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Problems and Methods of Celestial Mechanics

• PROBLEMS OF CELESTIAL MECHANICS
• Combination of orbital and rotational motions around a (not
spherical body, not rigid) central body
• Different stability times: tens of years (artificial satellites) to millions
of years (planets)
• Several degrees of freedom with variables varying on different time
scales (Earth: rotates in 1 day, orbits around the Sun in 1 year, Earth’s
precession occurs on thousands years)
• Conservative and dissipative problems: if present, typically the
dissipation is small → weakly dissipative systems

• MATHEMATICAL METHODS
• Perturbation theory: proper elements, which are quasi-integrals
characterizing the dynamics, application to the space debris problem.
• Nekhoroshev’s theorem: effective stability estimates, application to
satellite and rotational dynamics.

A. Celletti (Univ. Rome Tor Vergata) Stability in Celestial Mechanics 22 January 2026 4 / 47



Outline

1. Introduction

2. Proper elements and space debris dynamics

3. Effective stability and satellite dynamics

4. Effective estimates in rotational dynamics

A. Celletti (Univ. Rome Tor Vergata) Stability in Celestial Mechanics 22 January 2026 5 / 47



Space debris

• Satellite ESA numbers:
▷ 6340 rocket launches since 1957
▷ 14710 satellites placed into Earth orbit
▷ 9780 satellites still in space

• Space debris ESA numbers:
▷ 54000 > 10 cm
▷ 1.2 millions 1-10 cm
▷ 140 millions 1 mm - 1 cm.
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Mathematical tools
Mathematical tools:

1 Perturbative methods: to compute approximate solutions.
2 Proper elements: which are quantities (nearly) constant over time.
3 Statistical techniques: to analyze the results.
4 Machine Learning: to cluster and classify the fragments.
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Results mainly in collaboration with Tudor Vartolomei,
Univ. Iasi (Romania)

1 dynamics and stability of the fragments generated by a break-up
event;

2 cluster and classify space debris through proper elements
(Hirayama 1918 for asteroid families and later Brouwer, Kozai,
Milani, Knezevich, etc.).
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Hamiltonian model
• Conservative geolunisolar model above 2000 km of altitude (no
atmosphere!), including Earth (with a non-spherical shape), Sun and
Moon (treated as third-body perturbations), SRP.

• Action–angle Delaunay variables:
▷ Actions L, G, H, related to the orbital elements a, e, i by

L =
√

G mEa , G = L
√

1 − e2 , H = G cos i .

▷ Angles M, ω, Ω = mean anomaly, argument of perigee, longitude of
the ascending node.

• Hamiltonian:

H = − (G mE)2

2L2 + HEarth(L, G, H, M, ω, Ω, θ) + HMoon(L, G, H, M, ω, Ω, ΛM )

+HSun(L, G, H, M, ω, Ω, ΛS) + HSRP (L, G, H, M, ω, Ω, ΛS)
with θ = sidereal time, ΛM , ΛS = orbital elements of Moon and Sun.
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Classification of the arguments in the disturbing
functions

• The Fourier expansions of HEarth, HSun/SRP , HMoon contain an
infinite number of terms of the form (kj integers):

AEarth
k1k2k3k4

(L, G, H) cos(k1M+k2θ+k3ω+k4Ω),

ASun/SRP
k1k2k3k4k5k6

(L, G, H, LS , GS , HS) cos(k1M +k2MS +k3ω+k4ωS +k5Ω+k6ΩS),

AMoon
k1k2k3k4k5k6

(L, G, H, LM , GM , HM ) cos(k1M+k2MM +k3ω+k4ωM +k5Ω+k6ΩM ).

• The angles involved in the above combinations may be classified as follows:
– fast angles: M and θ (periods of days);
– semi–fast angles: MM and MS (periods of 1 month and 1 year);
– slow angles: ω, Ω, ωM , ΩM , ωS , ΩS (periods of years).
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Terms and resonances
• Classification of the terms of the expansions:

– short periodic terms: involving the fast angles (M , θ) with Ṁ and θ̇
not commensurable;
– resonant (tesseral) terms: involving the fast angles (M , θ) with a
commensurability between Ṁ and θ̇ (say, k1Ṁ − k2θ̇ = 0);
– semi–secular terms: depending on the semi-fast angles MM , MS ;
– secular terms: depending on the slow angles ω, Ω, ωM/S , ΩM/S ⇒
long-term variations of e and i over tens (or hundreds) of years.

