj

Region 1

Region 0

Stokes ray

(
Γ+(1)

i

Γ+(1)
j ) = (1 Δij

0 1 ) (
Γ+(0)

i

Γ+(0)
j )

Intersection numbers among the corresponding vanishing cycles

Δij = (±1)Δi ∘ Δj .

Local monodromies around the critical points completely 
determine these numbers via Picard-Lefshetz theorem:

Mj(Δi) = Δi + (−1)n(n+1)/2(Δi ∘ Δj)Δj

IMPORTANT!

20/36
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Master Integrals evaluation
Evaluate the integrals along the thimbles in the different sectors and determine which ones are dominant.

Fixed  γ I =

I1(γ)
I2(γ)

. .. .
IN(γ)

with Ii(γ) = ∫thi,γ

e−γfμ = e−γti ∫thi,γ

e−γ( f−ti)μ

For    : γ ↦ ∞ Ii(γ) = e−γti ∑
λ

ci,λγ−λ−1 We need to compute these 
coefficients

Put    and write the thimble as   s = f(z) − ti thi,γ = ⋃
s≥0

Δi(s)

Using the Gelfand-Leray map, the exponential integral becomes

Ii(γ) = e−γti ∫
∞

0
dse−γsvolΔi

(s) where volΔi
(s) = ∫Δi(s)

μ
ds Δi(s)

Volume of the (n-1)-dim 
vanishing cycle
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Master Integrals evaluation

volΔi
(s) = ∫Δi(s)

μ
ds Δi(s) Power series expansion

volΔi
(s) = ∑

λ
∑

0≤k≤kmax

aλ,ksλ(log s)k

Eigenvalue  of the monodromy operator acting 
on  when we turn around .

e2πiλ

Hn−1( f −1(s), ℤ) s = 0λ :

Dimension of the Jordan blockkmax + 1 =

Substituting the expansion into the exponential integral:

Ii(γ) = e−γti ∑
λ

∑
k

aλ,k ∫
∞

0
dse−γssλ(log s)k = e−γti ∑

λ
∑

k

aλ,k
dk

dλk [γ−(λ+1)Γ(λ + 1)]

Comparing with the previous expansion:
ci,λ =

1
γ−(λ+1) ∑

k

aλ,k
dk

dλk [γ−(λ+1)Γ(λ + 1)] .
Closed form for 
the coefficients !

s = 0
s

Δi(s)



Holomorphic functions
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Holomorphic function
In the simple case in which the function  is holomorphic the previous analysis connects 
with the study of Lefschetz thimbles in (a complexified version of) Morse theory.

f(z) : X ↦ ℂ

I = ∫Γ
e−γfμ

∙ X = ℂn

∙ h = Re(γf ) Morse function

∙ Γi Lefschetz thimbles:
Solutions of the gradient flow equations:

dui

dτ
= gij ∂h

∂uj

• Im(γf ) = const

•  passes through the critical point Γi σi

•  monotonically increases along h Γi

Assure convergence of 
the integral along the 
paths Γi

23/36
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Holomorphic Morse theory
Let us consider the case , andX = ℂ

I(γ) = ∫Γ
e−Re(γf(z))−iIm(γf(z))g(z) dz

Any reasonable cycle  that assure convergence:Γ

   where  Γ ∈ H1(ℂ, DN, ℤ) DN = {z ∈ ℂ |Re(γf(z)) ≤ N, N > > 1}

ℂz

Γ1

Γ2 Γ3

    Im(γf )
Γ

= const

Morse theory applied to this setup, with Morse function  over the non-compact space  
gives us the information to construct the relative homology

h = Re(γf ) ℂ

 Betti inequality   (saturated in the case of saddles)   rank (rank(H1(ℂ, DN, ℤ))) ≤ #crit.points

Gradient flow equations
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Example: Pearcey’s Integral

P(γ) = ∫Γ
e−γ(z4+bz2+cz+d)dz

Describing the Grand-canonical partition function 
of  gauge Skyrme models for nuclear matter.
[Cacciatori, Canfora, Lagos, Muscolino,Vera - ’21 ]

The algebraic variety is .X = ℂ

The critical points of  define the set: f Σ = {z ∈ ℂ | f′￼(z) = 4z3 + 2bz + c = 0}
According with the sign of the discriminant  we have three different situations:Δ = 8b3 + 27c2

Δ ≡
> 0 1  real and 2 complex conjugate solutions,
< 0 3  real different solutions,
= 0 3  real solutions with at least a multiple root.

Three different regions in the 
parameter space  with 
different Betti homologies and 
different WCSs.

