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Introduction
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A tale of two matrices

Consider two N × N Hermitian random matrices X and Y that are
unitarily invariant:

(X ,Y) ∼ (UXU∗,UYU∗) ∀U ∈ U(N).

What can we say about the singular values/eigenvalues of e.g.

XY or X + Y or even X 3YXY 2?
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A tale of two matrices
Consider two N × N Hermitian random matrices X and Y that are
unitarily invariant:

(X ,Y) ∼ (UXU∗,UYU∗) ∀U ∈ U(N).

What can we say about the moments of e.g.

XY or X + Y or even X 3YXY 2?

In general, what can be said about the moments of any non-commutative
polynomial P in X and Y?
• A non-commutative monomial is a word in the matrices X and Y , or
the identity.

• A non-commutative polynomial is a C-linear combination of n.c.
monomials.

−→ Compute the large N asymptotics of E
�
1
N

Tr P(X ,Y)
�
.
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Two independent matrices

Assume X and Y are independent. How to compute:

E

�
1
N

Tr Xk1Yl1 · · ·XkdYkd

�
?
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Unitary invariance + independence:

(X ,Y) ∼ (UXU∗,Y) with U Haar-distributed.
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Unitary invariance + independence:

(X ,Y) ∼ (UXU∗,Y) with U Haar-distributed.

1. Free probability approach: by Voiculescu’s theorem, UXU∗ and Y
are asymptotically free.

5 / 28



Two independent matrices

Assume X and Y are independent. How to compute:

E

�
1
N

Tr Xk1Yl1 · · ·XkdYkd

�
?

Unitary invariance + independence:

(X ,Y) ∼ (UXU∗,Y) with U Haar-distributed.

1. Free probability approach: by Voiculescu’s theorem, UXU∗ and Y
are asymptotically free.

2. Weingarten calculus approach: assume X ,Y fixed, compute the
expectation over U Haar-distributed.
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Correlated matrices

Assume the joint law of (X ,Y) is

∝ e−N TrV(X ,Y)dXdY .

Diagonalize X and Y :

(X ,Y) = (UAU∗,VBV ∗) with U,V ∈ U(N) and A,B diagonal

The joint law of (U,V ,A,B) is

∝ eN TrW(U,U∗,V ,V∗,A,B)dUdVdµ(A)dν(B).

−→ Compute E
�
1
N

Tr P(U,U∗,V ,V ∗,A,B) | A,B
�
.
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Unitary integrals
Measure:

µN,V =
1

ZN,V
exp


N TrV (U1,U∗

1 , . . . ,Un,U∗
n ,A1, . . . ,Ap)

�
dU1 · · · dUn.

Assumptions:
1. V is a non-commutative polynomial.
2. supN≥1max1≤i≤p ∥Ai∥ < +∞.
3. TrV is real-valued.
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Unitary integrals
Measure:

µN,V =
1

ZN,V
exp


N TrV (U1,U∗

1 , . . . ,Un,U∗
n ,A1, . . . ,Ap)

�
dU1 · · · dUn.

Assumptions:
1. V is a non-commutative polynomial.
2. supN≥1max1≤i≤p ∥Ai∥ < +∞.
3. TrV is real-valued.

Compute under µN,V :
• the moments E

� 1
N Tr P(U1,U∗

1 , . . . ,Un,U∗
n ,A1, . . . ,Ap)

�

• the joint cumulants κl (Tr P1, . . . ,Tr Pl)

Cumulants

κl(X1, . . . ,Xl) = ∂t1 · · · ∂tl |t1=···=tl=0 lnE

"
exp

 
lX

i=1

tiXi

!#
.
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Overview

1. Introduction

2. Topological expansion and maps

3. First ingredient: Weingarten calculus

4. Second ingredient: Dyson-Schwinger equations

5. Monotone Hurwitz numbers
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Topological expansion and maps
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Topological expansion

• µN,V =
1

ZN,V
eN Tr VdU1 · · · dUn with V =

kX

i=1

ti Qi|{z}
monomial

Theorem (Guionnet, Novak ’15; B. ’24)
Under our assumptions, there exists ϵ > 0 such that if

max
1≤i≤k

|ti| < ϵ

then for all g ≥ 0, l ≥ 1, P1, . . . , Pl n.c. polynomials:

κl (Tr P1, . . . ,Tr Pl) = N2−l
gX

h=0

1
N2hM

(h)
N,V ,l (P1, . . . , Pl) +O


N−2g−2�,

whereM(h)
N,V ,l(P1, . . . , Pl) are generating series of maps of unitary type of

genus h.
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Maps

Map
A map is a graph drawn on a compact connected surface such that faces
are polygons, up to deformation.
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Maps

Map
A map is a graph drawn on a compact connected surface such that faces
are polygons, up to deformation.
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Maps

Map
A map is a 2-cellular embedding of a graph in a compact connected
surface, up to orientation-preserving homeomorphism.
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Combinatorial maps

Combinatorial map

A combinatorial map is a pair (σ,α) ∈ Sn × In, where

In =
�
π ∈ Sn : π

2 = π, ∀i,π(i) ̸= i
	

involutions without fixed point

Example

σ = (1 3 4)(2 5)(6)(7 8 9 10) α = (1 2)(3 6)(4 7)(5 8)(9 10).
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Diagrams in physics and in RMT

• ’t Hooft ’74
• Brézin, Itzykson, Parisi, and Zuber ’78
• Bessis, Itzykson, and Zuber ’80
• Ercolani and McLaughlin ’03
• ... and many others ...

