Topological expansion of unitary
integrals, and maps

PIICQ online seminar

Thomas Buc—d’Alché
UMPA, Lyon

June 30, 2025

1/28



Introduction
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A tale of two matrices

Consider two N x N Hermitian random matrices X and Y that are
unitarily invariant:

(X,Y) ~ (UXU*,UYU") YU € U(N).
What can we say about the singular values/eigenvalues of e.g.

XY or X+Y oreven XYXy??
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In general, what can be said about the spectrum of any non-commutative
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® A non-commutative monomial is a word in the matrices X and Y, or
the identity.

® A non-commutative polynomial is a C-linear combination of n.c.
monomials.
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A tale of two matrices

Consider two N x N Hermitian random matrices X and Y that are
unitarily invariant:

(X,Y) ~ (UXU*, UYU*) YU € U(N).
What can we say about the moments of e.g.

XY or X+Y oreven XYXy??

In general, what can be said about the moments of any non-commutative
polynomial P in X and Y?

® A non-commutative monomial is a word in the matrices X and Y, or
the identity.

® A non-commutative polynomial is a C-linear combination of n.c.
monomials.

1
— Compute the large N asymptotics of If [N Tr P(X, Y)} .
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Two independent matrices

Assume X and Y are independent. How to compute:

E | T xbyh . xkiyke| 7
N
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Two independent matrices

Assume X and Y are independent. How to compute:
E | L Trxkyl .. xhayks|?
N

Unitary invariance + independence:

(X,Y) ~(UXU*,Y) with U Haar-distributed.
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Two independent matrices

Assume X and Y are independent. How to compute:
E | L Trxkyl .. xhayks|?
N

Unitary invariance + independence:

(X,Y) ~(UXU*,Y) with U Haar-distributed.

1. Free probability approach: by Voiculescu’s theorem, UXU* and Y
are asymptotically free.
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Two independent matrices

Assume X and Y are independent. How to compute:
E | L Trxkyl .. xhayks|?
N

Unitary invariance + independence:

(X,Y) ~(UXU*,Y) with U Haar-distributed.

1. Free probability approach: by Voiculescu’s theorem, UXU* and Y
are asymptotically free.

2. Weingarten calculus approach: assume X, Y fixed, compute the
expectation over U Haar-distributed.

5/28



Correlated matrices

Assume the joint law of (X, Y) is
o e NIV gxdy.
Diagonalize X and Y:
(X,Y) = (VAU*, VBV*) with U,V € U(N) and A, B diagonal
The joint law of (U, V, A, B) is

o eN TP WUV, V*’A’B)dUdVdu(A)dy(B).
1
— Compute E NTr P(U,U*,V,V* A B) | A B|.
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Unitary integrals

Measure:

]
HUNy = Zny
Assumptions:

1. Vis a non-commutative polynomial.

2. supys; Maxi<i<p [|Aill < +oo.

3. Tr Vs real-valued.

exp(NTrV(Ui, Uf, ..., Uy, Us, Ay, ..., Ap))dUs -

- dU,.
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Unitary integrals

Measure:

[Ny = exp(NTrV(Ui, Uf, ..., Uy, Up, Ay,  Ap))dUs - - - dU,.

]
VAYRY,
Assumptions:
1. Vis a non-commutative polynomial.
2. supy>q maxi<i<p [|Ail| < +oc.
3. Tr Vis real-valued.
Compute under iy, y:
® the moments It [% Tr P(Uy, Uy, ..., Us, U, Aq,y ... ,Ap)]
® the joint cumulants x;(Tr Py,..., Tr P;)

[
exp (Z l’,‘X,')

i=1

Ii[()(17 e ,X[) = 8t1 ce 8tl\t1:...:t[:0 InIE
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Overview

1. Introduction

2. Topological expansion and maps

3. First ingredient: Weingarten calculus

4. Second ingredient: Dyson-Schwinger equations

5. Monotone Hurwitz numbers
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Topological expansion and maps
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Topological expansion

1
® UNV = Z

N,VeNT'VdUp--dU,, with V = Zt, Q,

=1 monomlal

Theorem (Guionnet, Novak ’15; B. 24)

Under our assumptions, there exists € > 0 such that if

max |t;]| < e
1<i<k

then forallg > 0,1 > 1, Py, ..., P n.c. polynomials:

8
_ Z 1 h g
/{[(TFP1,...,TFP[):N2 { WM&/,)V,I(PD'“’P[)—FO(N 28 2),
h=0

where MS\Z)V, ((P1, ..., P) are generating series of maps of unitary type of
genus h.
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Maps

Map

A map is a graph drawn on a compact connected surface such that faces
are polygons, up to deformation.

