

Axial perturbations of black holes with primary scalar hair

Simon Iteanu

Mathematical Physics of Gravity and Symmetry 2025

Collaborators:

C. Charmousis, D. Langlois, K Noui [2503.22348]

Motivations

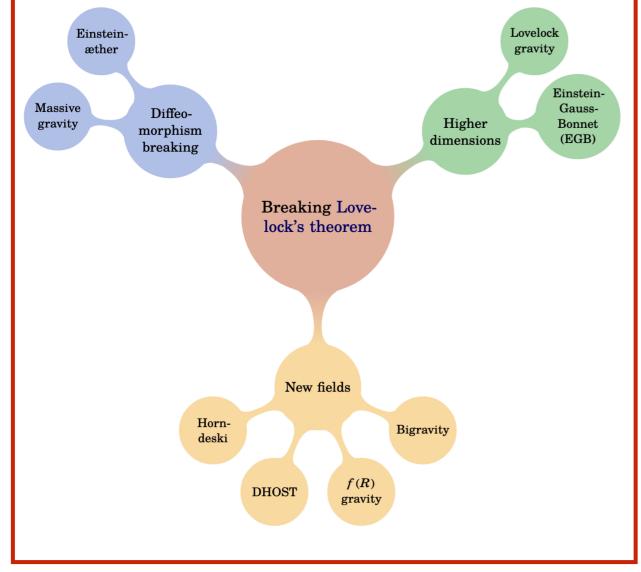
- GW astronomy provides a new window to test GR, in particular in the strong field regime.
- Why Modify GR? → GR seems compatible with all observations
 - → Understand cosmological acceleration
 - → Explore alternative gravitational theories → understand what singles out GR as a theory
 - Step toward quantum gravity
- In this talk: scalar-tensor theories (allowing for 2nd order derivatives in their Lagrangian)
 - → Extract quantitative deviation of DHOST theories via QNMs

Modified Theories of gravity And DHOST theories

Modified Theories of Gravity And Scalar Tensors

Lovelock Theorem

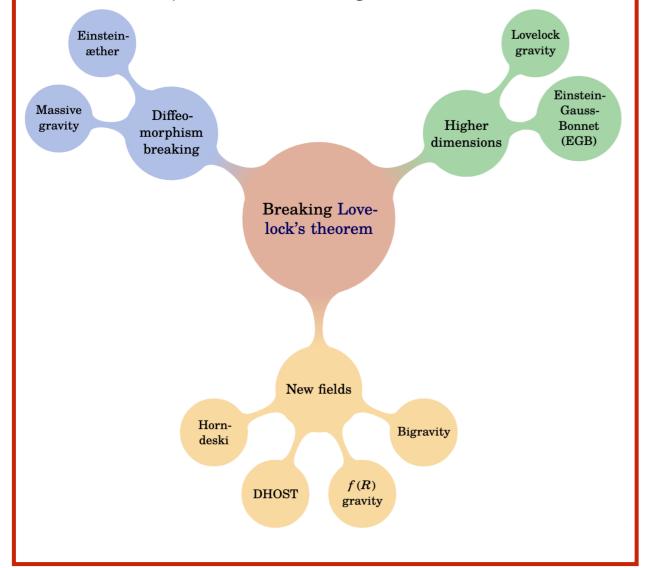
Lovelock's theorem: In 4d, the only rank-2 tensor constructed solely from the metric $g_{\mu\nu}$ and its derivatives up to second differential order, preserving diffeomorphism invariance and arising from a least action principle is the Einstein tensor plus a cosmological term.



Modified Theories of Gravity And Scalar Tensors

Lovelock Theorem

Lovelock's theorem: In 4d, the only rank-2 tensor constructed solely from the metric $g_{\mu\nu}$ and its derivatives up to second differential order, preserving diffeomorphism invariance and arising from a least action principle is the Einstein tensor plus a cosmological term.



