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1. Introduction
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Problems and Methods of Celestial Mechanics

e PROBLEMS OF CELESTIAL MECHANICS

e Combination of orbital and rotational motions around a (not
spherical body, not rigid) central body

e Different stability times: tens of years (artificial satellites) to millions
of years (planets)

e Several degrees of freedom with variables varying on different time
scales (Earth: rotates in 1 day, orbits around the Sun in 1 year, Earth’s
precession occurs on thousands years)

e Conservative and dissipative problems: if present, typically the
dissipation is small — weakly dissipative systems

e MATHEMATICAL METHODS

e Perturbation theory: proper elements, which are quasi-integrals
characterizing the dynamics, application to the space debris problem.
e Nekhoroshev’s theorem: effective stability estimates, application to
satellite and rotational dynamics.
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2. Proper elements and space debris dynamics
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e Satellite ESA numbers:
> 6340 rocket launches since 1957
> 14710 satellites placed into Earth orbit

> 9780 satellites still in space

e Space debris ESA numbers:
> 54000 > 10 cm
> 1.2 millions 1-10 cm

> 140 millions 1 mm - 1 cm.
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Mathematical tools

Mathematical tools:

@ Perturbative methods: to compute approximate solutions.

@ Proper elements: which are quantities (nearly) constant over time.

@ Statistical techniques: to analyze the results.

@ Machine Learning: to cluster and classify the fragments.
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Results mainly in collaboration with Tudor Vartolomei,

Univ. lasi (Romania)

@ dynamics and stability of the fragments generated by a break-up
event;

@ cluster and classify space debris through proper elements
(Hirayama 1918 for asteroid families and later Brouwer, Kozai,
Milani, Knezevich, etc.).
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Hamiltonian model

e Conservative geolunisolar model above 2000 km of altitude (no
atmosphere!), including Earth (with a non-spherical shape), Sun and
Moon (treated as third-body perturbations), SRP.

e Action—angle Delaunay variables:
> Actions L, G, H, related to the orbital elements a, e, by

L=+/Gmga, G=LV1—-¢2, H = Gcosi .

> Angles M, w, 2 = mean anomaly, argument of perigee, longitude of
the ascending node.

e Hamiltonian:

(Gmp)?

="

+HEaTth(L7G7H7 M7W,Q,9) +H]VIOOTL(L7G7H7 M,OJ,Q7AM)

+HSu7L(L7GvH7 M,LU,Q,AS) + HSRP(L7G7H7 M,W,Q7AS)

with 6 = sidereal time, Ays, Ag = orbital elements of Moon and Sun.
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Classification of the arguments in the disturbing

functions

e The Fourier expansions of Hgarth, Hsun/srPs Hoon contain an
infinite number of terms of the form (k; integers):

Agarth (L, G, H) cos(ki M+ko0+ksw+ksQ),
Af:l]:z/kifisks (L,G,H,Ls,Gg, Hg) cos(ki M +ko Mg+ksw+kiws+ksQ+keds),
A%%223k4k5k6(L, G,H, Ly, G, Hyp) cos(ky M+ko Myy+ksw+kawns+ksQ+ke Q)

e The angles involved in the above combinations may be classified as follows:
— fast angles: M and 6 (periods of days);

— semi—fast angles: M)y, and Mg (periods of 1 month and 1 year);

— slow angles: w, Q, war, Qar, wg, Qg (periods of years).
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Terms and resonances

e Classification of the terms of the expansions:

— short periodic terms: involving the fast angles (M, #) with M and
not commensurable;

— resonant (tesseral) terms: involving the fast angles (M, 6) with a
commensurability between M and 0 (say, k1M — ko6l = 0);

— semi—secular terms: depending on the semi-fast angles My;, Mg;

— secular terms: depending on the slow angles w, Q, wyy/s, Qs =
long-term variations of e and i over tens (or hundreds) of years.
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Proper elements

e Initial Hamiltonian:
Hi(L, @) = hi(J) +eRi(J, p) .

e Under a non-resonance assumption on the frequency, implement a
canonical change of variables through a Lie series transformation to
normalize the Hamiltonian at order Q:

Ho(L.¢) = ho(L) +%Ro(L,¢) -
e Neglecting O(£9), the actions are integrals for

. Oho(J'
Mol ) =hott) = J=-D)_y
r 89/
quasi-integrals for Hg = hg + ek Rg.
e Proper elements (quasi-integrals) are back-transformed to the
original variables through the generating function.

