Séminaire Géométrie et groupes discrets

Divergent Geodesics in Hyperbolic Manifolds and Arithmetic Applications

par Frédéric Paulin (LMO, Université Paris-Saclay)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres CS 40001 91893 Bures-sur-Yvette Cedex
Description

We give an asymptotic formula for the number of common perpendiculars with length tending to infinity between two divergent geodesics in finite volume real hyperbolic manifolds, presenting a surprising non-purely exponential growth. We apply this result to count ambiguous geodesics in the modular curve, recovering results of Sarnak, and to prove a conjecture of Motohashi on the binary additive divisor problem in imaginary quadratic number fields. This is joint work with Jouni Parkkonen.

 

Organisé par

Fanny Kassel

Contact