Figure: Around the geosynchronous resonance λ̇ = Ṁ − θ̇ = 0.
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Proper elements
• Initial Hamiltonian:

H1(J, φ) = h1(J) + εR1(J, φ) .

• Under a non-resonance assumption on the frequency, implement a
canonical change of variables through a Lie series transformation to
normalize the Hamiltonian at order Q:

HQ(J ′, φ′) = hQ(J ′) + εQRQ(J ′, φ′) .

• Neglecting O(εQ), the actions are integrals for

HQ(J ′, φ′) = hQ(J ′) ⇒ J̇
′ = −∂hQ(J ′)

∂φ′ = 0 ,

quasi-integrals for HQ = hQ + εKRQ.
• Proper elements (quasi-integrals) are back-transformed to the
original variables through the generating function.
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Osculating/Mean/Proper elements

Definition
Osculating orbital elements are obtained integrating the full
Hamiltonian or Cartesian equations of motion.

Definition
Mean orbital elements are the orbital elements obtained after averaging
the Hamiltonian w.r.t. the short-period variables (mean anomaly of the
debris and sidereal time).

Definition
Proper elements are obtained averaging the Hamiltonian function w.r.t.
fast, semi-fast and long-period variables to filter out short-period
oscillations and isolate the secular (long-term) behaviour.
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SIMPRO

SIMPRO, based on NASA EVOLVE 4.0, is freely available on
https://github.com/simproproject/simpro_app
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Proper elements: three groups clustering
• Proper elements are of fundamental importance for clustering space debris: find a
map from datapoints to categories, based on the distribution of points in space.

• Clusterization methods: KMeans (unsupervised ML method), DBSCAN
(Density-based spatial clustering of applications with noise), GaussianMixture
(models the probability density with a mixture of Gaussian distributions).

proper elements
at the initial time

mean elements
after 150 years

proper elements
after 150 years

• 3 satellites, a − i (left), e − i (right) at a = 24600 km, i = 20o, 21o, 22o.
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Work-flow
• Celletti A., Vartolomei T., "A dynamics based procedure for clustering and
classifying space debris", Scientific Reports (2025)

Simulator
SIMPRO

Perturbative 
computation of 

proper elements

Probability 
measures

+
Spreading indicator

(dynamically 
informed)

ML clustering
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PDFs and spreading indicator
▷ Spreading indicator introduced to measure the variation of mean and proper
elements: information on the applicability of the clusterization methods.
▷ Compute the evolution over 40 years of the probability density functions
(PDFs) of the (varying) mean (yellow) and (overlapping) proper (blue)
inclinations. Proper PDFs: same shape over time ⇒ mixture of two normal
distributions.
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Dissipative proper elements [A.C.,Gales,Lhotka,Vartolomei]

• For objects below 2000 km of altitude, one needs to consider the dissipative
effect due to the atmospheric drag:

▷ First (direct) method: build a canonical transformation in terms of Lie
series, averaging the original Hamiltonian over the angle variables.
▷ Second (patching) method: partition the total integration time into N
subintervals and compute a distinct generating function for each sub-interval
via the direct transformation.
▷ Third (Brouwer-Hori) method: based on the transformation on the
Hamiltonian part and also on the dissipative term.
▷ Fourth (Kamel) method: transform the dissipative system into a
Hamiltonian one by doubling the phase space variables and compute the
proper elements by eliminating its periodic terms.
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Brouwer-Hori method

Proposition
Consider the equations of motion:

φ̇i = ∂H
∂Ji

+ Fφ,i , J̇i = − ∂H
∂φi

− FJ,i , i = 1, 2 ,

for a Hamiltonian function H and non–gravitational contributions (Fφ,i, FJ,i).
Under a canonical change of variables (φ, J) → (φ′, J ′) the transformed
equations are

φ̇′
i = ∂H′

∂J ′
i

+ F ′
φ,i , J̇ ′

i = −∂H′

∂φi
− F ′

J,i , i = 1, 2 ,

where

F ′
φ,i ≡ F φ · ∂J

∂J ′
i

+ F J ·
∂φ

∂J ′
i

F ′
J,i ≡ F φ · ∂J

∂φ′
i

+ F J ·
∂φ

∂φ′
i

, i = 1, 2 .
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Kamel method

• Non-Hamiltonian vector field: ẏ = g(y, t), introduce an adjoint vector
Y ∈ Rn and a Hamiltonian K, defined as the projection of g on Y :

K(y, Y , t) ≡ Y · g(y, t) . (1)

Hamilton’s equations associated to K are given by

ẏ = ∂K

∂Y
= g(y, t)

Ẏ = −∂K

∂y
= −Y ·

∂g

∂y
.