A. Celletti (Univ. Rome Tor Vergata Stability in Celestial Mechanics 22 January 2026



Osculating/Mean /Proper elements

Definition

Osculating orbital elements are obtained integrating the full
Hamiltonian or Cartesian equations of motion.

Definition

Mean orbital elements are the orbital elements obtained after averaging
the Hamiltonian w.r.t. the short-period variables (mean anomaly of the
debris and sidereal time).

Definition

Proper elements are obtained averaging the Hamiltonian function w.r.t.
fast, semi-fast and long-period variables to filter out short-period
oscillations and isolate the secular (long-term) behaviour.
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SIMPRO

Break-up Simulator and Orbit Propagator

SIMPRO
simulation of break-up events and propagation of

University of Rome, Tor Vergata, Italy Dr. Marius. Apetrii University of Padova, Italy
Prof. Alessandra Celletti L Prof. Catdlin Gales Prof. Christos Efthymiopoulos
. Dr. Tudor Vartolomei

P H2020-MSCA-ITN-
Stardust —R " 2018
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Training Networks)

EVOLVE 4.0, is freel
://github.com/simproproject/simpro_app
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SIMPRO

Break-up Simulator and Orbit Propagator

Simulate a
break-up event

Simulate multiple
break-up events

View previous
experiments

Propagate
‘ single orbit

User guide

Authorship STARDUST
Reset
‘ application

SIMPRO, based on NASA EVOLVE 4.0, is freely available on
https://github.com/simproproject/simpro__app
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Proper elements: three groups clustering

e Proper elements are of fundamental importance for clustering space debris: find a
map from datapoints to categories, based on the distribution of points in space.

e Clusterization methods: KMeans (unsupervised ML method), DBSCAN
(Density-based spatial clustering of applications with noise), GaussianMixture
(models the probability density with a mixture of Gaussian distributions).
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Work-flow

e Celletti A., Vartolomei T., "A dynamics based procedure for clustering and
classifying space debris", Scientific Reports (2025)

Simulator
SIMPRO

Perturbative
computation of
proper elements

Probability
measures
+

Spreading indicator

(dynamically
informed)

ML clustering
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PDFs and spreading indicator

> Spreading indicator introduced to measure the variation of mean and proper
elements: information on the applicability of the clusterization methods.

> Compute the evolution over 40 years of the probability density functions
(PDFES) of the (varying) mean (yellow) and (overlapping) proper (blue)

inclinations. Proper PDFs: same shape over time = mixture of two normal
distributions.
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Dissipative proper elements [A.C.,Gales,Lhotka, Vartolomei]

e For objects below 2000 km of altitude, one needs to consider the dissipative
effect due to the atmospheric drag:

1 2 a 131 — e2)3
0 = ~3 | Bp'uljez [1+82+Qecosf—m;;cosi o )

1 g cosi
e = —— Bpv [e+cus - 7(2 e+ cos f) — esin’ )} dM
2”/0 ’ f 2/ ppa(l —e)? ( /) !

} M
&3

> First (direct) method: build a canonical transformation in terms of Lie
series, averaging the original Hamiltonian over the angle variables.

> Second (patching) method: partition the total integration time into N
subintervals and compute a distinct generating function for each sub-interval
via the direct transformation.

> Third (Brouwer-Hori) method: based on the transformation on the
Hamiltonian part and also on the dissipative term.

> Fourth (Kamel) method: transform the dissipative system into a
Hamiltonian one by doubling the phase space variables and compute the
proper elements by eliminating its periodic terms.
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Brouwer-Hori method

Proposition
Consider the equations of motion:

. OH . OH
@z—ﬁ+F¢,zy Jz— 6<Pi

for a Hamiltonian function H and non-gravitational contributions (F ;, Fj;).