Scalar Tensor Theories

- Traditional scalar-tensor theories : $\mathscr{L}\left(
 abla_{\lambda} \phi, \phi \right)$
- Generalized theories with second order derivatives

$$\mathscr{L}\left(\nabla_{\mu}\nabla_{\nu}\phi,\nabla_{\lambda}\phi,\phi\right)$$

- In general, they contain an extra degree of freedom, expected to lead to instabilities $L(\ddot{q}, \dot{q}, q)$
- But this can be avoided if the theory is degenerate (2nd-order equations of motion not necessary!) →DHOST

DHOST theories

Quadratic DHOST

$$\begin{split} S &= \int \! d^4x \sqrt{-g} \, \left[P(X,\phi) + Q(X,\phi) \, \Box \, \phi + F(X,\phi) R + \sum_{i=1}^5 A_i(X,\phi) L_i^{(2)} \right] \\ \text{Where} \quad X &\equiv -\frac{1}{2} \, \nabla_\mu \phi \, \nabla^\mu \phi \qquad \phi_\mu \equiv \nabla_\mu \phi \qquad \phi_{\mu\nu} \equiv \nabla_\nu \, \nabla_\mu \phi \\ L_1^{(2)} &= \phi_{\mu\nu} \phi^{\mu\nu}, \quad L_2^{(2)} = (\Box \phi)^2, \quad L_3^{(2)} = (\Box \phi) \phi^\mu \phi_{\mu\nu} \phi^\nu \\ L_4^{(2)} &= \phi^\mu \phi_{\mu\rho} \phi^{\rho\nu} \phi_\nu, \quad L_5^{(2)} = \left(\phi^\mu \phi_{\mu\nu} \phi^\nu\right)^2 \end{split}$$

DHOST theories

Quadratic DHOST

$$\begin{split} S &= \int \! d^4 x \sqrt{-g} \, \left[P(X,\phi) + Q(X,\phi) \, \Box \, \phi + F(X,\phi) R + \sum_{i=1}^5 A_i(X,\phi) L_i^{(2)} \right] \\ \text{Where} \quad X &\equiv -\frac{1}{2} \, \nabla_\mu \phi \, \nabla^\mu \phi \qquad \phi_\mu \equiv \nabla_\mu \phi \qquad \phi_{\mu\nu} \equiv \nabla_\nu \, \nabla_\mu \phi \\ L_1^{(2)} &= \phi_{\mu\nu} \phi^{\mu\nu}, \quad L_2^{(2)} = (\Box \phi)^2, \quad L_3^{(2)} = (\Box \phi) \phi^\mu \phi_{\mu\nu} \phi^\nu \\ L_4^{(2)} &= \phi^\mu \phi_{\mu\rho} \phi^{\rho\nu} \phi_\nu, \quad L_5^{(2)} = \left(\phi^\mu \phi_{\mu\nu} \phi^\nu \right)^2 \end{split}$$

Possible extensions

ullet Possible extension to cubic order (in $\phi_{\mu
u}$) [Ben Achour, Crisostomi, Koyama, Langlois, Noui & Tasinato '16]

$$L^{(3)} = F_3(X, \phi)G_{\mu\nu}\phi^{\mu\nu} + \sum_{i=1}^{10} B_i(X, \phi)L_i^{(3)}$$

• DHOST includes Horndeski, Beyond Horndeski, Einstein-scalar-Gauss-Bonnet e.g. (quadratic) Horndeski: $A_2 = -A_1 = F, X, \quad A_3 = A_4 = A_5 = 0$

Compact objects In DHOST theories

DHOST theories

Non-Rotating BH

Consider a static spherically symmetric BH with a nontrivial scalar field

$$ds^{2} = -\mathcal{A}(r)dt^{2} + \frac{dr^{2}}{\mathcal{B}(r)} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right)$$

- Scalar field:
$$\phi(t,r) = qt + \psi(r)$$
 [Babichev, Charmousis '13]

