

Finite N precursors of the free cumulants

Sylvain Lacroix – LPTHE – Sorbonne Université

PIICQ Meeting – October 27th, 2025

Based on 2508.21483 with Jean-Bernard Zuber

Introduction

Cumulants in ordinary and free probability

- Cumulants c_d : related to moments by combinatorics of partitions

$$c_1 = m_1, \quad c_2 = m_2 - m_1^2, \quad c_3 = m_3 - 3m_2m_1 + 2m_1^3$$

$$c_4 = m_4 - 4m_3m_1 - 3m_2^2 + 12m_2m_1^2 - 6m_1^4, \quad \dots$$

- Additivity property:

$$a \text{ and } b \text{ independent} \implies c_d(a+b) = c_d(a) + c_d(b), \quad \forall d$$

Cumulants in ordinary and free probability

- Cumulants c_d : related to moments by combinatorics of partitions

$$c_1 = m_1, \quad c_2 = m_2 - m_1^2, \quad c_3 = m_3 - 3m_2m_1 + 2m_1^3$$

$$c_4 = m_4 - 4m_3m_1 - 3m_2^2 + 12m_2m_1^2 - 6m_1^4, \quad \dots$$

- Additivity property:

$$a \text{ and } b \text{ independent} \implies c_d(a+b) = c_d(a) + c_d(b), \quad \forall d$$

- Free probability: non-commutative random variables [Voiculescu '83]
- Free cumulants κ_d (from non-crossing partitions) [Speicher '94]:

$$\kappa_4 = m_4 - 4m_3m_1 - 2m_2^2 + 10m_2m_1^2 - 5m_1^4, \quad \dots$$

$$a \text{ and } b \text{ free} \implies \kappa_d(a+b) = \kappa_d(a) + \kappa_d(b), \quad \forall d$$

Free cumulants for matrices

- Freeness arises in **large size limit of random matrices** with unitary invariant distributions [Voiculescu '93]: algebraic point of view
- Moments and free cumulants: invariant polynomials on $N \times N$ matrices

$$m_k(A) = \frac{1}{N} \text{Tr}(A^k), \quad \kappa_d(A) = P_d(m_1(A), \dots, m_d(A))$$

- A, B deterministic and $U \in \text{U}(N)$ random (Haar-distributed)
 $\rightarrow A$ and UBU^{-1} free as $N \rightarrow \infty$
- **Additivity property** (in expectation value):

$$\int_{\text{U}(N)} DU \kappa_d(A + UBU^{-1}) \approx \kappa_d(A) + \kappa_d(B) \quad \text{as } N \rightarrow \infty$$

Free cumulants for matrices

- Freeness arises in **large size limit of random matrices** with unitary invariant distributions [Voiculescu '93]: algebraic point of view
- Moments and free cumulants: invariant polynomials on $N \times N$ matrices

$$m_k(A) = \frac{1}{N} \text{Tr}(A^k), \quad \kappa_d(A) = P_d(m_1(A), \dots, m_d(A))$$

- A, B deterministic and $U \in \text{U}(N)$ random (Haar-distributed)
 $\rightarrow A$ and UBU^{-1} free as $N \rightarrow \infty$
- **Additivity property** (in expectation value):

$$\int_{\text{U}(N)} DU \kappa_d(A + UBU^{-1}) \approx \kappa_d(A) + \kappa_d(B) \quad \text{as } N \rightarrow \infty$$

- **Question:** polynomials satisfying this property at finite N ?

Finite N precursors of free cumulants

- Finite precursors of free cumulants [Capitaine Casalis '06]: N -dependent invariant polynomials K_d ($d \leq N$), coinciding with κ_d when $N \rightarrow \infty$
- Additivity property at finite N :

$$\int_{\mathrm{U}(N)} DU K_d(A + UBU^{-1}) = K_d(A) + K_d(B)$$

- Application: a, b independent random matrices with $\mathrm{U}(N)$ -inv dist

$$\mathbb{E}[K_d(a + b)] = \mathbb{E}[K_d(a)] + \mathbb{E}[K_d(b)]$$

Content of this talk

- [SL Zuber '25]: alternative route to K_d from HCIZ integral
→ recover known results but also discover new ones
- Plan of this talk:
 - 1 Definition and additivity of K_d from HCIZ
 - 2 Explicit expressions at finite N
 - 3 Large N limit and relation to Hurwitz numbers
 - 4 Generating function of K_d
 - 5 Averages over sums of conjugacy orbits for general polynomials