Under a canonical change of variables (¢, J) — (¢',J’) the transformed
equations are

OH' . OH'
o/ /
b=y +E -

/ .
o i —FJ’Z-, i=1.2

where
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Kamel method

e Non-Hamiltonian vector field: y = g(y, 1), introduce an adjoint vector
Y € R” and a Hamiltonian K, deﬁned as the projection of g on Y

Ky, Y, t)=Y g(y.t) . (1)

Hamilton’s equations associated to K are given by

oK
9= oy =gy, t)
. 0K dg
T T T

e This Hamiltonianization procedure requires to double the order of the
system, since the Hamiltonian K is 2n-dimensional with an explicit time
dependence. Once obtained the Hamiltonian K, we implement the standard
normalization procedure.
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Comparison between Brouwer-Hori,

Figure: Comparison between the Brouwer-Hori (blue), direct (green) and
patching (red) methods for a = 7500 km, e = 0.05, i = 30°, M = 0°, w = 0°,
Q=0 A/m = 1m?/kg from [Celletti Gales Lhotka Vartolomei, 2025].
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3. Effective stability and satellite dynamics
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Nekhoroshev theorem (simplified)

Theorem (non-resonant formulation)
Let H(J, @) = h(J) +eR(J, p) on a domain D x T", such that it can

be extended to a complex domain D,, x Tg, for ro,so > 0.

Assume that the frequency w = % 18 non-resonant for some o, K > 0:

lw- k| > a keZ"™\{0}, |[k|<K.

Assume that ||eR|| < Ey is small on the complex domain.

Then, there exists constants Cy, Cs, x, V1, Y2, Such that

1L(t) — L(O)[| < Cu(

I < G enp((T))

See [Poschel 1993], also in the resonant case for quasi-convex
Hamiltonians.
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The satellite geolunisolar model

Celestial Mechanics nd
hitpsdo

stonomy  (2023)13510
1o org/ 1010075 209

‘GRIGINAL ARTICLE

Nekhoroshev estimates for the orbital stability of Earth’s
satellites

Alessandra Celletti - Irene De Blasi%() - Christos Efthymiopoulos®

Receved:7 December 2021/ Reisad: 23 December 2022/ Acepted: 13 anuary 073
©The Authorty 2023

e Geolunisolar model: Keplerian part + Jo (non-spherical Earth) +
gravitational effects of Sun and Moon (on the ecliptic plane):

Hgls = erp +Hyp +Hs +Hur -

e Studied in [De Blasi, Celletti, Efthymiopoulos 2021] to give bounds
on the stability of the Lidov-Kozai integral.
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Nekhoroshev assumption

> h(J) is convex if (0?h(J)) u -

g:O<:>U—O Yu € R™;
> h(J) is quasi-convez, if w(J) # 0 an

n w(J) u=0 .
Vu € R {(6%((]))“.”0 S u=0;

> h(J) is three-jet non degenerate, if w(J) # 0 and

w(J)-u=0
Vu € R (0?h(L)) u-u=0 S u=0.

n 3%h -
>t et araTa7 (Luinjue =0
e Convexity = Quasi-convexity = Three-jet non-degeneracy.

e The J5 model (without Sun and Moon) is three-jet, but not quasi-convex.
e The geolunisolar model is quasi-convex = the lunisolar perturbation
removes the degeneracy from the Jo model!
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onential stability estimates for a satellite

e Prepare the Hamiltonian by considering the secular Hamiltonian
(averaged over all fast variables, expanded around reference values to
order N = 12, normalized to order ) = 6), which has the form

Ho(L¢') = ho(L) +9 Ro(L,¢)
e Implement Pdschel version of Nekhoroshev’s theorem for

quasi-convex Hamiltonians in non-resonant domains
~ stability estimates for different a, e, .
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bonential bility estimates for a satellite

e Stability time (in years) for (i,e) in the domain of applicability of the
Theorem.

eccentricity 11000 km = altitude 32000
0.5[

25000
0.4
03[

[} 16000
021

0.1 8000
0. F 32000 year:
! ‘ ‘ o

15 3¢ 45 60 75 90
i [deg] inclination

e Stability times have been obtained through Nekhoroshev’s theorem also for
the equilateral Lagrangian equilibrium points.
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4. Effective estimates in rotational dynamics
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Set up (joint work with A. Dogkas and A. Guido)

o Let H(J,p) = h(J) +eR(J, ¢), (J,p) € D CR™ x T" open domain.
@ Define IID C R" the projection of D in the action space.

o Consider a complex extension of the domain: V,,IID x W, T" for
ro, S0 € R.