Wick-Isserlis formula: GUE moments→ Topological expansion
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First ingredient: Weingarten calculus
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Weingarten calculus

To start: one random unitary matrix, no potential (n = 1,V = 0).

Theorem (Weingarten formula, Samuel ’80, Collins ’03)

Let m ≥ 1 and i, j, i′, j′ : [m] → [N ],
Z

U(N)
Ui(1)j(1) · · ·Ui(m)j(m)Ui′(1)j′(1) · · ·Ui′(m)j′(m)

=
X

ρ,σ∈Sm

δi,i′◦ρδj,j′◦σWgN(σρ
−1).

• WgN : expressed in terms of characters of the symmetric group
• Novak ’10: Large N expansion ofWgN

Turn computation of Haar integrals into a combinatorial problem.
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Combinatorial description of monomials

• One monomial

P = B1Uϵ1B2Uϵ2 · · ·BdU
ϵd where

◦ Bi = product of elements in (Ai)

◦ ϵi ∈ {−1,+1}
◦ d ∈ N∗

16 / 28
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Combinatorial description of monomials

• One monomial

P = B1Uϵ1B2Uϵ2 · · ·BdU
ϵd where

◦ Bi = product of elements in (Ai)

◦ ϵi ∈ {−1,+1}
◦ d ∈ N∗

• Several monomials

P1 = B1Uϵ1 · · ·Bd1U
ϵd1 P2 = Bd1+1U

ϵd1+1 · · ·Bd1+d2U
ϵd1+d2 . . .

◦ γ = (1 . . . d1)(d1 + 1 . . . d1 + d2) · · ·
◦ (Bi)

◦ (ϵi).
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Consequence of Weingarten calculus
• P1, . . . , Pl −→ (Bi), (ϵi), γ.

Proposition

κl(Tr P1, . . . ,Tr Pl)

= N2−l
X

g≥0

1
N2g

X

m

(−1)#Faces(m)
Y

f∈Faces(m)

1
N

Tr


Y

i∈f
Bi




= N2−l
X

g≥0

1
N2gM

(g)
N,0,l(P1, . . . , Pl).
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A formal computation

Take V ̸= 0:

EN,V

�
1
N

Tr P
�
= ∂ϵ|ϵ=0 lnEN,0

h
e

ϵ
N Tr P+N Tr V

i

=
1
N

X

n≥1

Nn

n!
κn+1 (Tr P,TrV , . . . ,Tr V )

=
1
N

X

n≥1

Nn

n!
N2−n−1

X

g≥0

1
N2gM

(g)
N,0,n+1(P,V , . . . ,V )

?
=
X

g≥0

1
N2g

X

n≥1

1
n!
M(g)

N,0,n+1(P,V , . . . ,V ).
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Second ingredient: Dyson-Schwinger
equations
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Dyson-Schwinger equations
• Invariance under the Haar measure: U ∼ eiϵMU,M ∈ H(N).
• Use invariance and differentiateZ

f (U,U∗)dU =

Z
f (eiϵMU,U∗e−iϵM)dU

0 =
Z

(dUf · iM− dU∗f ·M) dU.
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• Use invariance and differentiateZ

f (U,U∗)dU =

Z
f (eiϵMU,U∗e−iϵM)dU

0 =
Z

(dUf · iM− dU∗f ·M) dU.

• For a n.c. polynomial:

∂ϵ|ϵ=0 Tr P(eiϵMU,U∗e−iϵM) =
X

P=QuR

TrQMUR−
X

P=Qu∗R

TrQU∗MR.
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Dyson-Schwinger equations
• Invariance under the Haar measure: U ∼ eiϵMU,M ∈ H(N).
• Use invariance and differentiateZ

f (U,U∗)dU =

Z
f (eiϵMU,U∗e−iϵM)dU

0 =
Z

(dUf · iM− dU∗f ·M) dU.

• For a n.c. polynomial:

∂ϵ|ϵ=0 Tr P(eiϵMU,U∗e−iϵM) =
X

P=QuR

TrQMUR−
X

P=Qu∗R

TrQU∗MR.

