Séminaire de Probabilités commun ICJ/UMPA
Large Deviations for the Largest Eigenvalue of Gaussian Kronecker Random Matrices
par
→
Europe/Paris
435 (ENS de Lyon)
435
ENS de Lyon
Description
We consider Gaussian Kronecker random matrices of the form $X^{(N)}:=\sum_{j=1}^k A_j\otimes W_j+A_0\otimes Id$, where $A_0, ..., A_k$ are real symmetric (resp. complex Hermitian) deterministic $L\times L$ matrices, $W_1, ..., W_k$ are sampled independently from the GOE (resp. GUE) of size $N\times N$, and Id denotes identity. In this setting, we show a large deviations principle for the largest eigenvalue in the regime where the dimension of the Gaussian matrices goes to infinity. The talk is based on joint work with A. Guionnet and J. Husson.