(a, b)

25/36
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Region Δ > 0

• 3 distinct critical points in X = ℂ

• 3 distinct thimbles  for the Betti 

homology  and 3 distinct 
thimbles for the dual homology

{Γ+
i }3

i=1

HBetti,γ
n (ℂ, f, ℤ)

dimHBetti
1 (ℂ, f, ℤ) = 3

26/36
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Region Δ > 0

• 3 distinct critical points in X = ℂ

• 3 distinct thimbles  for the Betti 

homology  and 3 distinct 
thimbles for the dual homology

{Γ+
i }3

i=1

HBetti,γ
n (ℂ, f, ℤ)

   

l0 : Re(γ) = −
11
16

3
2

Im(γ), where Im(γf(z)) |σ1
= Im(γf(z)) |σ2

,

l1 : Re(γ) = 0, where Im(γf(z)) |σ2
= Im(γf(z)) |σ3

,

l2 : Re(γ) =
11
16

3
2

Im(γ), where Im(γf(z)) |σ1
= Im(γf(z)) |σ3

.

Stokes’rays separating the 
regions (0) , (1) and (2) in the 
plane ℂγ

dimHBetti
1 (ℂ, f, ℤ) = 3

26/36
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Region Δ > 0
Fix γ ∉ li
3 critical points in  corresponding to the 3 critical values  ,  and Σ f(σ1) = t1 f(σ2) = t2 f(σ3) = t3
Construct the fibration   , wich fibers are the four points f : ℂ ↦ ℂt f −1(t) = {z1(t), z2(t), z3(t), z4(t)}

ℂt

z2

z1

z3
z4

t2

t1

t3

z1

z2
z3 ≡ z4    and   Δ1 = {z3} − {z4} Δ2 = Δ3 = {z1} − {z4}

Construct the vanishing cycles

   and   M1 = (
−1 0 0
−1 1 0
1 0 1) M2 = M3 = (

1 −1 0
0 −1 0
0 0 −1)

Compute the monodromies around the critical values

Compute the jump matrices for the WCS

                  T(0) = (
1 1 0
0 1 0
0 0 1) T(1) = (

1 0 0
0 1 0
0 −2 1) T(2) = (

1 0 0
0 1 0
1 0 1)

27/36



Roberta Angius Thimble decomposition and Wall Crossing Structure for Physical Integrals

Region Δ < 0
ℂz dimHBetti

1 (ℂ, f, ℤ) = 3

3 vanishing cycles

 ,   
,  

Δ1 = {z1} − {z2}
Δ2 = {z3} − {z4}
Δ3 = {z1} − {z4}

Monodromies

 ,     and M1 = (
−1 0 0
0 1 0

−1 0 1) M2 = (
1 0 0
0 −1 0
0 −1 1) M2 = (

1 0 −1
0 1 −1
0 0 1 )

1 Stokes’ray: study the corresponding WCS.
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Region Δ = 0
ℂz ℂzℂz

H1(X, DN, ℤ) = span{Γ+
1 , Γ+

23} ≅ ℤ2

H1(X, DN, ℤ)∨ = span{Γ−
1 , Γ−

23} ≅ ℤ2

H1(X, DN, ℤ) = span{Γ+
123} ≅ ℤ

H1(X, DN, ℤ)∨ = span{Γ−
123} ≅ ℤ
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Multivalued function
Let us consider the case in which  is a multivalued function.f : X ↦ ℂ

The main constructions underlying the analysis still work but we need some modifications!

MAIN POTENTIAL PROBLEM

Additional contribution to the 1-form  defining the twist in the de Rham cohomologyα
• Holomorphic case:   (exact form)α = df

• Multivalued case:   (closed form, not necessary exact)α = αreg + αlog + α∞

Geometric Manipulations

30/36

H∙
dR(X, D0, f ) ≅ ℍ∙(X, Ω∙

X,D0
, ∇f ) ∇f = d + α ∧
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Choice of a “good” compactification
Choose a suitable compactification for  s.t.:X ↦ X

Study the behavior of  along the divisors.f : X ↦ ℂ

X − X = Dh ∪ Dv ∪ Dlog

Horizontal divisor
Locus at infinity where 

 is finite.f
Vertical divisor

Locus at infinity where 
 diverges.f

Log divisor
Locus at which  has 

log poles.
df

31/36

(i) Among all the normal crossing divisors, only  and  can have common irreducible components;Dv Dlog