• This Hamiltonianization procedure requires to double the order of the
system, since the Hamiltonian K is 2n-dimensional with an explicit time
dependence. Once obtained the Hamiltonian K, we implement the standard
normalization procedure.
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Comparison between Brouwer-Hori, direct, patching

Figure: Comparison between the Brouwer-Hori (blue), direct (green) and
patching (red) methods for a = 7500 km, e = 0.05, i = 30o, M = 0o, ω = 0o,
Ω = 0o, A/m = 1m2/kg from [Celletti Gales Lhotka Vartolomei, 2025].
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Nekhoroshev theorem (simplified)

Theorem (non-resonant formulation)
Let H(J, φ) = h(J) + εR(J, φ) on a domain D × Tn, such that it can
be extended to a complex domain Dr0 × Tn

s0 for r0, s0 > 0.
Assume that the frequency ω = ∂h

∂J is non-resonant for some α, K > 0:

|ω · k| ≥ α k ∈ Zn\{0} , |k| ≤ K .

Assume that ∥εR∥ < E0 is small on the complex domain.

Then, there exists constants C1, C2, ε∗, γ1, γ2, such that

∥J(t) − J(0)∥ ≤ C1( ε

ε∗
)γ1 , |t| < C2 exp((ε∗

ε
)γ2) .

See [Pöschel 1993], also in the resonant case for quasi-convex
Hamiltonians.

A. Celletti (Univ. Rome Tor Vergata) Stability in Celestial Mechanics 22 January 2026 23 / 47



The satellite geolunisolar model

• Geolunisolar model: Keplerian part + J2 (non-spherical Earth) +
gravitational effects of Sun and Moon (on the ecliptic plane):

Hgls = Hkep + HJ2 + HS + HM .

• Studied in [De Blasi, Celletti, Efthymiopoulos 2021] to give bounds
on the stability of the Lidov-Kozai integral.
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Nekhoroshev assumption

▷ h(J) is convex if (∂2h(J)) u · u = 0 ⇔ u = 0, ∀u ∈ Rn;
▷ h(J) is quasi-convex, if ω(J) ̸= 0 and

∀u ∈ Rn

{
ω(J) · u = 0
(∂2h(J)) u · u = 0

⇔ u = 0;

▷ h(J) is three-jet non degenerate, if ω(J) ̸= 0 and

∀u ∈ Rn


ω(J) · u = 0
(∂2h(J)) u · u = 0∑n

i,j,k=1
∂3h

∂Ji∂Jj∂Jk
(J)uiujuk = 0

⇔ u = 0.

• Convexity ⇒ Quasi-convexity ⇒ Three-jet non-degeneracy.

• The J2 model (without Sun and Moon) is three-jet, but not quasi-convex.
• The geolunisolar model is quasi-convex ⇒ the lunisolar perturbation
removes the degeneracy from the J2 model!
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Exponential stability estimates for a satellite

• Prepare the Hamiltonian by considering the secular Hamiltonian
(averaged over all fast variables, expanded around reference values to
order N = 12, normalized to order Q = 6), which has the form

HQ(J ′, φ′) = hQ(J ′) + εQ RQ(J ′, φ′)

• Implement Pöschel version of Nekhoroshev’s theorem for
quasi-convex Hamiltonians in non-resonant domains

⇝ stability estimates for different a, e, i.
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Exponential stability estimates for a satellite

• Stability time (in years) for (i, e) in the domain of applicability of the
Theorem.

• Stability times have been obtained through Nekhoroshev’s theorem also for
the equilateral Lagrangian equilibrium points.
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Set up (joint work with A. Dogkas and A. Guido)

• Let H(J, φ) = h(J) + εR(J, φ), (J, φ) ∈ D ⊆ Rn × Tn open domain.
Define ΠD ⊆ Rn the projection of D in the action space.
Consider a complex extension of the domain: Vr0ΠD × Ws0Tn for
r0, s0 ∈ R+.

