

ID de Contribution: 3

Type: Non spécifié

From finite volume and finite element methods to discontinuous Galerkin approach – applications in fluid dynamics

lundi 1 décembre 2025 15:35 (55 minutes)

The discontinuous Galerkin (DG) method exhibits an amazing technique for the numerical solution of partial differential equations. DG method employs the advantages of more classical finite element (FE) and finite volume (FV) methods, particularly the high order of accuracy and discontinuous approximation. The latter property significantly improves the stability of numerical scheme which is beneficial namely for problems of fluid dynamics when the convection is dominating.

We briefly mention the connection of DG method to FV and FE discretization and discuss additional favourable properties of this approach: the realization of boundary conditions through boundary penalty, the hp-mesh adaptation, the use of dynamically changing grids for time dependent problems and two-level domain decomposition preconditioners.

Finally, we present several numerical examples for practical problems arising in porous media flows and non-hydrostatic mesoscale atmospheric modeling.

Orateur: DOLEJŠÍ, Vít (Charles University in Prague)