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and monodromy representations




Periods of algebraic varieties

A period of an algebraic variety is the integral of a rational form of a variety on a cycle.

/\ A is a polynomial
Some integration domain [ A

Y

without boundary —_— =

P defines a smooth variety

k ~ _
o) P\/V(P) = (2| P() = 0}

An elliptic curve

They describe the comparison between topological data (cycles)
and algebraic data (algebraic De Rham forms).

H, (S, Z) X H{x(S) = C VY, 0 > J @
Y

Torelli-type theorem for K3 surfaces:
Two K3 surfaces are isomorphic if and only if they have “the same” periods.

i



Motivation and goals

9000 CMS Prelimina ry ¢ S/B Weighted Data

Braoof we-7TevLosim TIER Periods appear in diverse fields of mathematics and
e, | - physics, such as (Quantum) field theory (Feynman
§]§§3 /{ ’; integrals), Hodge theory, motives, number theory
%222 ‘ (BSD conjecture) ...

D 400 -
= 200E Hundreds of digits
0! 5 5 Sufficiently many to recover
m,, (GeV) algebraic invariants

s

Goal: compute numerical approximations of these integrals with large precision.

For this, we need an appropriate description of the integrals.

In particular we will focus on understanding the cycles of ~—
integration (the homology), how to represent them in a way that
make integration concrete, and how to compute a basis of them.

Furthermore we want this to be effective and efficient.
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Previous works

[Deconinck, van Hoeij 2001], [Bruin, Sijsling, Zotine 2018],
[Molin, Neurohr 2017]:
Algebraic curves (Riemann surfaces)

2 e <

[Elsenhans, Jahnel 2018], [Cynk, van Straten 2019]:
Higher dimensional varieties
(double covers of P? ramified along 6 lines / of P? ramified along 8 planes)

Picture by
Alessandra Sarti

[Sert6z 2019]: compute the period matrix of smooth projective
hypersurfaces by deformation.

Variety for which . - p Target variety
the periods are known
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Previous works

[Sert6z 2019]: compute the periods matrix by deformation:

: Q
We wish to compute [ :
X3+Y3+Z23+XYZ

Y Ty
Q
X3+ Y3+2Z3+1XYZ’

Let us consider instead 7, = [
It

Exact formulae are known for z, [Pham 65, Sertoz 19]
Furthermore 7, is a solution to the differential operator
L=+ 27)8t2 + 3t26t + ¢t (Picard-Fuchs equation).

We may numerically compute the analytic continuation of
along a path from 0 to 1. [Chudnovsky?, Van der Hoeven, Mezzarobba]
This way, we obtain a numerical approximation of z,.
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Previous works

[Sert6z 2019]: compute the periods matrix by deformation:

Two drawbacks :

We rely on the knowledge of the periods of some variety.
[Pham 65, Sertdoz 19] provide the periods of the Fermat hypersurfaces

VIXE+ ...+ X9).
In more general cases (e.g. complete intersections), we do not have this data.

The differential operators that need to be integrated
quickly go beyond what current software can manage:

to compute the periods of a smooth quartic surface in [|3’3,
one needs to integrate an operator of order 21 and high degree.

Idea: a more intrinsic description of the cycles of integration
should solve both problems.
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Contributions

New effective method for computing homology and periods
with high precision (hundreds of digits):

— implementation in Sagemath
lefschetz_family

— applicable to other types of varieties
(elliptic surfaces, ramified double covers, ...)

— frontal approach to the the
computation of homology of complex
algebraic varieties

— sufficiently efficient to compute periods of
previously inaccessible hypersurfaces
(general smooth quartic surface)
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Periods of algebraic
curves

Algorithm from [Deconinck, van Hoeij 2001]



First example: algebraic curves

Let 2" be the elliptic curve defined ; Cis & — -1
by P=y3 +x341 =0 The fibre abover € Cis X, =f(7)

andletf: (x,y) = y/(2x+ 1) be ={(x,t2x+ 1)) | P (X, 1(2x + 1)) = 0}.
a generic projection. It deforms continuously with respect to 7.

