Bulk realisation of anisotropic conformal Carroll symmetries

based on Anisotropic conformal Carroll field theories and their gravity duals, JHEP 09 (2025) 056, arXiv:2505.23755 with E. Despontin, S. Detournay, S. Dutta (work supported by F.R.S.-FNRS)

Dima Fontaine, Université Libre de Bruxelles (PTM)

Institut Denis Poisson, Tours, October 9th, 2025

Contents

In this work, we provide a realisation of infinite-dimensional anisotropic conformal Carroll algebras as the asymptotic symmetries of plane wave spacetimes.

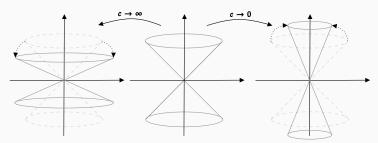
- Introduction:
 - Carroll structures, Carroll symmetries and their conformal extensions.
 - Plane wave spacetimes: definition, properties and the Penrose limit, examples.
- Bulk realisation of anisotropic conformal Carroll symmetries:
 - A z = 0 four-dimensional plane wave.
 - A $z \neq 0$ family of four-dimensional plane waves and the special case of flat space.
 - Conformal boundary of plane waves.
- Work in progress, comments and outlook.

A funky limit of the Poincaré algebra

In the $c\to\infty$ limit, the Poincaré group is contracted to the Galilean group. In the $c\to 0$ limit, a group contraction results in the **Carroll algebra** [Lévy-Leblond, 1965; Sen Gupta, 1966: Bacry, Lévy-Leblond, 1968] :

$$[C_a, P_b] = \delta_{ab}H, \ [J_{ab}, P_c] = 2\delta_{c[b}P_{a]}, \ [J_{ab}, J_{cd}] = 4\delta_{[a[c}J_{d]b]}, [C_a, J_{bc}] = 2\delta_{a[b}C_{c]}.$$

In this limit, the light cone closes:



Geometric realisation in Carroll structures

The Carroll algebra appears geometrically as the isometries of flat Carroll manifolds, smooth manifolds endowed with a twice-symmetric and covariant two-tensor h whose kernel is generated by a non-vanishing vector field τ [Henneaux, 1979]:

$$h_{\mu\nu}=(0,\delta_{ij}), \ \ au^{\mu}=(1,0,..,0).$$

This is usually considered as the **weak** definition of a Carroll structure. A **strong** definition requires an affine connection ∇ preserving the weak triplet (\mathcal{M}, h, τ) [Duval, Gibbons, Horváthy, Zhang, 2014].

In the strong case, the isometries are the $c \to 0$ limit of Poincaré described earlier.

In the weak case, the Carroll algebra is supplemented with an infinite set of supertranslations:

$$x_i \rightarrow x'_i = x_i, \qquad t \rightarrow t' = t + f(x_i).$$

Conformal extensions of the Carroll algebra

Non-relativistic symmetries decouple space and time. Conformal extensions of non-relativistic transformations thus allow for anisotropic scale transformations:

$$t \to \lambda^z t$$
, $x \to \lambda x$.

At the level of the Carroll structure, this is implemented by

$$\mathcal{L}_{\xi}h_{\mu
u}=\lambda(x)h_{\mu
u}, \qquad \mathcal{L}_{\xi} au^{\mu}=-rac{\lambda(x)}{k} au^{\mu},$$

with k the level, and z = 2/k the scaling exponent [Duval, Gibbons, Horváthy, 2014].

The diffeomorphisms ξ solving these equations for a given k generate the z=2/kconformal Carroll algebra, ccarr,

Conformal extensions of the Carroll algebra

In particular, we will be interested in the $0 \le |z| < +\infty$ cases in d=2,3 [Afshar, Bekaert, Najafizadeh, 2024].

• In d = 2,

$$L_n = -z(n+1)x^nt\partial_t - x^{n+1}\partial_x, \quad M_r = x^r\partial_t,$$

with

$$[L_n, L_m] = (n-m)L_{m+n}, \quad [L_n, M_r] = ((n+1)z - r) M_{r+n,s}.$$

Conformal extensions of the Carroll algebra

In particular, we will be interested in the $0 \le |z| < +\infty$ cases in d = 2,3 [Afshar, Bekaert, Najafizadeh, 2024].

