

APPROXIMATION OF BLASCHKE-SANTAL' O DIAGRAMS

mercredi 26 novembre 2025 14:05 (40 minutes)

Identifying Blaschke-Santal' o diagrams is an important topic that essentially consists in determining the image $Y = F(X)$ of a map $F : X \rightarrow \mathbb{R}^d$, where the dimension of the source space X is much larger than the one of the target space. In some cases, that occur for instance in shape optimization problems, X can even be a subset of an infinite-dimensional space. The usual Monte Carlo method, consisting in randomly choosing a number N of points x_1, \dots, x_N in X and plotting them in the target space \mathbb{R}^d , produces in many cases areas in Y of very high and very low concentration leading to a rather rough numerical identification of the image set. On the contrary, our goal is to choose the points x_i in an appropriate way that produces a uniform distribution in the target space. In this way we may obtain a good representation of the image set Y by a relatively small number N of samples which is very useful when the dimension of the source space X is large (or even infinite) and the evaluation of $F(x_i)$ is costly.

Joint work with BENIAMIN BOGOSEL, GIUSEPPE BUTTAZZO

Author: OUDET, Edouard (Université Grenoble Alpes)

Orateur: OUDET, Edouard (Université Grenoble Alpes)