The scalar charge $q \neq 0$ possible in shift-symmetric theories

DHOST theories

Non-Rotating BH

Consider a static spherically symmetric BH with a nontrivial scalar field

$$ds^{2} = -\mathcal{A}(r)dt^{2} + \frac{dr^{2}}{\mathcal{B}(r)} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right)$$

- Scalar field: $\phi(t,r)=qt+\psi(r)$ [Babichev, Charmousis '13]

The scalar charge $q \neq 0$ possible in shift-symmetric theories

Some Examples

• «stealth» Schwarzschild: $\mathscr{A} = \mathscr{B} = 1 - \frac{\mu}{r}$

• «BCL» [Babichev, Charmousis, Lehébel '17]. $\mathscr{A} = \mathscr{B} = 1 - \frac{\mu}{r} - \xi \frac{\mu^2}{2r^2}$

4d Gauss-Bonnet [Glavan Lin '19, Lu Pang '2 0]. $\mathscr{A}=\mathscr{B}=1-\frac{2\mu/r}{1+\sqrt{1+4\alpha\mu/r^3}}$

• Scalar-Gauss-Bonnet [Julié Berti '19] $\mathcal{A} = \mathcal{B} = 1 - \frac{\mu}{r} + a_2(r)\varepsilon^2 + \dots$

Family of BH with Primary Hair

Quadratic DHOST theories considered

$$P(X) = -\frac{2\alpha}{\lambda^2} X^p, \qquad F(X) = 1 - 2XA_1, \qquad A_1(X) = \frac{\alpha}{2} X^{p-1}, \qquad A_3(X) = \frac{\alpha}{2} (2p-1) X^{p-2}$$

Then, one is able to find explicit solutions:

$$ds^{2} = -\mathcal{A}(r)dt^{2} + \frac{dr^{2}}{\mathcal{B}(r)} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right) \quad \phi(t, r) = qt + \psi(r)$$

with
$$\mathcal{A}(r) = 1 - \frac{2\mu}{r} - \frac{2\xi_p}{r} \int_0^r \frac{u^2 du}{(1+u^2)^p}$$
 $\xi_p \equiv \alpha(2p-1) \left(\frac{q^2}{2}\right)^p$

The scalar Hair
$$\xi_p \equiv \alpha(2p-1) \left(\frac{q^2}{2}\right)^p$$

and
$$X = \frac{q^2}{2(1+r^2)}$$
, $\psi'(r) = \frac{q}{\mathscr{A}(r)} \sqrt{1 - \frac{\mathscr{A}(r)}{1+r^2}}$

Examples: p=1/2 and p=2

p=1/2 Stealth Solution in Horndeski theory

• «stealth» Schwarzschild:
$$\mathscr{A} = \mathscr{B} = 1 - \frac{2M}{r}$$

Examples : p=1/2 and p=2

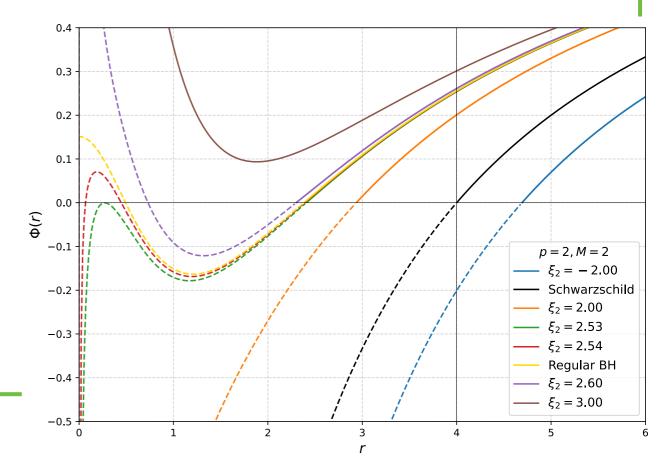
p=1/2 Stealth Solution in Horndeski theory