In d=3, with complex coordinates w=x+iy,

$$\begin{split} L_n &= -\frac{z}{2}(n+1)w^nt\partial_t - w^{n+1}\partial_w, \qquad \bar{L}_n &= -\frac{z}{2}(n+1)\bar{w}^nt\partial_t - \bar{w}^{n+1}\partial_{\bar{w}}, \\ M_{rs} &= w^r\bar{w}^s\partial_t, \end{split}$$

with

$$\begin{split} [L_n, L_m] &= (n-m)L_{m+n}, \quad [\bar{L}_n, \bar{L}_m] = (n-m)\bar{L}_{m+n} \\ [L_n, M_{rs}] &= \left(\frac{z}{2}(n+1) - r\right)M_{r+n,s}, \quad [\bar{L}_n, M_{rs}] = \left(\frac{z}{2}(n+1) - s\right)M_{r,s+n}. \end{split}$$

A few special cases

For z=1, in d=2 and 3, we find the \mathfrak{bms}_3 and \mathfrak{bms}_4 algebras, respectively.

- The d=2, z=0 case corresponds to the symmetries of warped CFTs [Detournay, Hartman, Hofman, 2012]
- The d=2,3, z=0 symmetries appeared in near-horizon region of black holes in [Donnay, Giribet, Gonzalez, Pino; Afshar, 2016] and subsequently for any z in d=3in [Grumiller, 2019].

Remarkable conformal Carroll subalgebras

For future reference, we mention minimal conformal extensions of the Carroll algebra [Afshar, Bekaert, Najafizadeh, 2024].

In d=2, the Carroll algebra is generated by $\{L_{-1}, M_0, M_1\}$:

$$L_{-1} = -\partial_x, \quad M_0 = \partial_t, \quad M_1 = x \partial_t.$$

- **Type** *D* **conformal Carroll** (scalar Carroll): $L_0 = -zt\partial_t x\partial_x$ (generates a z-dilation)
- **Type** K conformal Carroll: $M_2 = x^2 \partial_t$ (temporal SCT).
- **Type** D K **conformal Carroll** (conformal Carroll): L_0, M_2 .

Remarkable conformal Carroll subalgebras

For future reference, we mention minimal conformal extensions of the Carroll algebra [Afshar, Bekaert, Najafizadeh, 2024].

In d = 3, the Carroll algebra is generated by $\{L_{-1}, L_{-1}, L_0 - \bar{L}_0, M_{00}, M_{01}, M_{10}\}$:

$$\begin{split} L_{-1} &= -\partial_w, \ \bar{L}_{-1} = -\partial_{\bar{w}}, \ M_{00} = \partial_t, \\ M_{10} &= w\partial_t, \ M_{01} = \bar{w}\partial_t, L_0 - \bar{L}_0 = -(w\partial_w - \bar{w}\partial_{\bar{w}}). \end{split}$$

- Type D conformal Carroll (scalar Carroll): $L_0 + L_0 = -zt\partial_t (w\partial_w + \bar{w}\partial_{\bar{w}})$ (generates a z-dilation).
- **Type** K **conformal Carroll**: $M_{11} = w \bar{w} \partial_t$ (temporal SCT).
- Type D-K-type conformal Carroll (conformal Carroll): $L_0 + \bar{L}_0, M_{11}$.

Plane wave spacetimes

Plane waves are a subclass of pp-wave spacetimes, geometries that allow for a null, nowhere-vanishing and covariantly constant vector field [Blau, 2011]. In d dimensions, two usual coordinate systems:

Rosen coordinates:

$$ds^2 = 2dudv + C_{ij}(u)dy^idy^j,$$

$$i, j = 1, ..., d - 2.$$

Brinkmann coordinates:

$$ds^2 = 2dx^+dx^- + A_{ab}(x^+)x^ax^b(dx^+)^2 + d\vec{x}^2,$$

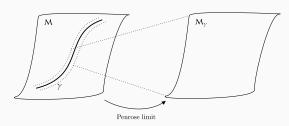
$$a, b = 1, ..., d - 2.$$

Plane waves as the geometry of null geodesics

Plane waves are the generic result of the **Penrose limit** of any spacetime [Penrose, 1976]. Roughly:

- Take any null geodesic γ on a smooth Lorentzian manifold \mathcal{M} .
- Perform a succession of rescalings on the coordinates and the metric and take a limit for the scale parameter.
- Identically, can be understood covariantly as a null Fermi coordinate expansion on the metric [Blau, Frank, Weiss, 2006]

The result is a blown-up infinitesimal neighbourhood of the geodesic.