o Introduce the norm:

IRllroso = sup Y |Re(L)| exp ([|Ell1s0) ,
JEViTID ez

where Z%, = {k € Z" : | k||, < K}.
@ Let £ and M be upper bounds on:

|eR(2. )

<E, sup [93h(J)| <M .
70,50 JeEV IID T 2
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Some definitions

Definition 1: resonant frequency

The frequency vector w(.J) satisfies a resonance of order k € Z"\{0}, if

Definition 2: «, K non- resonant condition

A domain D C R™ x T" is called o, K non-resonant modulo A, for
A C Z3\{0}, if

koDl >a VECZR\{AUY), (Lg)e€D

for some o € Ry. If A = (), D is a completely o, K non-resonant domain.

Definition 3: Diophantine condition

A frequency vector w(J) is said to satisfy the Diophantine condition if

VkezZ"\{0}, CeRy, 7>n—1.
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Non Resonant Stability Estimate

Theorem (Poeschel 1993)

Given H = h+eR in D, let rg, sg > 0. Suppose the domain D is completely
«, K-non-resonant. Let £ > 0 and let r be such that

. a 1
r< mln(MK(l — Z)’TO) .

Assume FE satisfies

eR]lrp,s0 < E < 7K

Then, for any initial condition (J,, ) € D, the actions are bounded as

6

K
1) = Jy|| <+  forall [t|<T= % exp (80>

= explicit estimates on parameters ensuring stability, under applicability conditions
on the parameters (ro, so, M, K, a, E, £). Since these conditions allow some freedom
in parameter choice, we propose an optimization algorithm to maximize the stability
time.
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Optimization of Non Resonant Stability Estimates

For a given initial condition (J,, fo)’ choose the parameters that maximize
the stability time under the conditions:

Emin

IN

\Y]

IA

Y

A. Celletti (Univ. Rome Tor Vergata

1 ar
leR(Lo, po)liroso < B < 55 =
max = inf :
a Wt k- w(Jy)l
Muin = sup  ([07h()]2)
7 JolI<ro

T :min(i(lfl)r)
mar = MK 1 s 70

sup ([[k[l) = K.

min
keAR

Choice of arbitrary

Stability in Celestial Mechanics

parameters
(T0,807M7K,OZ,E7€)
4
E = FEin and 7 = "pag,
1
M = M,in, and o = ppae
L
(TOa S0, Ka e)
such that T'= 3% exp (Kgo) is

maximized.
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Conservative Spin-orbit model

e Assumptions:
o Triaxal satellite S
@ Spin axis 1 to the orbital plane

@ S moves on a Keplerian orbit around a central planet P.

e 1D time dependent Hamiltonian:

J: e ad
H(J1, p1,t) = PRELIGE cos(2p1 — 2f(t))
with e = 3(157;3[1); frequency: w = (wi,1) = (Ji, 1).
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Spin orbit resonance of typ

e A spin-orbit resonance of type ko : k1 (order (k1,—k2)) occurs if
(Definition 1) w - k = 0 with w = (w1,1) and k = (k1, —k2), i.e.

k1w1 — ]{72 =0 s
which implies that the satellite makes kq rotations within ko orbital
revolutions.

e We want to approach a specific resonance without intersecting any
other resonances:

Sequences of Diophantine frequencies — Resonant frequency %
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Sequences of Diophantine frequencies

e Non-autonomous 1D system: w(J) = (wq(J1),1):
Close to a resonance of order (ki, —ks), we seek sequences of irrational
frequencies that approximate the resonant frequency wy = ko/ky:

F(Zlf;’k2) - @ S z—)_oo) (kQ), ’ Agkl"kz) - k? + S Z—)_O()) (k2)+

ki z+7 Ky S PPy k1

for z € Z\{0}, s € Q, v = ‘/52_1 golden ratio.

Proposition

The numbers F,(z’fé’kZ), A(z’fé’kz) satisfy the inequality

@
|kiwy — ka| > Teal V(k1, ko) € Z\{0} .