Introduce the norm:

∥R∥r0,s0 = sup
J∈Vr0 ΠD

∑
k∈Zn

K

|Rk(J)| exp (∥k∥1s0) ,

where Zn
K = {k ∈ Zn : ∥k∥1 ≤ K}.

Let E and M be upper bounds on:∥∥∥εR(J, φ)
∥∥∥

r0,s0
≤ E , sup

J∈Vr0 ΠD

∥∥∥∂2
Jh(J)

∥∥∥
2

≤ M .
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Some definitions
Definition 1: resonant frequency
The frequency vector ω(J) satisfies a resonance of order k ∈ Zn\{0}, if

k · ω(J) = 0 .

Definition 2: α, K non- resonant condition
A domain D ⊆ Rn × Tn is called α, K non-resonant modulo Λ, for
Λ ⊆ Zn

K\{0}, if

|k · ω(J)| ≥ α ∀k ∈ Zn
K\{Λ ∪ 0} , (J, φ) ∈ D

for some α ∈ R+. If Λ = ∅, D is a completely α, K non-resonant domain.

Definition 3: Diophantine condition
A frequency vector ω(J) is said to satisfy the Diophantine condition if

|k · ω(J)| ≥ C

∥k∥τ
1

∀ k ∈ Zn\{0} , C ∈ R+ , τ ≥ n − 1 .
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Non Resonant Stability Estimate

Theorem (Poeschel 1993)
Given H = h + εR in D, let r0, s0 > 0. Suppose the domain D is completely
α, K-non-resonant. Let ℓ > 0 and let r be such that

r ≤ min( α

M K
(1 − 1

ℓ
), r0) .

Assume E satisfies
∥εR∥r0,s0 ≤ E ≤ 1

27ℓ

α r

K
.

Then, for any initial condition (J0, φ0) ∈ D, the actions are bounded as

∥J(t) − J0∥ ≤ r for all |t| ≤ T ≡ s0r

5E
exp

(
Ks0

6

)
.

⇒ explicit estimates on parameters ensuring stability, under applicability conditions
on the parameters (r0, s0, M, K, α, E, ℓ). Since these conditions allow some freedom
in parameter choice, we propose an optimization algorithm to maximize the stability
time.
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Optimization of Non Resonant Stability Estimates

For a given initial condition (J0, φ0), choose the parameters that maximize
the stability time under the conditions:

Emin ≡ ∥εR(J0, φ
0
)∥r0,s0 ≤ E ≤ 1

27ℓ

α r

K

α ≤ αmax ≡ inf
k∈Zn

K

|k · ω(J0)|

M ≥ Mmin ≡ sup
∥J−J0∥≤r0

(
∥∂2

J h(J)∥2
)

r ≤ rmax ≡ min
(

α

MK

(
1 − 1

ℓ

)
, r0

)
K ≥ sup

k∈ΛR

(∥k∥1) = Kmin

Choice of arbitrary
parameters

(r0, s0, M, K, α, E, ℓ)
↓

E = Emin and r = rmax,
↓

M = Mmin and α = αmax

↓
(r0, s0, K, ℓ)

such that T ≡ s0r
5E exp

(
Ks0

6
)

is
maximized.
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Conservative Spin-orbit model

• Assumptions:
Triaxal satellite S

Spin axis ⊥ to the orbital plane
S moves on a Keplerian orbit around a central planet P .

• 1D time dependent Hamiltonian:

H(J1, φ1, t) = J2
1
2 − ε

2
a3

r(t)3 cos(2φ1 − 2f(t))

with ε = 3(I2−I1)
2I3

; frequency: ω = (ω1, 1) = (J1, 1).
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Spin orbit resonance of type k2 : k1

• A spin-orbit resonance of type k2 : k1 (order (k1, −k2)) occurs if
(Definition 1) ω · k = 0 with ω = (ω1, 1) and k = (k1, −k2), i.e.

k1ω1 − k2 = 0 ,

which implies that the satellite makes k1 rotations within k2 orbital
revolutions.

• We want to approach a specific resonance without intersecting any
other resonances:

Sequences of Diophantine frequencies → Resonant frequency k2
k1

.
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Sequences of Diophantine frequencies
• Non-autonomous 1D system: ω(J) = (ω1(J1), 1):
Close to a resonance of order (k1, −k2), we seek sequences of irrational
frequencies that approximate the resonant frequency ω1 = k2/k1:

Γ(k1,k2)
z,s = k2

k1
− s

z + γ

z→∞−−−→ (k2

k1
)− , ∆(k1,k2)

z,s = k2

k1
+ s

z + γ

z→∞−−−→ (k2

k1
)+

for z ∈ Z\{0}, s ∈ Q, γ =
√

5−1
2 golden ratio.