Isometries

We focus on d=4. Plane waves always have at least five isometries. In Rosen coordinates, they act as

$$u \rightarrow u, \quad y^i \rightarrow y^i + H_{ij}(u)b^j + c^i, \quad v \rightarrow v - b^j y_j - \frac{1}{2}b^j H_{ij}(u)b_j + f.$$

It was shown that these five isometries form the Carroll group in three dimensions without rotations [Duval, Gibbons, Horváthy, Zhang, 2017].

This number can be enhanced:

- to six if the plane wave is conformally flat: $A_{ab}(x^+) = \delta_{ab}A(x^+)$, which restores the Carroll rotation,
- to seven if...?

What plane waves are preserved by conformal extensions of the Carroll algebra?

Plane waves as backgrounds for physical theories

Plane waves are solution of the vacuum Einstein equations iff the Brinkmann wave profile is traceless: the isometry algebra of Einstein plane waves cannot contain the full Carroll algebra.

However, plane waves are string theory backgrounds [Amati, Climcik, 1989; Horowitz, Steif; 1990]: for $C_{ij}(u) = \delta_{ij} C(u)$, the equations of motion of the low-energy effective action

$$\mathcal{S} = \int d^4 x \sqrt{-g} e^{-2\phi} \left(R - \frac{1}{12} H^2 + 4 \nabla_\mu \phi \nabla^\mu \phi \right)$$

reduce to

$$R_{uu}(u) - \frac{1}{2}(C(u))^{-2}H_{uxy}^2(u) + 2\phi''(u) = 0.$$

Plane waves are exact string theory backgrounds: α' corrections vanish for the same reason as plane wave curvature invariants.

Plane waves in the literature

Plane waves sit at the intersection of many areas of high-energy physics:

- Provided the first test of the AdS/CFT correspondence beyond the supergravity approximation (BMN limit) [Berenstein, Maldacena, Nastase, 2002; Sadri, Sheikh-Jabbari, 2003].
- Relation to Carroll symmetry [Despontin, Detournay, DF, 2025]
- Extensions of infrared triangle physics to non-trivial curved spacetimes [Ben Achour, Uzan, 2024; Klisch, 20251.
- Quasinormal mode spectrum of black holes and photon ring holography through the Penrose limit [Hadar, Kapec, Lupsasca, Strominger, 2022; Fransen, 2023; Kapec, Sheta, 2024].
- Plane wave holography?

Bulk realisation of conformal Carroll symmetries

The z=0 conformal Carroll algebra

We begin with the z=0 conformal Carroll algebra. In this $(k\to\infty)$ limit, scale transformations yield

$$t \to t$$
, $x^i \to \lambda x^i$.

The z = 0 conformal Carroll algebra is given by

$$L_n = -x^{n+1}\partial_x, \ M_r = x^r\partial_t, \quad [L_n, L_m] = (n-m)L_{m+n}, \ [L_n, M_r] = -rM_{n+r}$$

in d=2, and

$$\begin{split} L_{n} &= -w^{n+1} \partial_{w}, \ \bar{L}_{n} = -\bar{w}^{n+1} \partial_{\bar{w}}, \ M_{rs} = w^{r} \bar{w}^{s} \partial_{t}, \\ [L_{n}, L_{m}] &= (n-m) L_{m+n}, \ [\bar{L}_{n}, \bar{L}_{m}] = (n-m) \bar{L}_{m+n}, \\ [L_{n}, M_{rs}] &= -r M_{n+r,s}, \ [\bar{L}_{n}, M_{rs}] = -s M_{r,n+s} \end{split}$$

in d=3.

A z = 0 plane wave

We now consider the plane wave

$$ds^{2} = 2dudv + e^{u}(dx^{2} + dy^{2})$$
 (Rosen)
= $2dx^{+}dx^{-} + \frac{1}{4}(\vec{x})^{2}(dx^{+})^{2} + (d\vec{x})^{2}$ (Brinkmann).