Consequence of Liouville theorem: Let w be an algebraic number of degree n;
then w satisfies the Diophantine condition for some positive constant C' and
forr=n—1.
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Implementation of perturbation theory

e From H(J, ) = h(J) +eR(J, p), implement a Lie canonical transformation:

(Lp) — (L, ¢)

defined by a generating function x = x(.J', ¢'), such that the new Hamiltonian
is
H (], f) = exp(LX(l/,f/))H(I,gl)
= W(J)+R (S, ¢) .

e This procedure can be iterated up to some optimal order: H' = b’ + e*R/,
H'" =h"+3R", H" = K"+ *R", etc, before the accumulation of small
divisors starts increasing the norm of the remainder.
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Results

e Consider initial conditions such that w(J;(0)), = (Fi’f;’b), 1) or

w(J1(0)), = (AYHF) 1),

H Logyo(ITI)

-220

r198
176
154
132
110
88
66
44
22

Logyo(IT)
[ +es
~62

58

54

b)

Stability time for z = 2,...,100 with s = 1.6 (1 : 1 resonance) and s = 0.6 (3 : 2 resonance),
e = 1073 (a) after two perturbative steps, (b) after three perturbative steps.




Comparison between the last value of J; for which the algorithm provides
results (blue line) and a resonant normal form approximation of the width of
the 1:1 resonance (red line) for e = 1073 (a) after two perturbative steps, (b)

after three perturbative steps.
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tive Spin-spin-orbit mo

e Assumptions:
o Triaxal satellites Sy, So
@ Respective spin axes L to the orbital plane

e 51, So move around each other on Keplerian orbits around their
barycenter (the relative position is given by (r(t), f(¢))).
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2D time dependent Hamiltonian

%(Jla‘]%@laso?)t) = J12 + ‘]22 + Vvl(ra f: 9017902) + VQ(T7 f’ 9017302)

1% mn rlt” cos(2pk — 2f (1))
LT &, 2Ms, Pk

(k) 2
Vo= -5 Z (5’“1 ) <1512+£cos(4¢k—4f( )))

(1) (2)
m e1le eols 35 1
- 4 — 201 — 2 - 201 — 2
T<t)5 ( A45’1 ) ( iuSz > (24 COS( f( ) #1 @2) * 8 008(7901 @2))

k k
318 —1t")
215"

with e, = and m = GMg, Mg,.
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Spin-spin-orbit problem: previous results

e Boué, Maciejewski, Misquero, Scheeres, etc.

inear Sci Numer Simulat 142 (2025) 108548

-N—-_- Contents lists available at ScienceDirect
Journal of Norlinear science  (2022) 32:88 onlincar oy S —— . ——
hitps/doi org/10.1007/500332-022-09840.7 Seienco Communications in So:n Lr;:iroiclence and Numerical
ELSEVIER journal homepage: wiwlsevier comlocstelcnsns
cnagktor Research paper
The Spin-Spin Problem in Celestial Mechanics The dynamics of the spin-spin problem in Celestial Mechanics ™

Adridn P. Bustamante“©"1, Alessandra Celletti "©", Christoph Lhotka "©:"1
@ Deprmnt of Matmats ad tysics, by of R T, i Gl Vs Nl 84, 0146 Ko, iy
3 > Deparmen of s, Unversy of o or Ve, Vi el Ricarca ckneiea 1, 0013 Roma Ty

Alessandra Celletti! . Joan Gimeno? (3 - Mauricio Misquero’

Received: 13 October 2021/ Accepted: 14 August 2022

B o (LL1:1), (3:2,3:2), (1:1,3:2) reso-

nances: analysis of the linear stabil-
e Full model (coupling between orbital and ity of the equilibria in the conservative
rotational motions) and Keplerian model and dissipative settings, proving that
(centers of mass moving on coplanar Kep- the (linear) stability depends on the ec-
lerian ellipses), existence of periodic and centricity; analysis of higher order reso-
quasi-periodic solutions, linear stability, nant islands, which appear in the Kep-
interaction between rotational and orbital lerian case, but are destroyed in the full
motions. problem.
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Sequences of Diophantine frequencies

e Non-autonomous 2D system: w(J) = (w1 (J),wa2(J), 1).

e In the general n-dim case, define the vector w = (wy,...,w,—1,1) € R™ such
w1 b1 1
. e
- : A . ) (2)
Wn—1 bn—l .
1 1 0 0 an—t
where (by,...,b,_1) € R*71 the (n — 1) x (n — 1) dimensional matrix A has

rational coefficients a; with det 4 # 0, and « is a real algebraic number of
degree n. The vectors defined by (2) satisfy the Diophantine condition.

e For n = 3 (2D non-autonomous system) choose « as the solution of
A +a’-1=0.