• Motivates the introduction of the logarithmic n.c. derivatives

∂P =
X

P=QuR

Q ⊗ UR −
X

P=Qu∗R

QU∗ ⊗ R

DP =
X

P=QuR

URQ −
X

P=Qu∗R

RQU∗.
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Dyson-Schwinger equations

∂P =
X

P=QuR

Q ⊗ UR −
X

P=Qu∗R

QU∗ ⊗ R

DP =
X

P=QuR

URQ −
X

P=Qu∗R

RQU∗.

There is a whole family of equations. The first one: under µN,V , we have

1
N
E [Tr ·]⊗ 1

N
E [Tr ·] (∂P) + 1

N2κ2(Tr⊗Tr(∂P)) =
1
N
E [Tr(DV )P] .
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Dyson-Schwinger equations

∂P =
X

P=QuR

Q ⊗ UR −
X

P=Qu∗R

QU∗ ⊗ R

DP =
X

P=QuR

URQ −
X

P=Qu∗R

RQU∗.

There is a whole family of equations. The first one: under µN,V , we have

1
N
E [Tr ·]⊗ 1

N
E [Tr ·] (∂P) + 1

N2κ2(Tr⊗Tr(∂P)) =
1
N
E [Tr(DV )P] .
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Series of maps

Introduce the series of maps

M(g)
N,V ,l(P1, . . . , Pl) =

X

n≥1

1
n!
M(g)

N,0,l+n (P1, . . . , Pl,V , . . . ,V ) .

By a combinatorial argument, we can show:

M(0)
N,V ,1 ⊗M(0)

N,V ,1(∂P) = M(0)
N,V ,1 (Tr(DV )P) .

• The Dyson-Schwinger equations have a unique solution when V is
small.

• Proof: Inversion of a particular “master operator”.
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Series of maps

Introduce the series of maps

M(g)
N,V ,l(P1, . . . , Pl) =

X

n≥1

1
n!
M(g)

N,0,l+n (P1, . . . , Pl,V , . . . ,V ) .

By a combinatorial argument, we can show:

M(0)
N,V ,1 ⊗M(0)

N,V ,1(∂P) = M(0)
N,V ,1 (Tr(DV )P) .

Proposition
Assuming the coefficients of V are small enough, we have for all n.c.
polynomial P:

1
N
EN,V [Tr P]−M(0)

N,V ,1(P) = O
�

1
N2

�
.
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Ending the proof

• Higher order Dyson-Schwinger equations are satisfied by higher
cumulants and generating series of maps of higher genus

• The error between the two can be shown to be small using the
higher DS equations.
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Monotone Hurwitz numbers
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Large N expansion of the Weingarten function

Theorem (Novak ’10)
Let m ≤ N. We have for any π ∈ Sm:

WgN(π) =
1

Nm−#π

X

r≥0

−→w r(π)

Nr ,

where

−→w r(π) = #




(τ1, . . . , τr) ∈ Sr

m :

τi = (ai bi), ai < bi
τr · · · τ1 = π

b1 ≤ b2 ≤ · · · ≤ br





.

See also Goulden, Guay-Paquet, Novak ’14
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Triple monotone Hurwitz numbers

• Given a permutation σ ∈ Sm write

#σ = # { cycles of σ} ,

and

trσ(A) =
1

N#σ

X

i : [m]→[N]

mY

p=1

(Ap)i(p),i(σ(p)).

e.g. if σ = (1 3 4)(2 5)

trσ(A) =
1
N

Tr (A1A3A4)×
1
N

Tr (A2A5) .

• A monomial is balanced if it can be written as

P = A1UB1U∗A2UB2U∗ · · ·AdUBdU
∗.
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Triple monotone Hurwitz numbers

Proposition
Let P1, . . . , Pl be balanced monomials and let m be the total number of
letter U and U∗ in the Pi’s. We have under the Haar measure:

κl(Tr P1, . . . ,Tr Pl)

= N2−l
X

g≥0

1
N2g

X

ρ,σ∈Sm

(−1)#σ+#ρ trρ(A) trσ(B)
−→
h g(ρ, γ,σ),

where

−→
h g(ρ, γ,σ) =





(τ1, . . . , τr) ∈ Sr
m :

τi = (ai bi), ai < bi
τr · · · τ1 = π

b1 ≤ b2 ≤ · · · ≤ br
the group generated by ρ, γ,σ

acts transitively on {1, . . . ,m}




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• Obtain a topological expansion of unitary integrals in the
perturbative regime.

• Necessary bound on V is uniform in the order of expansion.
• Description of the expansion in terms of a family of maps
• These maps generalize the monotone Hurwitz numbers.
• Example of the link between RMT and the combinatorics of maps.
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• Obtain a topological expansion of unitary integrals in the
perturbative regime.

• Necessary bound on V is uniform in the order of expansion.
• Description of the expansion in terms of a family of maps
• These maps generalize the monotone Hurwitz numbers.
• Example of the link between RMT and the combinatorics of maps.

Thank you!
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