In dimension 1, we are looking for

closed paths in 2, up to deformation foiw ()
(1-cycles). ‘ o
¢ ®
¢ °
Jf(loop) £~ (loop) = loop ?
= loop ® . ° °
Not always,
° . o see next slide 1 .

Values of f for which
PO, tCx+ 1) =£Rx+ 1) +x3+1
has a double root (critical values)

a7



What happens when you loop around a critical point?

A loop Z in C pointed at ¢, induces a permutation of
t%'tl =f_1(t1)' 2

2L

This permutation is called the action of monodromy along £ on & f

It is denoted 7.
If # is a simple loop around a critical value, 7. is a transposition.
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Periods of algebraic curves

The lift of a simple loop # around a critical value ¢ that has a non-trivial
boundary in 2, is called the thimble of c. It is an element of H (X, Z)).

o
Relative homology
:@ of the pair (2, X,
Al
. ¢, .
@ Simple loop
*€3 around ¢,

Thimbles serve as building blocks to recover H,(Z).
It is sufficient to glue thimbles together in a way such that their boundaries cancels.

Concretely, we take the kernel of the boundary map
o: H(X, X)) = Hy(Tp)

Fact: all of H,(%) can be recovered this way.

0 - H(X) » H(ZL, X)) - H(ZL,) S/et%?r?;?eds §
37



Computing periods of algebraic curves

1. Compute simple loops 7, ..., Z.erit. @round the critical values
— basis of z;(C\{crit. val.})
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Computing periods of algebraic curves

1. Compute simple loops 7, ..., Z.erit. @round the critical values
— basis of z;(C\{crit. val.})

2. For each i compute the action of monodromy along #; on X,
(transposition)

2,
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Computing periods of algebraic curves

1. Compute simple loops 7, ..., Z.erit. @round the critical values
— basis of z;(C\{crit. val.})

2. For each i compute the action of monodromy along #; on X,
(transposition)

3. This provides the corresponding thimble A . lts boundary is the
difference of the two points of ', that are permuted.

bz



Computing periods of algebraic curves

1. Compute simple loops 7, ..., Z.erit. @round the critical values
— basis of z;(C\{crit. val.})

2. For each i compute the action of monodromy along #; on X,
(transposition)

3. This provides the corresponding thimble A . lts boundary is the
difference of the two points of ', that are permuted.

4. Compute sums of thimbles without boundary — basis
of H(X)
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Computing periods of algebraic curves

1. Compute simple loops 7, ..., Z.erit. @round the critical values
— basis of z;(C\{crit. val.})

2. For each i compute the action of monodromy along #; on X,
(transposition)

3. This provides the corresponding thimble A . lts boundary is the
difference of the two points of ', that are permuted.

4. Compute sums of thimbles without boundary — basis
of H(X)

5. Periods are integrals along these loops
— we have an explicit parametrisation of these paths — numerical integration.

Lw=L@ DEMO



Hypersurfaces

An inductive approach

|Ideas of [Lefschetz 1924], made effective in [Lairez, PP, Vanhove 2024]



Ehresmann’s

M 0 n Od rO my fibration theorem

Let X be a smooth (hyper)surface in [P3. We consider a projection I — P!
The fibre 2, = f~1(¥) is a curve, which deforms continuously as ¢ moves in P!

The map . : H(Z',) = H{(X',) induced by this deformation
along a loop ¢ is called the monodromy along 7.

A Dehn twist

b. ¢ |]:D1 b ¢ ?

When the monodromy is a Dehn twist, the
singular fibre is said to be of Lefschetz type.

Zx — 1d has rank 1 and its image is primitive. g
37

The monodromy is encoded in a differential
operator: the Picard-Fuchs equation.



Insight into higher dimensions: surfaces

We are looking for 2-cycles. 0t (y) =7 =7
The fibre 2, is a curve which deforms

continuously with respect to 7. Y = Loy
We can recover integration 2-cycles

for the periods of elliptic surfaces as
extensions of 1-cycles of the fibre.