The number 1/« is the smallest Pisot-Vijayaraghavan (PV) number of degree 3.
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Sequence of Diophantine frequencies

e A spin-spin-orbit resonance of type ks : ky : ko occurs when:

w-k=0 with w = (wy,ws,1) and k= (kq, ks, —k3)

e An intersection between the spin-spin-orbit resonances of types ks 1 : k1 : 0
and k3o : 0 : ks is a spin-orbit/spin-orbit resonance of type (k31 : k1)s,,
(ks : k2)s, defined by the set of equations:

kiwi — ks = 0, kows — k32 =0 .

e Diophantine frequencies for 2D time-dependent Hamiltonian
Given a spin-orbit/spin-orbit resonance of type (ks : k1)s,, (k32 : k2)s,:

- ~ +
(k1,ksq1) _ k3 a: a2 9\ 200 (k31
wl’zl v ki1 :t(?a—s—?a) (k1 ) ’

Jlkakaz) _ ka2 (@a N @az) sovoo, (@)i
2,2 k2 z z kQ

with a; rationals and z integer.
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Results

e We consider as initial conditions (J(0), ¢(0)) = (J1(0), J2(0),0,0) such that
w(T1(0), 2(0)) = (wy2 ™ w2, 1)

2,z

Tl

1.x107

1.x10%

1 100000

035 0.40 0.45 050 055 0.60 0.65 0.35 0.40 0.45 0.50 055 0.60 0.65

Stability time around the spin-spin-orbit resonance (1:1)g,, (3 :2)g,, (a) for
€1 = e2 = 1075 after two perturbative steps and (b) for 1 = 3- 1072 and 3 = 10~* after
two perturbative steps.
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What next?

e Two main directions of research:

(1) natural debris: rings systems using an ellipsoidal model or a
topographic feature model, adopt epicyclic variables, study corotation
and Lindblad resonances through perturbation and bifurcation theory
(in collaboration with I. De Blasi, S. Di Ruzza).

(2) include noise: start from the Sharma-Parathasarathy stochastic
two-body problem, include dissipative effects (generalized Stokes drag)
and find a balance between noise and dissipation, so that angular
momentum and energy are weak integrals, i.e. the expectation at any
time is the same as that at the initial time (in collaboration with C.
Lhotka).
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Main reference

> Perturbation theory and space debris dynamics:

e Celletti A., Pucacco G., Vartolomei T., "Proper elements for space debris",
CM&DA (2022)

e Apetrii M., Celletti A., Efthymiopoulos C., Gales C., Vartolomei T., "Simulating a
breakup event and propagating the orbits of space debris", CM&DA (2024)

e Celletti A., Vartolomei T., "A dynamics based procedure for clustering and
classifying space debris", Scientific Reports (2025)

e Celletti A., Vartolomei T., "Clustering space debris using perturbation theory",
CNSNS (2026)

e Celletti A., Gales C., Lhotka C., Vartolomei T., "Analytical and computational
methods for the determination of proper elements: an application to low Earth
objects with dissipative drag", Preprint (2025)

> Nekhoroshev theorem and satellite dynamics:
e Celletti A., De Blasi I., Efthymiopoulos C., "Nekhoroshev estimates for the orbital
stability of Earth’s satellites", CM&DA (2023)

> Effective estimates in rotational dynamics:
e Celletti A., Dogkas A., Guido A., "Effective stability estimates close to resonances
with applications to rotational dynamics", submitted to Nonlinearity (2025-2026)
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CELMEC IX

¢ CELMEC IX:
14-18 September 2026, San Martino al Cimino, Viterbo, Italy
https : / Jwww.mat.uniroma2.it/ ~ celmec/celmec9/

e CELMEC prizes: Topical issues in Cel. Mech. Dyn. Astron.:

> Analytical and semi-analytical results in Celestial Mechanics
> Pioneering computational techniques in Dynamical Astronomy

e All papers published or accepted in CM&DA within 31 MAY 2026
will compete for the prizes.
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