Definition and additivity of the precursors from HCIZ integral

HCIZ integral and precursors

- HCIZ integral [Harish-Chandra '57, Itzykson Zuber '80]:

$$Z(A, B; x) := \int_{\mathrm{U}(N)} DU e^{Nx \operatorname{Tr}(AUBU^{-1})}$$

- Converging power series expansion in x

Coefficient of x^d : invariant polynomial of degree d in both A and B

- Free cumulant precursor: “single trace coefficient” of degree $d \leq N$

$$K_d(A) := \frac{d}{N} [x^d \operatorname{Tr}(B^d)] Z(A, B; x)$$

Invariant polynomial in A of degree d

First few precursors

- First few precursors:

$$K_1(A) = \frac{1}{N} \text{Tr}(A)$$

$$K_2(A) = \frac{1}{N^2 - 1} (N \text{Tr}(A^2) - \text{Tr}^2(A))$$

$$K_3(A) = \frac{N}{(N^2 - 1)(N^2 - 4)} (N^2 \text{Tr}(A^3) - 3N \text{Tr}(A) \text{Tr}(A^2) + 2\text{Tr}^3(A))$$

$$K_4(A) = \frac{N^2}{(N^2 - 1)(N^2 - 4)(N^2 - 9)} (N(N^2 + 1) \text{Tr}(A^4) - 4(N^2 + 1) \text{Tr}(A) \text{Tr}(A^3) - (2N^2 - 3) \text{Tr}^2(A^2) + 10N \text{Tr}^2(A) \text{Tr}(A^2) - 5\text{Tr}^4(A))$$

- See later for more general formulas

Additivity of the precursors

$$Z(A, C ; x) := \int_{\mathrm{U}(N)} DU e^{N x \operatorname{Tr}(A U C U^{-1})}$$

- Multiplicativity of the HCIZ integral:

$$\int_{\mathrm{U}(N)} DU Z(A + U B U^{-1}, C ; x) = Z(A, C ; x) Z(B, C ; x)$$

Additivity of the precursors

$$Z(A, C ; x) := \int_{\mathrm{U}(N)} DU e^{Nx \operatorname{Tr}(AUCU^{-1})} = 1 + \frac{N}{d} K_d(A) \operatorname{Tr}(C^d) x^d + \dots$$

- Multiplicativity of the HCIZ integral:

$$\int_{\mathrm{U}(N)} DU Z(A + UBU^{-1}, C ; x) = Z(A, C ; x) Z(B, C ; x)$$

- Extract single trace coefficients: **additivity of K_d**

$$\int_{\mathrm{U}(N)} DU K_d(A + UBU^{-1}) = K_d(A) + K_d(B)$$

Generalised precursors

- Generalised precursor K_α (of degree $d \leq N$):

$$K_\alpha(A) := \frac{\prod_k k^{\hat{\alpha}_k} \hat{\alpha}_k!}{N^\ell} [x^d \operatorname{Tr}(B^{\alpha_1}) \cdots \operatorname{Tr}(B^{\alpha_\ell})] Z(A, B; x)$$

- Labelled by partition $\alpha = (\alpha_1, \dots, \alpha_\ell) \vdash d$ ($\alpha_1 \geq \cdots \geq \alpha_\ell \geq 1$)

$$\alpha_1 + \cdots + \alpha_\ell = d$$

Degree $d(\alpha) = d$, length $\ell(\alpha) = \ell$

- Multiplicity $\hat{\alpha}_k$: number of times k appears in α
- For length 1 partition $\alpha = (d)$: precursor $K_{(d)}(A) = K_d(A)$

Generalised precursors

$$K_\alpha(A) := \frac{\prod_k k^{\hat{\alpha}_k} \hat{\alpha}_k!}{N^\ell} [x^d \operatorname{Tr}(B^{\alpha_1}) \cdots \operatorname{Tr}(B^{\alpha_\ell})] Z(A, B; x)$$