Y
Y. b)x H(X)) - Hy(X, X ,) @

) > Tf(y)
7 does not have boundary
_ o . _ iff y = ¢/, that is
This description of cycles is well-suited iff y € ker £ — id

for integrating the periods:

>
J fCx, y)dxdy = [ ([ fx, y)dX> dy . )
7/(y)

Y b
L} ) P!
[ ]
Two line integrals: °

we know how to compute these efficiently!
[Chudnovsky2, Van der Hoeven, Mezzarobbal]
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Comparison with dimension 1

+  Extensions are 71-cycles obtained by
extending n — 1-cycles along loops.

The monodromy along a loop £ is an
isomorphism of H, ().

If the projection is generic (Lefschetz),
singular fibres are simple.

There is a single thimble per critical value.

We get almost every possible n-cycle
p! by gluing thimbles.

HX) - HX) - HX, X)) = H,_((X})

_ Almost
Possibly / \ generated

nontrivial by thimbles

Ve



Some complications

Not all cycles of H (%) are lift of loops, and thus not all are
combinations of thimbles.

More precisely, we are missing the
homology class of the fibre H ()

and a (an extension of H, ()

H,(X}) 0) to all of P).
O We have a filtration #° ¢ #! c #*? = H (%)

such that
FO ~ H,(X))
b FUFO ~
¢ C FF! ~ Interesting
How do we part

compute this?

is also known as the parabolic cohomology of the local system.

Vs



Computing monodromy of differential operators

[Chudnovsky2 90, Van der Hoeven 99, Mezzarobba 2010]

In a small radius around a:

m (k)
) - Zf k(‘a)

k=0

(t—a)f| < Pm)2™" o
polynomial We compute f*(a) from &Z.

in m (effective)
[Mezzarobba Salvy 2009] In a disk around «a, the precision given by

the Taylor formula is exponential in its order.

From the derivatives at «,
we can recover the derivatives at 1.

o Linear complexity:
recover m digits in @O(m) operations
(using binary splitting)

s



Computing monodromy on cycles

Globally defined
= no monodromy

\ Analytic

continuation

i T ] — ]
L= » II.= dw, = E c.:.| dw
Hl] /[ ata)t [Chudnovsky2 90, Van der Hoeven 99, l-] J 4 4 k'] 4 t

]/j Mezzarobba 2010] Zk C kjyk k Y
Solution to )

Picard-Fuchs ~
i f Vi = CriY
equation of w, j Z kjlk
k
The ¢;;’s are integers

Thus 1 =TIC i.e.

.. 11 = C € GL(2)
1] A

H ® It is sufficient to carry out this
° ] Computation of computation with precision < 1/2
transcendental
nature to recover C exactly.

s



Periods of hypersurfaces

From the monodromy we compute the boundary of thimbles, and we can
glue them to obtain extensions.

0t (y) =¥y —vy

This yields an inductive method for
Ciy computing the periods of smooth

O hypersurfaces.
J ® = [ [ w, | Adt
7A(y)

VO ¢ /4

From the periods, we may recover algebraic invariants.

For example, we can find quartic surfaces with Picard rank 2, 3 and 5,
which were missing entries in a search of [Lairez Sert6z 2019].
4 x2y2 _ xy3 _ y4 n xzyz n xyzz + 1272 — xyzz + xz3
L=V —x3w — xzyw + xyzw — y3w + y2ZW — xz2°w + yzzw - w4+ xyw2

+yzw2 — xzw? —xw’ + yw3 + w3+ w

s



Periods of hypersurfaces

We thus obtain an algorithm for computing the periods of smooth
hypersurfaces, inductive on the dimension.