• «stealth» Schwarzschild:
$$\mathscr{A} = \mathscr{B} = 1 - \frac{2M}{r}$$

p=2 Deformation of Schwarzschild in a Beyond Horndeski theory

$$\mathscr{A}(r) = \mathscr{B}(r) = 1 - \frac{2M}{r} + \xi_2 \left(\frac{\pi/2 - \arctan r}{r} + \frac{1}{1 + r^2} \right)$$

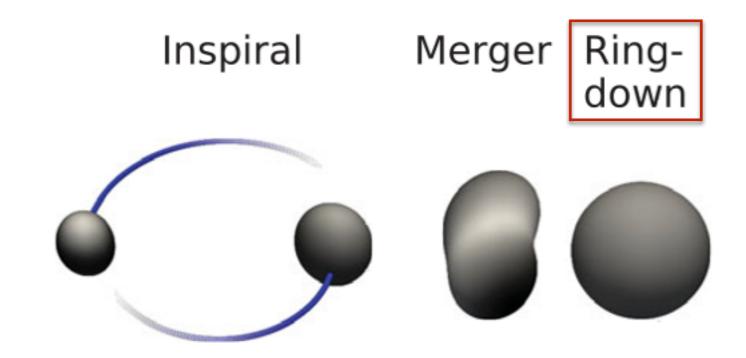
• No singularity at r=0 if $M=\frac{\pi}{4}\xi_2$



BH Perturbation Theory

BH Perturbations

 Ringdown phase of a BH merger is interesting for modified gravity models, as it can be described by BH perturbations.



Deviations to GR in the context of DHOST theories?

BH perturbations in GR

In General Relativity

$$g_{\mu\nu} = g_{\mu\nu}^{\text{bgd}} + h_{\mu\nu}$$

- Perturbation parametrized by the 10 components of $h_{\mu\nu}$ Expand on Fourier modes $f(t,r)=f(r)e^{-i\omega t}$ and on spherical harmonics $Y_{\ell m}(\theta, \varphi)$

BH perturbations in GR

In General Relativity

$$g_{\mu\nu} = g_{\mu\nu}^{\text{bgd}} + h_{\mu\nu}$$

- Perturbation parametrized by the 10 components of $h_{\mu\nu}$ Expand on Fourier modes $f(t,r)=f(r)e^{-i\omega t}$ and on spherical harmonics $Y_{\ell m}(\theta, \varphi)$

Axial Sector

 $h_0(r), h_1(r)$ [Regge-Wheeler gauge]

$$h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} 0 & 0 & rac{1}{\sin heta} h_0^{\ell m} \partial_{arphi} & -\sin heta h_0^{\ell m} \partial_{ heta} \ 0 & 0 & rac{1}{\sin heta} h_1^{\ell m} \partial_{arphi} & -\sin heta h_1^{\ell m} \partial_{ heta} \ ext{sym} & ext{sym} & 0 & 0 \ ext{sym} & ext{sym} & 0 & 0 \ ext{sym} & ext{sym} & 0 & 0 \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ H_1^{\ell m}(r) & A^{-1}(r) H_2^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 & 0 \ 0 & 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 & 0 \ 0 & 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r) H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r) r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta, arphi) \qquad h_{\mu
u} = \sum_{\ell,m} \left(H_0^{\ell m}(r) & H_0^{\ell m}(r$$

Polar Sector

 H_0, H_1, H_2, K [Zerilli gauge]

$$h_{\mu
u} = \sum_{\ell,m} egin{pmatrix} A(r)H_0^{\ell m}(r) & H_1^{\ell m}(r) & 0 & 0 \ H_1^{\ell m}(r) & A^{-1}(r)H_2^{\ell m}(r) & 0 & 0 \ 0 & 0 & K^{\ell m}(r)r^2 & 0 \ 0 & 0 & 0 & K^{\ell m}(r)r^2 \sin^2 heta \end{pmatrix} Y_{\ell m}(heta,arphi)$$

(And $\delta\phi$ in DHOST)