32

Not a disk!

11/28



Maps

Map

A map is a graph drawn on a compact connected surface such that faces
are polygons, up to deformation.
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Maps

Map

A map is a 2-cellular embedding of a graph in a compact connected
surface, up to orientation-preserving homeomorphism.
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Combinatorial maps

Combinatorial map

A combinatorial map is a pair (o, @) € &, x Z,,, where

I,={m €&, n*=nVim(i)# i} involutions without fixed point

Example

o =(134)(25)(6)(78910) a = (12)(36)(47)(58)(9 10).
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Diagrams in physics and in RMT

® 't Hooft '74

® Brézin, ltzykson, Parisi, and Zuber ’78
® Bessis, Itzykson, and Zuber ’80

® Ercolani and McLaughlin ’03

e ... and many others ...

Wick-Isserlis formula: GUE moments — Topological expansion
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First ingredient: Weingarten calculus
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Weingarten calculus

To start: one random unitary matrix, no potential (n =1, V = 0).

Theorem (Weingarten formula, Samuel ’80, Collins ’03)
Letm>1andi,j, i, j: [m] — [N],
/ Uiica) - *Yim)jitm) Ur ()i 1)« + U () ()
U(N)

= Y GiiopSijrooWen(op ).
0,066,

® Wg,: expressed in terms of characters of the symmetric grou
Nt eXp y group

® Novak '10: Large N expansion of Wg),

Turn computation of Haar integrals into a combinatorial problem.
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Combinatorial description of monomials

® One monomial

P = ByU'B,U®* - - - ByU where
o B; = product of elements in (A;)
oei € {—1,+1}
ode N*

U
By -1
By 5
3
7
W1&+& v
U

0

BUB U 'BsUB,UBsU ™!
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Combinatorial description of monomials

U
® One monomial By, U
B, B
P = ByU“"BU® - - - B4U* where o 3 u
U-
o B; = product of elements in (A;) Bs ]" B
o€ E {—1, —|—1} U
od e N* t

BiUByU 'BsUB,UBsU ™!
® Several monomials

P, = B1U61 ~--Bd1 Ut P, = Bd1+1 Ui+ "'Bd1+d2U€d1+d2
oy=(1...d)(di+1...di+dp)---
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Consequence of Weingarten calculus

® Pla---apl — (Bi);(fi),'7~

Proposition

Ki(Tr Py, .., Tr P)

— N>~ IZ Nzg Z #Faces(m) H %Tr H B;

g>0 f€Faces(m) i€f
2—!
=N ZNzg (P, P).
£>0

\Z

1 1 1
Tr(Bl)NTr(Bng,Bﬁ) NTr(B;;B7B4Bg)

N
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A formal computation

Take V # 0:
1 €
IEDN,V I:N Tr P:| = 8E‘E:0|n EN,O |:eNTrP+NTr V}

:727’{n+1 (TrP, Trv,....TrV)

n>1

TN g 1@
:NZFN ’ ZWMN7U,H+1(P7V7"'

n>1 g>0

. 1
:ZN2g27| N0n+1 P,V,..., V).
820 n>1

~)
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Second ingredient: Dyson-Schwinger
equations
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Dyson-Schwinger equations

® Invariance under the Haar measure: U ~ MU, M € H(N).
® Use invariance and differentiate

/f(U, U*)dU = /f(eiEMU, Ure " *Mydu
0= /(de- iM — dy-f - M) dU.
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Dyson-Schwinger equations

® Invariance under the Haar measure: U ~ MU, M € H(N).
® Use invariance and differentiate

/f(U, U*)dU = /f(eiEMU, Ure " *Mydu
:/(duf-iM—dU*f-M)dU

® For a n.c. polynomial:

Ocle=o Tr P(eMU, Ure M) = Y~ TrQMUR— ) TrQU*MR.
P=QuR P=Qu*R
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Dyson-Schwinger equations

Invariance under the Haar measure: U ~ MU, M € H(N).
Use invariance and differentiate

/f(U, U*)dU = /f(eiEMU, Ure " *Mydu
:/(duf-iM—dU*f-M)dU

® For a n.c. polynomial:

Ocle=o Tr P(eMU, Ure M) = Y~ TrQMUR— ) TrQU*MR.
P=QuR P=Qu*R

Motivates the introduction of the logarithmic n.c. derivatives

opP = Z Q® UR — Z QU* ® R
P=QuR P=Qu*R
DP = Z URQ — Z RQU*.