Because we are working with lower dimensional varieties, this method turns out
to be more efficient than that of [Sertoz 2019].
In particular we are able to compute the periods of quartic K3 surfaces:

P—x*—wh—z*—w* numperiods lefschetz-family ord L degLl
0 <l1ls 384 min. - —

222 2w 4s 574 min. 3 4
—2y32z — 42%w? 2 min. 510 min. ) 38
—zyzw + dxzw? — 2yt 25 min. 607 min. 7 110
3z + 24 + yPw + 22w 346 min. 635 min. 14 591
4ryz? — br?zw — daw? — 42w > 2880 min. 494 min. 21 ?
—2z2w? — 4y?w? — 2yzw? + 2yw? > 500 Gb 543 min. 21 ?

zt — 4y?2% — bx2?w + 2y2®w + zyw? > 500 Gb 538 min. 14 ?

In all cases, lefschetz-family integrates an operator of order 7.

We have solved one of the main difficulties:
a direct computation of the homology of hypersurfaces.

The bottleneck for accessing higher dimensions is still the
order/degree of the differential operators.

s



An application: lines on cubic surfaces

There are 27 (complex) lines L, /., ..., L,; on a cubic surface 2.

Such lines are isolated in their linear equivalence class in H,(X).

These classes are characterised
by the following intersection numbers:

(L, hg) =1 L2=—1

1

where Ko is the class of the hyperplane section.

Animation by Greg Egan

Let 2, be a one parameter family of cubic surfaces.

We may compute the action of monodromy on homology & : Hy(Z,)) = H,(X,).

As . preserves the intersection product and /14, we have that
Lﬂ*Li — LO'f(i)

for some permutation o, of {1,2,...,27}.

We can compute o,!

s



An application: lines on cubic surfaces

The full group of automorphism of the lines preserving
their intersection products is the Weil group W(Ej).

Fact: This is the monodromy group of the full space of cubic surfaces.
This is well known, but we can now just compute it.

Animation by Greg Egan

letG C © ({w, X, Y, z}) be a subgroup, and consider C° be the family of cubic

surfaces with defining equations in w, x, y, z invariant under the action of G.
Let’s compute the action of monodromy in CC on the lines!

Theorem [Brazelton, Raman 2024]: The monodromy group of C&{W-%2}) jg
isomorphic to the Klein four-group K, = (Z127).

\ Surprisingly small DEMO
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Partially symmetric cubic surfaces

Theorem [PP Telen 2025]: Let G be a finite group of linear automorphisms of P
We can compute the monodromy group M,; of CO.

e.g. below is M; for G a subgroup of of ©({w, x,y,z}):

G Mg Card M
{id} W(Ey) 51840
((wx)) W(F,) 1152
((Wx)(yz2)) D,x©, 192
{((wxyz)) (Z147Z) x (Z/27Z)? 16
Qe e
{(wx), (y2)) (Z12Z)* x &, 96
((xyz2)) (Z13Z) x &2 108 S
S({w,x,y}) &3 36
Ay and ©({w,x,y,z}) (Z127)? 4

Furthermore we know what these groups are in the common ambient group W(E).
37



Beyond hypersurfaces

Non-Lefschetz fibrations

[PP 2024]



Elliptic surfaces

An elliptic surface S is a smooth algebraic surface ~ "e fibration is given.
We cannot choose it

equipped with a map to the projective line to be generic.
f: 8- P!

such that all but finitely many fibresf_l(t) are elliptic curves.

f_l(ﬁ) f_l(fs) f_l(tz)

S

We will assume the surface has a

v



Non-Lefschetz fibrations: an example

The Apéry surface S, defined by y? + (t — )xy + ty = x> — tx?.

.O Compute the set X of critical values
i.e., the roots of the discriminant t4(t — E)
®
(60)
®
1/16

v



Non-Lefschetz fibrations: an example

The Apéry surface S, defined by y? + (t — )xy + ty = x> — tx?.

o0

1/16 Pick a base point

v



Non-Lefschetz fibrations: an example

The Apéry surface S, defined by y? + (t — )xy + ty = x> — tx?.

v



Non-Lefschetz fibrations: an example

©

The Apéry surface S, defined by y? + (t — )xy + ty = x> — tx?.

v



Non-Lefschetz fibrations: an example

The Apéry surface S, defined by y? + (t — )xy + ty = x> — tx?.

(4,0) not

primitive

1/16

©

rank (f* — id) * 1

Not all fibres
are Lefschetz!