Axial perturbations

In General Relativity

The linearised metric eqs yield only 2 independent eqs

$$\frac{dY}{dr} = M(r)Y(r), \quad Y = \begin{pmatrix} h_0 \\ h_1/\omega \end{pmatrix}$$

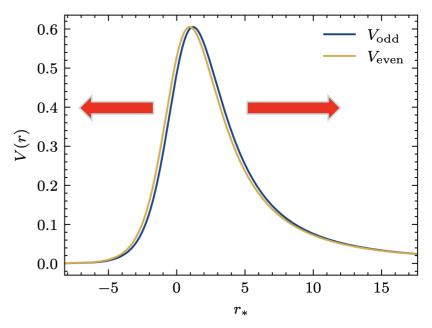
or, in a Schrödinger form, [Regge & Wheeler '57]

$$\frac{d^2\hat{Y}}{dr_*^2} + \left(\omega^2 - V(r)\right)\hat{Y} = 0 \text{ with } r_* \text{ tortoise coordinate}$$

- We impose that at spatial infinity: $r_* \to -\infty, +\infty$

$$e^{-i\omega t}\hat{Y}(r) \approx a_{+}e^{-i\omega(t-r_{*})} + a_{-}e^{-i\omega(t+r_{*})}$$
Outgoing Ingoing

- Quasi-normal modes: $a_+^{\rm hor}=0$ and $a_-^{\infty}=0$



BH Perturbation Theory Framework

In DHOST

The equations have a similar structure with GR [Langlois, Noui & Roussille '22]

$$rac{dY}{dr} = MY \hspace{1cm} M \equiv egin{pmatrix} 2/r + i\omega\Psi & -i\omega^2 + 2i\lambda\Phi/r^2 \ -i\Gamma & \Delta + i\omega\Psi \end{pmatrix}$$

where Ψ, Φ, Γ and Δ depend on the Lagrangian's functions and on the background.

Correspondence (in quadratic DHOST theories)

DHOST axial modes in $g_{\mu\nu}$

GR axial modes in $\hat{g}_{\mu\nu}$

with the effective metric

$$d\hat{s}^{2} = \hat{g}_{\mu\nu}dx^{\mu}dx^{\nu} = |\mathcal{F}|\sqrt{\frac{\Gamma\mathcal{B}}{\mathcal{A}}}\left(-\Phi(dt - \Psi dr)^{2} + \Gamma\Phi dr^{2} + r^{2}d\Omega^{2}\right)$$

BHs with primary hair

The effective metric reduces to

$$d\hat{s}^2 = \hat{g}_{\mu\nu}dx^\mu dx^\nu = \sqrt{F}\left(-\Phi dt_*^2 + \frac{F}{\Phi}dr^2 + r^2 d\Omega^2\right) \text{ with } \Phi = \mathcal{A} - q^2 A_1$$

BHs with primary hair

The effective metric reduces to

$$d\hat{s}^2 = \hat{g}_{\mu\nu}dx^\mu dx^\nu = \sqrt{F}\left(-\Phi dt_*^2 + \frac{F}{\Phi}dr^2 + r^2 d\Omega^2\right) \text{ with } \Phi = \mathcal{A} - q^2 A_1$$

- Photons & gravitons «see» different geometries: $g_{\mu\nu}$ and $\hat{g}_{\mu\nu}$, and therefore different horizons (for BHs), determined by

$$\mathscr{A}\left(r_{\ell}\right) = 0, \quad \Phi\left(r_{g}\right) = 0$$

BHs with primary hair

The effective metric reduces to

$$d\hat{s}^2 = \hat{g}_{\mu\nu}dx^\mu dx^\nu = \sqrt{F}\left(-\Phi dt_*^2 + \frac{F}{\Phi}dr^2 + r^2 d\Omega^2\right) \text{ with } \Phi = \mathcal{A} - q^2 A_1$$