- $\{K_\alpha\}_{\alpha \vdash d}$ basis of invariant polynomials of degree $d \leq N$
- Examples for degree 2:

$$K_{(2)}(A) = \frac{1}{N^2 - 1} (N \operatorname{Tr}(A^2) - \operatorname{Tr}^2(A))$$

$$K_{(1,1)}(A) = -\frac{1}{N(N^2 - 1)} (\operatorname{Tr}(A^2) - N \operatorname{Tr}^2(A))$$

Explicit expressions of the (generalised) precursors

Representation theory of symmetric and unitary groups

- Permutation σ in **symmetric group S_d** with cycle type $[\sigma] \vdash d$:

$$[\sigma] = (\alpha_1, \dots, \alpha_\ell) \iff \sigma \text{ has } \ell \text{ cycles of sizes } \alpha_i$$

- Characterises conjugacy classes:

$$\text{Cl}_\alpha = \{\sigma \in S_d \text{ with cycle type } [\sigma] = \alpha\}, \quad |\text{Cl}_\alpha| = \frac{d!}{\prod_k k^{\hat{\alpha}_k} \hat{\alpha}_k!}$$

- Irreducible reps $V_\lambda^{S_d}$ ($\lambda \vdash d$), with **characters** $\chi_\lambda(\alpha)$

Representation theory of symmetric and unitary groups

- Permutation σ in **symmetric group S_d** with cycle type $[\sigma] \vdash d$:

$$[\sigma] = (\alpha_1, \dots, \alpha_\ell) \iff \sigma \text{ has } \ell \text{ cycles of sizes } \alpha_i$$

- Characterises conjugacy classes:

$$\text{Cl}_\alpha = \{\sigma \in S_d \text{ with cycle type } [\sigma] = \alpha\}, \quad |\text{Cl}_\alpha| = \frac{d!}{\prod_k k^{\hat{\alpha}_k} \hat{\alpha}_k!}$$

- Irreducible reps $V_\lambda^{S_d}$ ($\lambda \vdash d$), with **characters** $\chi_\lambda(\alpha)$
- Irreducible polynomial reps $V_\lambda^{U(N)}$ ($\ell(\lambda) \leq N$) of **unitary group $U(N)$**
- Character: **Schur polynomial $s_\lambda(A)$** , of degree $d(\lambda)$
→ form a basis of invariant polynomials on $N \times N$ matrices

Generalised precursors in terms of Newton polynomials

- Newton polynomials $p_\alpha(A) := \text{Tr}(A^{\alpha_1}) \cdots \text{Tr}(A^{\alpha_\ell})$
- Generalised precursor $K_{[\sigma]}$ ($\sigma \in S_d$) in Newton basis:

$$K_{[\sigma]}(A) = N^{d-\ell([\sigma])} \sum_{\tau \in S_d} \text{Wg}([\sigma\tau^{-1}]) p_{[\tau]}(A)$$

- Weingarten coefficient of $\alpha \vdash d$ (N -dependent):

$$\text{Wg}(\alpha) := \frac{1}{d!} \sum_{\substack{\lambda \vdash d \\ \ell(\lambda) \leq N}} \frac{(\dim V_\lambda^{S_d})^2}{\dim V_\lambda^{\text{U}(N)}} \chi_\lambda(\alpha)$$

[Weingarten '78, Samuel '80, Collins '02]

Generalised precursors in terms of Newton polynomials

- Newton polynomials $p_\alpha(A) := \text{Tr}(A^{\alpha_1}) \cdots \text{Tr}(A^{\alpha_\ell})$
- Generalised precursor $K_{[\sigma]}$ ($\sigma \in S_d$) in Newton basis:

$$K_{[\sigma]}(A) = N^{d-\ell([\sigma])} \sum_{\tau \in S_d} \text{Wg}([\sigma\tau^{-1}]) p_{[\tau]}(A)$$

- Weingarten coefficient of $\alpha \vdash d$ (N -dependent):

$$\text{Wg}(\alpha) := \frac{1}{d!} \sum_{\substack{\lambda \vdash d \\ \ell(\lambda) \leq N}} \frac{(\dim V_\lambda^{S_d})^2}{\dim V_\lambda^{U(N)}} \chi_\lambda(\alpha)$$