Proposition
The numbers Γ(k1,k2)

z,s , ∆(k1,k2)
z,s satisfy the inequality

|k1ω1 − k2| ≥ C

|k1|
, ∀(k1, k2) ∈ Z2\{0} .

Consequence of Liouville theorem: Let ω be an algebraic number of degree n;
then ω satisfies the Diophantine condition for some positive constant C and
for τ = n − 1.
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Implementation of perturbation theory

• From H(J, φ) = h(J) + εR(J, φ), implement a Lie canonical transformation:

(J, φ) −→ (J ′, φ′)

defined by a generating function χ = χ(J ′, φ′), such that the new Hamiltonian
is

H′(J ′, φ′) = exp(Lχ(J′,φ′))H(J ′, φ′)

= h′(J ′) + ε2R′(J ′, φ′) .

• This procedure can be iterated up to some optimal order: H′ = h′ + ε2R′,
H′′ = h′′ + ε3R′′, H′′′ = h′′′ + ε4R′′′, etc, before the accumulation of small
divisors starts increasing the norm of the remainder.
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Results

• Consider initial conditions such that ω(J1(0))z = (Γ(k1,k2)
z,s , 1) or

ω(J1(0))z = (∆(k1,k2)
z,s , 1).

a) b)
Stability time for z = 2, . . . , 100 with s = 1.6 (1 : 1 resonance) and s = 0.6 (3 : 2 resonance),

ε = 10−3 (a) after two perturbative steps, (b) after three perturbative steps.
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a) b)

Comparison between the last value of J1 for which the algorithm provides
results (blue line) and a resonant normal form approximation of the width of
the 1:1 resonance (red line) for ε = 10−3 (a) after two perturbative steps, (b)

after three perturbative steps.
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Conservative Spin-spin-orbit model
• Assumptions:

Triaxal satellites S1, S2

Respective spin axes ⊥ to the orbital plane
S1, S2 move around each other on Keplerian orbits around their
barycenter (the relative position is given by (r(t), f(t))).
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2D time dependent Hamiltonian

H(J1, J2, φ1, φ2, t) = J2
1 + J2

2 + V1(r, f, φ1, φ2) + V2(r, f, φ1, φ2)

V1 = − m

r3(t)
∑

k=1,2

εkI
(k)
c

2MSk

cos(2φk − 2f(t))

V2 = − m

r(t)5

∑
k=1,2

(
εkI

(k)
c

MSk

)2(
5

112 + 25
48 cos(4φk − 4f(t))

)

− m

r(t)5

(
ε1I

(1)
c

MS1

)(
ε2I

(2)
c

MS2

)(
35
24 cos(4f(t) − 2φ1 − 2φ2) + 1

8 cos(2φ1 − 2φ2)
)

with εk = 3(I
(k)
2 −I

(k)
1 )

2I
(k)
3

and m = GMS1MS2 .
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Spin-spin-orbit problem: previous results

• Boué, Maciejewski, Misquero, Scheeres, etc.

• Full model (coupling between orbital and
rotational motions) and Keplerian model
(centers of mass moving on coplanar Kep-
lerian ellipses), existence of periodic and
quasi-periodic solutions, linear stability,
interaction between rotational and orbital
motions.

• (1:1,1:1), (3:2,3:2), (1:1,3:2) reso-
nances: analysis of the linear stabil-
ity of the equilibria in the conservative
and dissipative settings, proving that
the (linear) stability depends on the ec-
centricity; analysis of higher order reso-
nant islands, which appear in the Kep-
lerian case, but are destroyed in the full
problem.
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Sequences of Diophantine frequencies

• Non-autonomous 2D system: ω(J) = (ω1(J), ω2(J), 1).

• In the general n-dim case, define the vector ω = (ω1, . . . , ωn−1, 1) ∈ Rn such
that: 

ω1
...

ωn−1
1

 =


b1
... A

bn−1
1 0 · · · 0




1
α
...