In d=3, this plane wave is the Penrose limit of self-dual warped AdS₃. In d=4, this is the Penrose limit of dS² \times \mathbb{H}^2 . It is also a double analytic continuation of the Nappi-Witten spacetime.

This constitutes a string theory background with a non-trivial dilaton.

Isometries

We define complex coordinates

$$w = x + iy$$
, $\bar{w} = x - iy$.

The isometries of this plane wave are generated by

$$\begin{split} L_0 &= \partial_u - w \partial_w, & \bar{L}_0 &= \partial_u - \bar{w} \partial_{\bar{w}}, \\ L_{-1} &= -\partial_w, & \bar{L}_{-1} &= -\partial_{\bar{w}}, \\ M_{10} &= w \partial_v + 2 e^{-u} \partial_{\bar{w}}, & M_{01} &= \bar{w} \partial_v + 2 e^{-u} \partial_w, \\ M_{00} &= \partial_v. \end{split}$$

The isometry algebra is isomorphic to the type-D, z = 0 conformal Carrol extension in d = 3.

Isometries

$$\begin{split} L_0 &= \partial_u - w \partial_w, & \bar{L}_0 &= \partial_u - \bar{w} \partial_{\bar{w}}, \\ L_{-1} &= -\partial_w, & \bar{L}_{-1} &= -\partial_{\bar{w}}, \\ M_{10} &= w \partial_v + 2 e^{-u} \partial_{\bar{w}}, & M_{01} &= \bar{w} \partial_v + 2 e^{-u} \partial_w, \\ M_{00} &= \partial_v. \end{split}$$

Fixing $u \to +\infty$, the algebra generators are projected on the exact corresponding type-D vector fields, with ν identified to the Carrollian time :

Asymptotic symmetries: z = 0 conf. Carroll algebra

Consider the space of geometries

$$\begin{split} ds^2 &= 2dudv + A_a(v,x^b)dudx^a + B_a(v,x^b)dvdx^a \\ &+ \left(H(v,x^a)dw^2 + \bar{H}(v,x^a)d\bar{w}^2\right) + \left(e^u + G(v,x^a)\right)dwd\bar{w}. \end{split}$$

In the $u \to \infty$ region, this space of geometries is preserved by

$$\xi = -\left(\partial_w f(w) + \partial_{\bar{w}} \bar{f}(\bar{w})\right) \partial_u + \alpha(w, \bar{w}) \partial_v + f(w) \partial_w + \bar{f}(w) \partial_{\bar{w}}.$$

Asymptotic symmetries: z = 0 conf. Carroll algebra

In the $u \to \infty$ region, the z = 0 space of geometries is preserved by

$$\xi = -\left(\partial_w f(w) + \partial_{\bar{w}} \bar{f}(\bar{w})\right) \partial_u + \alpha(w, \bar{w}) \partial_v + f(w) \partial_w + \bar{f}(w) \partial_{\bar{w}}.$$

Upon mode expansion,

$$\textbf{\textit{L}}_{\textit{n}} = (\textit{n}+1)\textit{w}^{\textit{n}}\partial_{\textit{u}} - \textit{w}^{\textit{n}+1}\partial_{\textit{w}}, \quad \textbf{\textit{L}}_{\textit{n}} = (\textit{n}+1)\bar{\textit{w}}^{\textit{n}}\partial_{\textit{u}} - \bar{\textit{w}}^{\textit{n}+1}\partial_{\bar{\textit{w}}}, \quad \textbf{\textit{M}}_{\textit{rs}} = \textit{w}^{\textit{r}}\bar{\textit{w}}^{\textit{s}}\partial_{\textit{v}}.$$

These reproduce the z=0 conf. Carroll algebra: bulk uplift of $ccarr_0(3)!$

The plane wave conformal boundary conundrum

The Penrose limit of $AdS_p \times S^q$ is given by

$$ds^{2} = 2dx^{+}dx^{-} - \mu^{2}(\vec{x})^{2}(dx^{+})^{2} + (d\vec{x})^{2}.$$

- Not an example of AdS holography: the conformal boundary of AdS is not part of the plane wave.
- Not an example of plane wave holography: the conformal boundary of the plane wave is a one-dimensional null line [Berenstein, Maldecena, Nastase, 2002; Marolf, 2002; Hubeny, Rangamani, 2003;...].