[Weingarten '78, Samuel '80, Collins '02]

- $K_{[\sigma]}(A)$: convolution of $\sigma \mapsto \text{Wg}([\sigma])$ and $\sigma \mapsto p_{[\sigma]}(A)$ in $\mathbb{C}[S_d]$
→ recovers matrix cumulants of [Casalis Capitaine '06 '08]

Generalised precursors in terms of Schur polynomials

- Frobenius-Schur relation: Newton \leftrightarrow Schur polynomials

$$p_\alpha(A) = \sum_{\substack{\lambda \vdash d \\ \ell(\lambda) \leq N}} \chi_\lambda(\alpha) s_\lambda(A)$$

- Generalised precursor K_α ($\alpha \vdash d$) in Schur basis:

$$K_\alpha(A) = \sum_{\substack{\lambda \vdash d \\ \ell(\lambda) \leq N}} D_\lambda \chi_\lambda(\alpha) s_\lambda(A), \quad D_\lambda := \frac{\dim V_\lambda^{S_d}}{d! \dim V_\lambda^{U(N)}}$$

Generalised precursors in terms of Schur polynomials

- Frobenius-Schur relation: Newton \leftrightarrow Schur polynomials

$$p_\alpha(A) = \sum_{\substack{\lambda \vdash d \\ \ell(\lambda) \leq N}} \chi_\lambda(\alpha) s_\lambda(A)$$

- Generalised precursor K_α ($\alpha \vdash d$) in Schur basis:

$$K_\alpha(A) = \sum_{\substack{\lambda \vdash d \\ \ell(\lambda) \leq N}} D_\lambda \chi_\lambda(\alpha) s_\lambda(A), \quad D_\lambda := \frac{\dim V_\lambda^{S_d}}{d! \dim V_\lambda^{U(N)}}$$

- Precursor K_d from hook partitions $\lambda_{d,t} = (d-t, 1, \dots, 1)$:

$$K_d(A) = \sum_{t=0}^{d-1} (-1)^t D_{\lambda_{d,t}} s_{\lambda_{d,t}}(A), \quad D_{\lambda_{d,t}} = \frac{N^{d-1}(N-t-1)!}{(N+d-t-1)!}$$

Large N limit and Hurwitz numbers

Moments and large N limit

- **Moment** (normalised trace):

$$m_k(A) := \frac{1}{N} \text{Tr}(A^k)$$

- For $\alpha = (\alpha_1, \dots, \alpha_\ell)$ a partition:

$$m_\alpha(A) := m_{\alpha_1}(A) \cdots m_{\alpha_\ell}(A) = \frac{1}{N^{\ell(\alpha)}} p_\alpha(A)$$

- Sequence $(A_N)_{N \in \mathbb{Z}_{\geq 1}}$ with limiting eigenvalue distribution as $N \rightarrow \infty$
→ moments $m_k(A_N)$ stay finite
- In this talk, **large N limit** of invariant polynomial $f(A)$:
 - rewrite $f(A)$ in terms of $m_k(A)$, with N -dependent coefficients
 - take the limit $N \rightarrow \infty$ while keeping $m_k(A)$ finite

Precursors in terms of moments

- Precursors in terms of moments:

$$K_1 = m_1$$

$$K_2 = \frac{N^2}{N^2 - 1} (m_2 - m_1^2)$$

$$K_3 = \frac{N^4}{(N^2 - 1)(N^2 - 4)} (m_3 - 3m_2m_1 + 2m_1^3)$$

$$K_4 = \frac{N^4}{(N^2 - 1)(N^2 - 4)(N^2 - 9)} ((N^2 + 1)(m_4 - 4m_3m_1 - 2m_2^2 + 10m_2m_1^2 - 5m_1^4) + 5(m_2 - m_1^2)^2)$$

$$K_5 = \dots$$

Large N limits of precursors and free cumulants

- Large N limits of first precursors:

$$\lim_{N \rightarrow \infty} K_1 = \kappa_1 := m_1$$

$$\lim_{N \rightarrow \infty} K_2 = \kappa_2 := m_2 - m_1^2$$

$$\lim_{N \rightarrow \infty} K_3 = \kappa_3 := m_3 - 3m_2m_1 + 2m_1^3,$$

$$\lim_{N \rightarrow \infty} K_4 = \kappa_4 := m_4 - 4m_3m_1 - 2m_2^2 + 10m_2m_1^2 - 5m_1^4$$