αn−1

 , (2)

where (b1, . . . , bn−1) ∈ Rn−1, the (n − 1) × (n − 1) dimensional matrix A has
rational coefficients aj with det A ≠ 0, and α is a real algebraic number of
degree n. The vectors defined by (2) satisfy the Diophantine condition.
• For n = 3 (2D non-autonomous system) choose α as the solution of

α3 + α2 − 1 = 0 .

The number 1/α is the smallest Pisot-Vijayaraghavan (PV) number of degree 3.
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Sequence of Diophantine frequencies
• A spin-spin-orbit resonance of type k3 : k1 : k2 occurs when:

ω · k = 0 with ω = (ω1, ω2, 1) and k = (k1, k2, −k3)

Definition
• An intersection between the spin-spin-orbit resonances of types k3,1 : k1 : 0
and k3,2 : 0 : k2 is a spin-orbit/spin-orbit resonance of type (k3,1 : k1)S1 ,
(k3,2 : k2)S2 defined by the set of equations:

k1ω1 − k3,1 = 0 , k2ω2 − k3,2 = 0 .

• Diophantine frequencies for 2D time-dependent Hamiltonian
Given a spin-orbit/spin-orbit resonance of type (k3,1 : k1)S1 , (k3,2 : k2)S2 :

ω
(k1,k3,1)
1,z = k3,1

k1
±
(

ã1

z
α + ã2

z
α2
)

z→∞−−−→
(

k3,1

k1

)±
,

ω
(k2,k3,2)
2,z = k3,2

k2
±
(

ã3

z
α + ã4

z
α2
)

z→∞−−−→
(

k3,2

k2

)±

with ãj rationals and z integer.
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Results
• We consider as initial conditions (J(0), φ(0)) = (J1(0), J2(0), 0, 0) such that
ω(J1(0), J2(0))z = (ω(k1,k3,1)

1,z , ω
(k2,k3,2)
2,z , 1)

a) b)
Stability time around the spin-spin-orbit resonance (1 : 1)S1 , (3 : 2)S2 , (a) for

ε1 = ε2 = 10−5 after two perturbative steps and (b) for ε1 = 3 · 10−5 and ε2 = 10−4 after
two perturbative steps.
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What next?

• Two main directions of research:

(1) natural debris: rings systems using an ellipsoidal model or a
topographic feature model, adopt epicyclic variables, study corotation
and Lindblad resonances through perturbation and bifurcation theory
(in collaboration with I. De Blasi, S. Di Ruzza).

(2) include noise: start from the Sharma-Parathasarathy stochastic
two-body problem, include dissipative effects (generalized Stokes drag)
and find a balance between noise and dissipation, so that angular
momentum and energy are weak integrals, i.e. the expectation at any
time is the same as that at the initial time (in collaboration with C.
Lhotka).
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Main references

▷ Perturbation theory and space debris dynamics:
• Celletti A., Pucacco G., Vartolomei T., "Proper elements for space debris",
CM&DA (2022)
• Apetrii M., Celletti A., Efthymiopoulos C., Gales C., Vartolomei T., "Simulating a
breakup event and propagating the orbits of space debris", CM&DA (2024)
• Celletti A., Vartolomei T., "A dynamics based procedure for clustering and
classifying space debris", Scientific Reports (2025)
• Celletti A., Vartolomei T., "Clustering space debris using perturbation theory",
CNSNS (2026)
• Celletti A., Gales C., Lhotka C., Vartolomei T., "Analytical and computational
methods for the determination of proper elements: an application to low Earth
objects with dissipative drag", Preprint (2025)

▷ Nekhoroshev theorem and satellite dynamics:
• Celletti A., De Blasi I., Efthymiopoulos C., "Nekhoroshev estimates for the orbital
stability of Earth’s satellites", CM&DA (2023)

▷ Effective estimates in rotational dynamics:
• Celletti A., Dogkas A., Guido A., "Effective stability estimates close to resonances
with applications to rotational dynamics", submitted to Nonlinearity (2025-2026)
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CELMEC IX

• CELMEC IX:
14-18 September 2026, San Martino al Cimino, Viterbo, Italy
https : //www.mat.uniroma2.it/ ∼ celmec/celmec9/

• CELMEC prizes: Topical issues in Cel. Mech. Dyn. Astron.:

▷ Analytical and semi-analytical results in Celestial Mechanics
▷ Pioneering computational techniques in Dynamical Astronomy

• All papers published or accepted in CM&DA within 31 MAY 2026
will compete for the prizes.
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