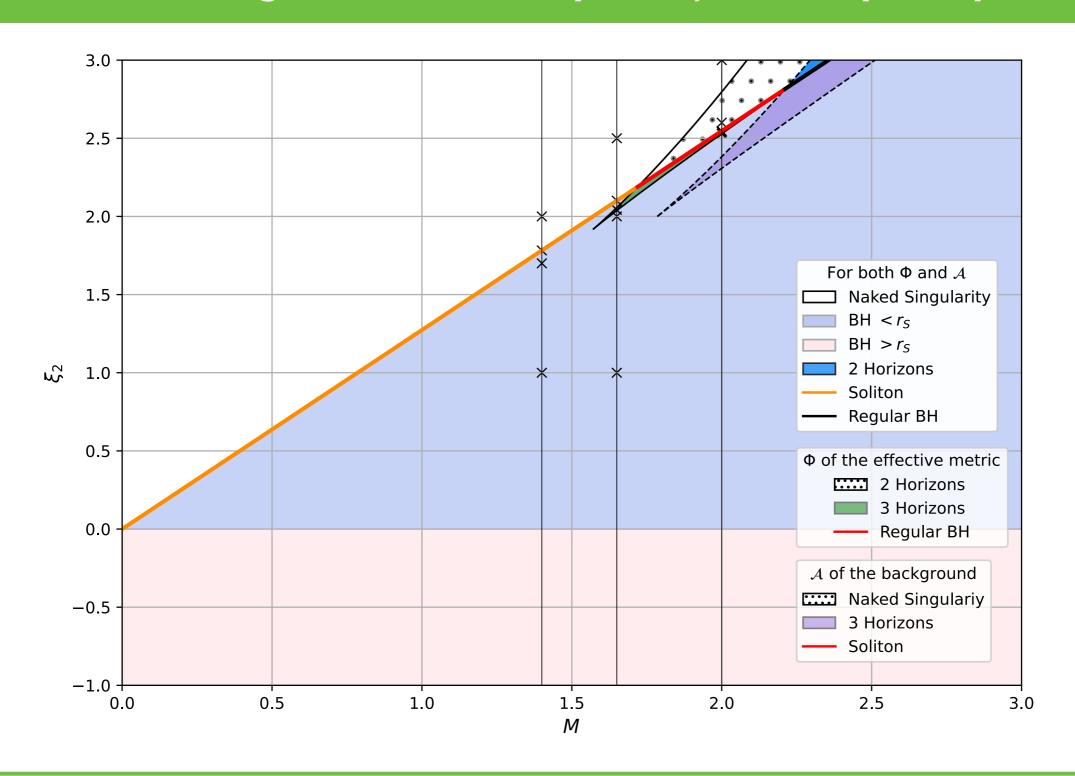
- Photons & gravitons «see» different geometries: $g_{\mu\nu}$ and $\hat{g}_{\mu\nu}$, and therefore different horizons (for BHs), determined by

$$\mathscr{A}\left(r_{\ell}\right) = 0, \quad \Phi\left(r_{g}\right) = 0$$

- In quadratic DHOST theories, the effective metric corresponds to a disformal transformation such that $\hat{F}=1$ $\hat{A}_1=0$ in a frame where $c_g=c_l$. In our case:

$$\hat{g}_{\mu\nu} = \sqrt{F} \left(g_{\mu\nu} + A_1 \phi_\mu \phi_\nu \right)$$

« Phase Diagram » for the compact objects with primary hair, p=2



BHs with primary hair

As in GR, one can write a Schrödinger-like equation

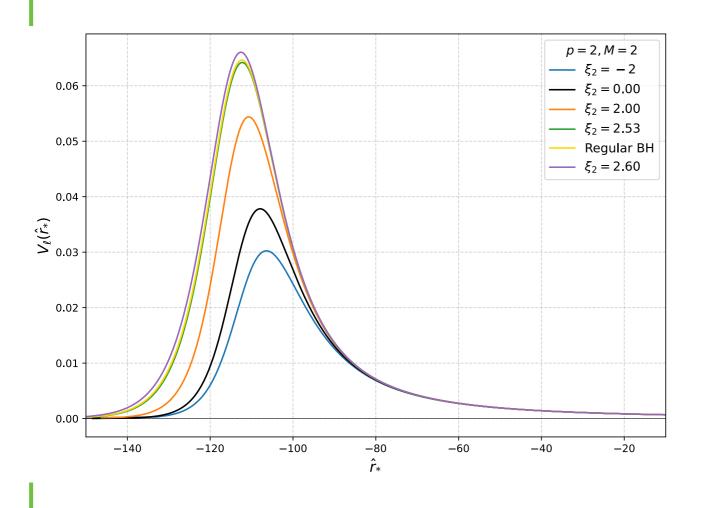
$$-\frac{d^2\mathcal{Y}}{d\hat{r}_*^2} + V_{\ell}\mathcal{Y} = \omega^2\mathcal{Y} \qquad \mathcal{Y} = \frac{\Phi}{rF^{1/4}\omega} \left(h_1 + \Psi h_0\right)$$

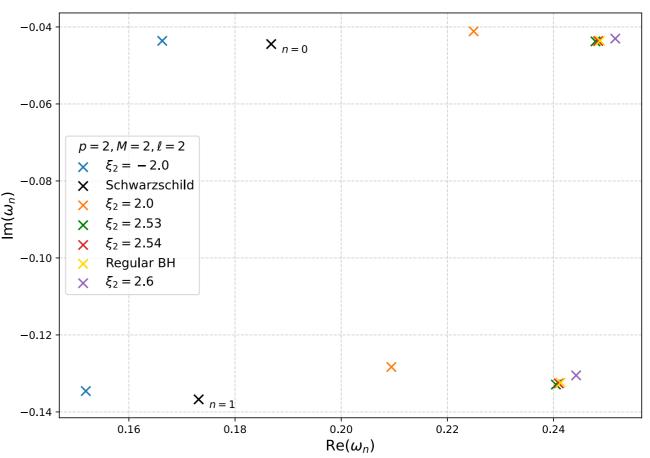
where

$$V_{\ell}(r) = \Phi \left[\frac{\ell^2 + \ell - 2}{r^2} - \frac{1}{r} \kappa_1(F, F', r) \Phi' + \frac{2}{r^2} \kappa_2(F, F', F'', r) \Phi \right]$$

QNMs for Hairy BH with p=2

Using the WKB method





Conclusions

Conclusion

 DHOST theories give a very rich phenomenology, which can describe deviations from General Relativity, both for compact objects and in cosmology, and be tested in future observations.

- Interesting subfamily of DHOST theories allowing for exact BHs solutions with primary hair:
 - Axial modes: effective metric & QNMs
 - Polar modes: for future work

Additional Slides

Disformal Transformation

Disformal Transformation

Transformation [Bekenstein '92]

$$g_{\mu\nu} \longrightarrow \tilde{g}_{\mu\nu} = C(X, \phi)g_{\mu\nu} + D(X, \phi)\partial_{\mu}\phi\partial_{\nu}\phi$$

Generating new theories

From $\tilde{S}\left[\phi, ilde{g}_{\mu
u}
ight]$, one gets the new action

$$S\left[\phi, g_{\mu\nu}\right] \equiv \tilde{S}\left[\phi, \tilde{g}_{\mu\nu} = Cg_{\mu\nu} + D\phi_{\mu}\phi_{\nu}\right]$$

Disformal Transformation

Physically relevant DHOST families are closed under these transformations

Generating new theories

When standard fields are minimally coupled, two disformally related theories are physically inequivalent!

$$S\left[g_{\mu\nu},\phi\right]+S_{m}\left[\Psi_{m},g_{\mu\nu}\right]\neq\tilde{S}\left[\tilde{g}_{\mu\nu},\phi\right]+S_{m}\left[\Psi_{m},\tilde{g}_{\mu\nu}\right]$$