Large N limits of precursors and free cumulants

- Large N limits of first precursors:

$$\lim_{N \rightarrow \infty} K_1 = \kappa_1 := m_1$$

$$\lim_{N \rightarrow \infty} K_2 = \kappa_2 := m_2 - m_1^2$$

$$\lim_{N \rightarrow \infty} K_3 = \kappa_3 := m_3 - 3m_2m_1 + 2m_1^3,$$

$$\lim_{N \rightarrow \infty} K_4 = \kappa_4 := m_4 - 4m_3m_1 - 2m_2^2 + 10m_2m_1^2 - 5m_1^4$$

- More generally, from HCIZ [Itzykson Zuber '80]:

$$\lim_{N \rightarrow \infty} K_d = \kappa_d := \sum_{\beta \vdash d} (-1)^{1+\ell(\beta)} \frac{(d + \ell(\beta) - 2)!}{(d-1)! \prod_{k=1}^n \hat{\beta}_k!} m_\beta$$

κ_d free cumulant of degree d

Large N limits of generalised precursors

- Large N limits of generalised precursors:

$$\lim_{N \rightarrow \infty} K_\alpha = \kappa_\alpha := \prod_{i=1}^{\ell(\alpha)} \kappa_{\alpha_i}$$

- Proof using finiteness of $\lim_{N \rightarrow \infty} \frac{1}{N^2} \log Z(A, B; x)$
- Warning: K_α is not factorised before large N limit

Large N limits of generalised precursors

- Large N limits of generalised precursors:

$$\lim_{N \rightarrow \infty} K_\alpha = \kappa_\alpha := \prod_{i=1}^{\ell(\alpha)} \kappa_{\alpha_i}$$

- Proof using finiteness of $\lim_{N \rightarrow \infty} \frac{1}{N^2} \log Z(A, B; x)$
- Warning: K_α is not factorised before large N limit

$\frac{1}{N}$ -corrections to the large N limit of (generalised) precursors?

Topological expansion of generalised precursors

- “Topological” expansion of the generalised precursors as $N \rightarrow \infty$:

$$K_\alpha = \frac{1}{|\text{Cl}_\alpha|} \sum_{g \geq 1 - \ell(\alpha)} N^{2(1 - \ell(\alpha) - g)} \left(\sum_{\beta \vdash n} (-1)^{\ell(\alpha) + \ell(\beta)} H_g^{\bullet, \leq}(\alpha, \beta) m_\beta \right)$$

- $H_g^{\bullet, \leq}(\alpha, \beta)$: disconnected weakly monotone double Hurwitz numbers of type (α, β) and genus g (count certain covers $\Sigma_g \rightarrow \mathbb{CP}^1$ of degree d)
- HCIZ: generating func of $H_g^{\bullet, \leq}(\alpha, \beta)$ [Goulden Guay-Paquet Novak '11]

Topological expansion of precursors

- Topological expansion of the precursors:

$$K_d = \frac{1}{(d-1)!} \sum_{g \geq 0} N^{-2g} \left(\sum_{\beta \vdash n} (-1)^{1+\ell(\beta)} H_g^{\bullet, \leq}((d), \beta) m_\beta \right)$$

- Large N limit gives back the free cumulant:

$$\lim_{N \rightarrow \infty} K_d = \kappa_d = \frac{1}{(d-1)!} \left(\sum_{\beta \vdash n} (-1)^{1+\ell(\beta)} H_0^{\bullet, \leq}((d), \beta) m_\beta \right)$$

- Recovers expression of **genus 0 Hurwitz number** [Novak '14]:

$$H_0^{\bullet, \leq}((d), \beta) = \frac{(d + \ell(\beta) - 2)!}{\prod_k \hat{\beta}_k!}$$