(ii) For any  there exists a small neighbourhood  in which the closed meromorphic 1-form  can  be 
locally expressed as:

z ∈ X Uz α

α = αlog + αreg + α∞

Regular form

Logarithmic form : αlog = ∑
i

ci d log zi

In local coordinates near  ( ) withDlog Πizi = 0

ci = ∮S1
i

α

Exact form : α∞ = dF
In local coordinates near  ( ) withDv Πjzj = 0

F =
c

∏j z
kj
j
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Logarithmic exponent

I = ∫Γ

dx ∧ dy

[y2 − x(x − 1)(x − λ)]γ = ∫Γ
e−γ log[y2 − x(x − 1)(x − λ)]dx ∧ dy = ∫Γ

e−γ log ℬ(x,y;λ)dx ∧ dy

•                          X = ℂ2∖{ℬ = 0}

•                        X = ℙ2 = ℂ2 ∪ ℙ1 = X ∪ {ℬ = 0} ∪ ℙ1

• We study the closed form:                     d log ℬ =
2ηydy + [y2 + x2 + xλ(x − 2η)]dη + [−3x2 − η2λ + 2xη(1 + λ)]dx

y2η − x(x − η)(x − ηλ)

•                         Dh = Dv = ∅

•                        Dlog = Dℬ ∪ D∞ with Dℬ = ℰλ = {[x : y : η] ∈ ℙ2 |ℬ = 0}

D∞ = ℙ1 = {[x : y : 0] ∈ ℙ2}

32/36

α = d log ℬ
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Regime λ ∈ ℙ1∖{0, 1, ∞}

33/36

ℂt

ℂT

t2t1

T2 T1

π
log

arg(γ) = 0

arg(γ) = 0

Critical points 

                 

with critical values 

𝒵(α) = {(xi, yi) |d log ℬ = 0} = {(
1
3 [1 + λ − 1 + λ(λ − 1)] ,0), (

1
3 [1 + λ + 1 + λ(λ − 1)] ,0)}

S = {Ti = log ℬ(xi, yi; λ)} = {T1 = log t1, T2 = log t2}

We construct the double fibration

We determine the vanishing cycles using 
Picard-Lefschetz theory

For fixed  we construct the thimbles 
tracing the vanishing cycles along the 
direction 

γ

θ = arg γ

θ1 = arg(γ1) = arctan ( π
log | t1

| + log | t2 |) ∼ 0.470933π

θ2 = arg(γ2) = arctan ( π
log | t1

| + log | t2 |) + π ∼ 1.470933π

Stokes’ jumps
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Regime λ = 0
(Unpublished)

The curve  in the family  of Legendre curves is singular.ℰ0 : y2 − x2(x − 1) = 0 ℰλ

To understand the type of singularity we can study the monodromy in  around ℙ1∖{0,1,∞} λ = 0

M0 = ( 1 0
−1 1) N0 = log M0 = ( 0 0

−1 0)
This contain the information about the Hodge-Deligne splitting that replace the Hodge decomposition as 
we approach the locus λ = 0

H1(ℰ0) = H1,0(ℰ0) ⊕ H0,1(ℰ0){ {
dimH1,0 = 1 dimH0,1 = 1

λ ↦ 0
I1,1

I0,0

I0,1I1,0

Type II
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Regime λ = 0
(Unpublished)

The main problem is that the locus , when , is singularℬ = 0 λ = 0

If we continue using the twist , we obtain a single non-degenerate critical point at α = d log ℬ(x, y; 0)

(x1, y1) = ( 2
3

,0)

Blow up: No new critical points!

One single thimble:
Rank reduction : 2 ↦ 1

No Stokes’ phenomena

and now the form  is not globally well defined in . 

We obtain an indeterminate form at .

α = d log ℬ X̄
(0,0)

?

?

Approaching parametrically the limit : Accumulation of 
Stokes lines leading to thimble degeneration.

λ ↦ 0
ℂ*

λ ↦ 0
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Conclusions and future directions
Exponential integrals provide a well defined pairing between twisted de Rham co-cycles and Betti cycles 
over complex manifolds that allow to accomodate in the same framework a wide range of physically 
relevant integrals. 

The WCS analysis allows for an analytic continuation of the MIs decomposition in the parameter  to study 
Stokes’ phenomena to assure a sharp counting of the co-homology dimension.

γ

To test the analysis in Feynman integrals in different representations;

To study in detail the dependence of the pairing on  the kinematic parameters (  complex 
structure moduli for vanishing cycles);

∼

To performe explicit computations for families of higher s (beyond elliptic curves):
;

CY
K3, CY3, CY4, . . .

To use the method to analyze string amplitudes;

…
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