However, **not all plane waves** have such a conformal boundary.

The plane wave conformal boundary conundrum

The asymptotic region we have identified is $u \to +\infty$. On a fixed u surface, the geometry is that of a three-dimensional Carroll structure:

$$ds^2 = e^u dw d\bar{w}, \quad \tau = \partial_v.$$

With $\tilde{u} = -\tanh(x^+) = -\tanh(u)$, our plane wave becomes

$$ds^2 = rac{1}{1- ilde{u}^2} \left(2d ilde{u}d ilde{v} + d ilde{x}^2 + d ilde{y}^2
ight).$$

This is conformally equivalent to a slice of Minkowski space. This indicates a null, codimension-one conformal boundary at $u \to \infty$.

Summary

So far:

- We have identified a plane wave with seven isometries.
- The isometry algebra is isomorphic to the z = 0, type-D Carroll algebra.
- In the $u \to +\infty$ limit, the isometries are projected on the exact type-D generators.
- The plane wave is the vacuum metric of a space of geometries that is preserved by the full z=0 conformal Carroll algebra.
- The asymptotic region $u \to +\infty$ is the conformal boundary of the plane wave.

Holographic relationship between plane waves and z = 0 ccarr field theories?

Can we extend this to other values of z?

A $z \neq 0$ family of plane waves

We consider the one-parameter family of plane waves

$$ds_{(k)}^{2} = 2dudv + u^{k}dw d\bar{w}$$
 (Rosen),
= $2dx^{+}dx^{-} + \frac{k(k-2)}{4(x^{+})^{2}}(\vec{x})^{2}(dx^{+})^{2} + (\vec{x})^{2}$ (Brinkmann).

- In Brinkmann coordinates, obvious that k = 0, 2 correspond to flat space.
- The geometries are **reflective around the** k = 1 **axis**.

A $z \neq 0$ family of plane waves

We consider the one-parameter family of plane waves

$$ds_{(k)}^{2} = 2dudv + u^{k}dw d\bar{w}$$
 (Rosen),
= $2dx^{+}dx^{-} + \frac{k(k-2)}{4(x^{+})^{2}}(\vec{x})^{2}(dx^{+})^{2} + (\vec{x})^{2}$ (Brinkmann).

These are scale-invariant plane waves:

$$(x^+, x^-, x^i) \to (\lambda x^+, \lambda^{-1} x^-, x^i)$$

is a symmetry. They are typical of Penrose limits around singularities [Blau, Borunda,

O'Loughlin, Papadopoulos, 2003,2004], but also

- of FRW spacetimes.
- near-horizon region of Dp-branes,
- near-horizon region of fundamental strings,

Isometries for $z \neq 0$

Consider $k \neq 0, 1, 2$. These plane waves have seven isometries:

$$\begin{split} L_0 &= \frac{u}{k} \partial_u - \frac{v}{k} \partial_v - w \partial_w, & \quad \bar{L}_0 &= \frac{u}{k} \partial_u - \frac{v}{k} \partial_v - \bar{w} \partial_{\bar{w}}, \\ L_{-1} &= -\partial_w, & \quad \bar{L}_{-1} &= -\partial_{\bar{w}}, \\ M_{10} &= w \, \partial_v + \frac{2}{k-1} u^{1-k} \partial_{\bar{w}}, & \quad M_{01} &= \bar{w} \partial_v + \frac{2}{k-1} u^{1-k} \partial_w, \\ M_{00} &= \partial_v. \end{split}$$

For each value of k, the isometry algebra is **isomorphic to the type-D**, z = 2/k **Carroll algebra**. The asymptotic region we are looking at now depends on k:

- For k > 1, we take $u \to +\infty$.
- For k < 1, we take $u \rightarrow 0$

In both cases, the isometries are projected on the corresponding exact type-D symmetry generators.

Reflectivity around k = 1

As mentioned, the plane waves are reflective around the k=1 axis: the type-D $z=\frac{2}{1+\alpha}$ and $z=\frac{2}{1-\alpha}$ algebras are isomorphic.