P=QuR P=Qu*R
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Dyson-Schwinger equations

OP= > Q®UR- > QU'®R

P=QuR P=Qu*R
DP = Z URQ — Z RQU*.
P=QuR P=Qu*R

There is a whole family of equations. The first one: under uy, v, we have

%E M %E (Tr 1 (0P) + %mz(Tr@)Tr(@P)) - %E [Tr(DV)P].
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Dyson-Schwinger equations

OP= > Q®UR- > QU'®R

P=QuR P=Qu*R
DP = Z URQ — Z RQU*.
P=QuR P=Qu*R

There is a whole family of equations. The first one: under uy, v, we have

%E M %E (Tr ] (0P) +/\]/2/<2(Tr®Tr(8P)) - %E [Tr(DV)P].

\_,.\/_‘/

Small error
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Series of maps

Introduce the series of maps

1
Ms\i)v,z(Ph---»Pl):ZHM%,HM(PH'“?PI’V""’V)'

n>1

By a combinatorial argument, we can show:
MO, o MO, (0P) = MY, (TH(DV)P).

® The Dyson-Schwinger equations have a unique solution when V is
small.

® Proof: Inversion of a particular “master operator”.
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Series of maps

Introduce the series of maps

1
Msi)v,l(’)h-'wpl):ZHME\%)O,Hn(Ph“"PhV?""V)'

n>1

By a combinatorial argument, we can show:

Mg\(/),)m ® ME\?,)VJ(aP) = ME\(/),)\/J (Tr(DV)P).

Proposition

Assuming the coefficients of V are small enough, we have for all n.c.
polynomial P:

1 1
NEN’V [TrP] — MS\(I),)VJ(P) = O(m)
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Ending the proof

® Higher order Dyson-Schwinger equations are satisfied by higher
cumulants and generating series of maps of higher genus

® The error between the two can be shown to be small using the
higher DS equations.
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Monotone Hurwitz numbers
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Large N expansion of the Weingarten function

Theorem (Novak ’10)
Let m < N. We have for any ™ € &,:
w'(r)

1
WgN(Tr) - Nm—#m Z Nr
r>0

where

7i = (a; bi), a; < b
W)r(ﬂ-):# (7—1"”77—")66;:7—['"'7—1:71-
by <b <---<b

See also Goulden, Guay-Paquet, Novak "14
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Triple monotone Hurwitz numbers

® Given a permutation o € G, write

#o = #{ cyclesof o},

and

Z H )itp).i(o(p

i: [m]—[N] p=1

try(A)
eg. if o = (134)(25)
1 1
tl’o—(A) = K/ Tr (A1A3A4) X N Tr (A2A5) .

® A monomial is balanced if it can be written as

P = A UBU*AUBU* - - - AJUB,U".
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Triple monotone Hurwitz numbers

Proposition

Let Py, ..., P; be balanced monomials and let m be the total number of

letter U and U* in the P;’s. We have under the Haar measure:

(Tr P],..

TFH)

o —
= N* IZ N D (=0)#THFPtr,(A) trg(B) b g(p, 7, 0),

where

%
hg0%770):

p,0EC
7 = (a; bi), a; < b
T T =T
(T1,...,7'r)€6,’:n:b1 §b2§§b,

the group generated by p,~, o

acts transitively on {1,...,m} |
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Obtain a topological expansion of unitary integrals in the
perturbative regime.

Necessary bound on V is uniform in the order of expansion.
Description of the expansion in terms of a family of maps

These maps generalize the monotone Hurwitz numbers.

Example of the link between RMT and the combinatorics of maps.
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Obtain a topological expansion of unitary integrals in the
perturbative regime.

Necessary bound on V is uniform in the order of expansion.
Description of the expansion in terms of a family of maps
These maps generalize the monotone Hurwitz numbers.

Example of the link between RMT and the combinatorics of maps.

Thank you!
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