Moments-cumulant relation in free probability

- Inverted relation between moments and generalised precursors:

$$m_d = \sum_{g \geq 0} N^{-2g} \sum_{\alpha \vdash d} P_g(\alpha) K_\alpha$$

$P_g(\alpha) := |\text{permutations } \sigma \in S_d \text{ of cycle type } [\sigma] = \alpha \text{ and genus } g|$

- Large N limit recovers moment-cumulant relation of free probability:

$$m_d = \sum_{\alpha \vdash d} P_0(\alpha) \kappa_\alpha$$

$P_0(\alpha) = |\text{non-crossing partitions of } \{1, \dots, d\} \text{ by subsets of size } \alpha_i|$

- Counting permutations/partitions by genus and type [Kreweras '72, Cori '75, Harer Zagier '86, Cori Hetyei '13, Coquereaux Zuber '23, Hock '23]

Generating function of the precursors

Generating function of the precursors

- Generating function of K_d :

$$\begin{aligned}\mathcal{K}(A; x) &:= \frac{1}{N} \int_{\mathrm{U}(N)} DU e^{N \mathrm{Tr}(AU^{-1})} \mathrm{Tr}\left(\frac{1}{1-xU}\right) \\ &= 1 + \sum_{d=1}^N x^d K_d(A) + O(x^{N+1})\end{aligned}$$

- Proof: extract K_d from HCIZ by orthogonality relation

$$\int_{\mathrm{U}(N)} DU p_\alpha(U^{-1}) p_\beta(U) = \frac{d!}{|\mathrm{Cl}_\alpha|} \delta_{\alpha\beta}$$

- Consequence: $\frac{\mathcal{K}(A; x) - 1}{x} \xrightarrow{N \rightarrow \infty} \text{Voiculescu } \mathcal{R}\text{-transform}$

Invariant polynomials and sums of conjugacy orbits

Algebra of invariant polynomials

- \mathcal{A} : graded algebra of invariant polynomials on $N \times N$ matrices:

$$\mathcal{A} = \bigoplus_{d \geq 0} \mathcal{A}_d, \quad \mathcal{A}_d \cdot \mathcal{A}_{d'} \subset \mathcal{A}_{d+d'}$$

\mathcal{A}_d : degree d polynomials

- Newton basis $\{p_\alpha\}_{\alpha \in \mathcal{P}}$: $(\mathcal{P}_0 = \{\emptyset\}, p_\emptyset = 1)$

$$\mathcal{P} = \bigsqcup_{d \geq 0} \mathcal{P}_d, \quad \mathcal{P}_d = \{\alpha \vdash d \mid \alpha_i \leq N\}$$

- Structure constants:

$$p_\alpha p_\beta = \sum_{\gamma \in \mathcal{P}} \Pi_{\alpha\beta}^\gamma p_\gamma$$

Orbit coproduct

- Average of $f \in \mathcal{A}_d$ over sum of $U(N)$ -conjugacy orbits:

$$\Delta f(A, B) := \iint_{U(N)^2} DU DV f(UAU^{-1} + VBV^{-1}) = \int_{U(N)} DU f(A + UBU^{-1})$$

Sum of products of invariant polynomials in A and B

- Defines **orbit coproduct** $\Delta : \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$

$$\Delta f = \sum_i g_i \otimes h_i \iff \Delta f(A, B) = \sum_i g_i(A) h_i(B)$$

Orbit coproduct

- Average of $f \in \mathcal{A}_d$ over sum of $\mathrm{U}(N)$ -conjugacy orbits:

$$\Delta f(A, B) := \iint_{\mathrm{U}(N)^2} DU DV f(UAU^{-1} + VBV^{-1}) = \int_{\mathrm{U}(N)} DU f(A + UBU^{-1})$$

Sum of products of invariant polynomials in A and B

- Defines **orbit coproduct** $\Delta : \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$

$$\Delta f = \sum_i g_i \otimes h_i \iff \Delta f(A, B) = \sum_i g_i(A) h_i(B)$$

- **Application in random matrix theory:** a, b independent random matrices with $\mathrm{U}(N)$ -inv dist

$$\mathbb{E}[f(a + b)] = \mathbb{E}[\Delta f(a, b)] = \sum_i \mathbb{E}[g_i(a)] \mathbb{E}[h_i(b)]$$