Explicitly, starting from $k = 1 + \alpha$, one goes to $k = 1 - \alpha$ by defining

$$u'=u, \quad v'=v-\frac{\alpha}{2}u^{\alpha}\vec{x}^2, \quad \vec{x}'=u^{\alpha}\vec{x}.$$

Then, the new generators

$$\begin{split} L_0' &= \frac{1}{1-\alpha} (\alpha L_0 + \bar{L}_0), \qquad \bar{L}_0' = \frac{1}{1-\alpha} (\alpha \bar{L}_0 + L_0), \\ L_{-1}' &= M_{10}, \quad \bar{L}_{-1}' = M_{01}, \quad M_{10}' = L_{-1}, \quad M_{01}' = \bar{L}_{-1}, \quad M_{00}' = M_{00} \end{split}$$

satisfy the $z = \frac{2}{1 - 2}$ type-D Carroll algebra.

Asymptotic symmetries: $z \neq 0$ conf. Carroll algebra

We consider, for each value of k, the following space of geometries:

$$\begin{split} ds_{(k)}^2 &= 2 du dv + A_a(v, x^b) du dx^a + u B_a(v, x^b) dv dx^a \\ &+ \left(u H(v, x^a) dw^2 + u \bar{H}(v, x^a) d\bar{w}^2 \right) + \left(u^k + u G(v, x^a) \right) dw d\bar{w}. \end{split}$$

This geometry is preserved, in the corresponding asymptotic region, by

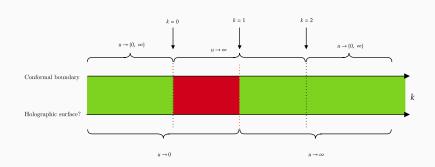
$$L_n = \frac{n+1}{k} w^n \left(u \partial_u - v \partial_v \right) - w^{n+1} \partial_w, \quad \bar{L}_n = \frac{n+1}{k} \bar{w}^n \left(u \partial_u - v \partial_v \right) - \bar{w}^{n+1} \partial_{\bar{w}},$$

$$M_{rs} = w^r \bar{w}^s \partial_v.$$

These reproduce the $z=\frac{2}{k}$ conf. Carroll algebra: bulk uplift of $\operatorname{ccarr}_{\frac{2}{k}}(3)!$

Conformal boundary of $z \neq 0$ plane waves

The one-parameter family of plane waves being **conformally flat**, we studied the conformal boundary by conformally relating to the ESU. Again, the conformal boundary is given by a **null**, **co-dimension one hypersurface**.



The case of flat space

For k = 2, we have **ten isometries**, the Poincaré algebra:

$$\begin{split} L_1 &= uw\partial_u - vw\partial_v - w^2\partial_w - 2\frac{v}{u}\partial_{\bar{w}}, \qquad \bar{L}_1 = u\bar{w}\partial_u - v\bar{w}\partial_v - \bar{w}^2\partial_{\bar{w}} - 2\frac{v}{u}\partial_w, \\ M_{11} &= -2\partial_u + w\bar{w}\partial_v + \frac{2w}{u}\partial_w + \frac{2\bar{w}}{u}\partial_{\bar{w}}. \end{split}$$

These coordinates are known as planar Bondi coordinates. One reaches past and future null infinities by sending $u \to \mp \infty$.

Takeaway message

In our paper, we:

- Identified D = 3,4 plane wave spacetimes whose isometries are conformal extensions of the Carroll algebra in d=2,3.
- Identified families of geometries that realise the full, infinite-dimensional conformal Carroll algebras in selected asymptotic regions.
- Showed that these asymptotic regions mostly coincide with conformal boundaries of the plane waves.
- Commented on the correlation functions of z = 0 conformal Carroll field theories

This work hints towards a holographic description of gravity in plane wave spacetimes.

Outlook

This is step zero in holography for plane waves. Now, we aim to:

- Identify solutions of physical interest in the various spaces of geometries.
- Compute surface charges.
- Match correlators in the bulk with conformal Carroll correlation functions

Other questions:

- Do other plane waves realise other conformal extensions of the Carroll algebra?
- Relation to photon ring physics?
- A conformal Carrollian infrared triangle?