We have to find a workaround ...

v



Non-Lefschetz fibrations: an example

We deform the surface to S : y2 4+ (t — Dxy + ty = x> — tx*> + ¢.

As the deformation is smooth,
the topology is the same:

H,(S) ~ H,(S).

e,



Non-Lefschetz fibrations: an example

We deform the surface to S : y2 4+ (t — Dxy + ty = x> — tx*> + ¢.

(5 1) o
1 1 01
0 1

( (
2 \ ()
x / (6 1)
SO J (1))

M ()

1

(DY

We apply the previous steps. o 0 1
Now all fibres are of Lefschetz type.
This is called a morsification. <_11 ?)

v



Non-Lefschetz fibrations: an example

We deform the surface to S : y2 4+ (t — Dxy + ty = x> — tx*> + ¢.

ey gy D6
o) ' ~ 0

Some new vanishing extensions appear: <(1) i)
they correspond to components of
singular fibres.
Their periods are zero. < { o>

s



Non-Lefschetz fibrations: an example

We deform the surface to S : y2 4+ (t — Dxy + ty = x> — tx*> + ¢.

) oy GG

O
. : 11
Some new vanishing extensions appeatr: <0 1)
they correspond to components of ®
singular fibres.
Their periods are zero. < | 0>
-1 1

Some other new extensions also appear.

s



The algorithm for elliptic surfaces

Theorem [PP 2024]: The sublattice of H,($) generated by of S, the

, the fibre and singular components has full rank.

only cycles with
nonzero periods

Compute a basis of 1, ..., of m(P\Z,b)

1.
2. Foreach 1 <i < r, compute the monodromy map 7,
3.

4. Integrate the periods on these cycles.

Glue thimbles together to obtain of H,(S).

From the monodromy type of £.., recover the monodromy matrices of a
morsification S.

Glue thimbles together to obtain of HQ(S’).

Recover the homology Hz(g) of the morsification ( + fibre + ).
Describe the extensions of H,() in terms of the extensions of HZ(S ).

Recover the periods of all of H,(S) =~ HQ(S’ ).

v,



Recovering certain algebraic invariants

Theorem [Doran Harder PP Vanhove 2024]: The Tardigrade hypersurface has the same
motivic geometry as a quartic K3 surface with six A, singularities.

s i
S o v
& e
3
-
o e A

N

FI1GURE 13. The tardigrade graph

Our methods allow to compute the periods of this quartic K3 surface.

From the periods, we recover numerically that
its Néron-Severi rank is 11 for generic values of the mass parameters.

Lefschetz’s theorem on (1,1) classes:
A homology class y € H,(S) is in the Néron-Severi group NS(S) iff the periods of

holomorphic forms on y vanish.
Using the LLL algorithm, we can heuristically recover this kernel DEM O
by finding integer linear relations between the periods.
From a monodromy computation, we can certify this! 4



Concluding remarks

New methods for computing periods of algebraic varieties, implemented for
hypersurfaces, elliptic surfaces and Lefschetz genus 2 fibered surfaces.

= o ee
o |

They are sufficiently efficient to recover the periods of examples previously out of reach.

numperiods lefschetz-family

<ls 384 min.

4s 574 min

x4—xy —xy y +x yz+xy 7+ x*7? xyz + xz° 2 min. 510 min.

g- V 25 min. 607 min.
—X3w — X2yw + xy*w — ¥3w + y2zw — xz W+)’ZW 2w+ xyw? 346 min. 635 min.

_ _ > 2880 min. 494 min.

+y w? — xzw? — xw? +yw +zwd +wt < 500 Gb 543 min.

> 500 Gb 538 min.

Used these methods to heuristically
compute algebraic invariants of certain
varieties arising in other contexts (mirror

symmetry, Feynman integrals, number
theory ...)

ol
1r*
[ ]

1 0
0 1

@

FIGURE 13. The tardigrade graph 37/37



Thank you!

L’analysis situs et la géométrie algébrique, 1924, Solomon Lefschetz