Properties of the orbit coproduct

- Orbit coproduct $\Delta : \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A}$:

$$\Delta f(A, B) := \iint_{U(N)^2} DU DV f(UAU^{-1} + VBV^{-1}) = \int_{U(N)} DU f(A + UBU^{-1})$$

- Properties:

- $(\mathcal{A}, \cdot, \Delta)$ not a bialgebra
- Graded: $\Delta(\mathcal{A}_d) = \bigoplus_{k=0}^d \mathcal{A}_k \otimes \mathcal{A}_{d-k}$
- Cocommutative: $\Delta f(A, B) = \Delta f(B, A)$
- Coassociative: $(\Delta \otimes \text{Id}) \circ \Delta = (\text{Id} \otimes \Delta) \circ \Delta$

- Precursors are primitive elements: $\Delta K_d = K_d \otimes 1 + 1 \otimes K_d$

Orbit coproduct in dual Newton basis

- Dual Newton polynomials $\{p_\star^\alpha\}_{\alpha \in \mathcal{P}}$ from HCIZ integral:

$$Z(A, B; x) = \sum_{\alpha \in \mathcal{P}} x^{d(\alpha)} p_\star^\alpha(A) p_\alpha(B)$$

- For degree $d(\alpha) \leq N$, proportional to generalised precursor:

$$p_\star^\alpha = \frac{N^{\ell(\alpha)} |\text{CI}_\alpha|}{d(\alpha)!} K_\alpha$$

- **Theorem:** orbit coproduct in dual Newton basis

$$\Delta p_\star^\gamma = \sum_{\alpha, \beta \in \mathcal{P}} \Pi_{\alpha\beta}^\gamma p_\star^\alpha \otimes p_\star^\beta$$

Proof: $\int_{\text{U}(N)} DU Z(A + UBU^{-1}, C; x) = Z(A, C; x) Z(B, C; x)$

Algebra-coalgebra duality

- Symmetric **coefficients** $\eta_{\alpha\beta}$ (N -dependent):

$$Z(A, B; x) = \sum_{\alpha, \beta \in \mathcal{P}} x^{d(\alpha)} \eta_{\alpha\beta} p_\star^\alpha(A) p_\star^\beta(B)$$

- **Scalar product:**

$$\eta(p_\alpha, p_\beta) := \eta_{\alpha\beta}$$

$\{p_\alpha\}_{\alpha \in \mathcal{P}}$ and $\{p_\star^\alpha\}_{\alpha \in \mathcal{P}}$ dual bases

- **Corollary:** $\eta(\cdot, \cdot)$ induces algebra isomorphism $(\mathcal{A}, \cdot) \longrightarrow (\mathcal{A}^*, \Delta^*)$

$$\Delta : \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \quad \iff \quad \Delta^* : \mathcal{A}^* \otimes \mathcal{A}^* \rightarrow \mathcal{A}^*$$

Conclusion

Conclusion: finite N precursors of the free cumulants

- Finite N precursors of the free cumulants from HCIZ integral:
 - additive with respect to average over sums of $U(N)$ -orbits
 - natural expansions in terms of Newton and Schur polynomials
 - tend to free cumulants at large N
 - $\frac{1}{N^2}$ -corrections in terms of monotone Hurwitz numbers
- Other points discussed in [SL Zuber '25]:
 - Average over GUE, relation to matrix integrals, Horn problem ...
 - Probabilistic aspects and relation with [Collins Gurau Lionni '24]
 - Differences with [Arizmendi Perales '16]: no finite N convolution à la [Marcus Spielman Srivastava '15] associated with K_d
- Future perspectives:
 - Other classical groups than $U(N)$?
 - q - and β -deformations?
 - Relation with [Kunisky Moore Wein '24]?

Conclusion: orbit coproduct

- **Orbit coproduct:** behaviour of general invariant polynomials with respect to averaging over sums of $U(N)$ -orbits
- Perspective: more general orbit coproduct for V rep of G (compact)
- $\Delta_V : P(V)^G \rightarrow P(V)^G \otimes P(V)^G$ defined by

$$\Delta_V f(a, b) := \int_G D U f(a + U.b), \quad a, b \in V$$

- Study Δ_V by replacing HCIZ integral by

$$Z_V(a, b; x) := \int_G D U e^{z \langle a, U.b \rangle}$$

$$\int_G D U Z_V(a + U.b, c; x) = Z_V(a, c; x) Z_V(b, c; x)$$

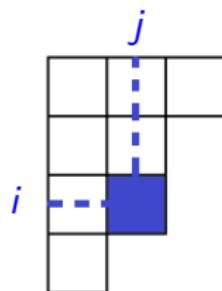
Thank you for your attention!

Generalised precursors in terms of Schur polynomials

- Generalised precursor K_α ($\alpha \vdash d$) in Schur basis:

$$K_\alpha(A) = \sum_{\substack{\lambda \vdash d \\ \ell(\lambda) \leq N}} D_\lambda \chi_\lambda(\alpha) s_\lambda(A)$$

$$D_\lambda := \frac{\dim V_\lambda^{S_d}}{d! \dim V_\lambda^{U(N)}} = \prod_{(i,j) \in \lambda} (N + j - i)^{-1}$$



Topological expansion of generalised precursors

- “Topological” expansion of the generalised precursors as $N \rightarrow \infty$:

$$K_\alpha = \frac{1}{|\text{Cl}_\alpha|} \sum_{g \geq 1 - \ell(\alpha)} N^{2(1 - \ell(\alpha) - g)} \left(\sum_{\beta \vdash n} (-1)^{\ell(\alpha) + \ell(\beta)} H_g^{\bullet, \leq}(\alpha, \beta) m_\beta \right)$$

- $H_g^{\bullet, \leq}(\alpha, \beta)$: disconnected weakly monotone double Hurwitz number of type (α, β) and genus g
- Counts covers $\Sigma_g \rightarrow \mathbb{CP}^1$ of degree d with:
 - Σ_g surface of genus g (potentially disconnected)
 - 2 branch points with ramification profiles α and β
 - $r = 2g - 2 - \ell(\alpha) - \ell(\beta)$ simple branch points with monodromies $(a_i b_i)$ such that $a_i < b_i$ and $b_1 \leq \dots \leq b_r$
- HCIZ generating func of $H_g^{\bullet, \leq}(\alpha, \beta)$ [Goulden Guay-Paquet Novak '11]

Average of generalised precursors over Gaussian weight

- Gaussian Unitary Ensemble:

$$\mathbb{E}_{A \sim \text{GUE}(N, \sigma)}(f(A)) := \frac{1}{Z_{\text{GUE}}} \int DA f(A) e^{-\frac{1}{2\sigma^2} N \text{Tr}(A^2)}$$

- Wick-like relation for generalised precursors:

$$\mathbb{E}_{A \sim \text{GUE}(N, \sigma)}(K_\alpha(A)) = \delta_{\alpha, [2^d]} \sigma^{2d}$$

Similar to ordinary/free cumulants with normal/semi-circle law

- Proof: compute $\mathbb{E}_A(Z(A, B; x))$ (Fourier transform of Gaussian dist)

Orbit coproduct in Schur basis

- Schur basis of \mathcal{A} : $\{s_\lambda\}_{\ell(\lambda) \leq N}$
- Self-dual up to content coefficient C_λ : $\eta(s_\lambda, s_\mu) = C_\lambda \delta_{\lambda\mu}$

$$Z(A, B; x) = \sum_{\ell(\lambda) \leq N} \frac{x^{d(\lambda)}}{C_\lambda} s_\lambda(A) s_\lambda(B), \quad C_\lambda := \frac{d!}{N^{\ell(\lambda)}} \frac{\dim V_\lambda^{\mathrm{U}(N)}}{\dim V_\lambda^{S_d}}$$

- **Corollary:** orbit coproduct in Schur basis

$$\Delta s_\lambda = \sum_{\ell(\mu), \ell(\nu) \leq N} \frac{C_\lambda}{C_\mu C_\nu} c_{\mu\nu}^\lambda s_\mu \otimes s_\nu$$

$$\text{Littlewood-Richardson coefficients: } s_\mu s_\nu = \sum_{\ell(\lambda) \leq N} c_{\mu\nu}^\lambda s_\lambda$$