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The multizonal optimization problem

Based on P. Mahey, J. Koko, and A. Lenoir, Decomposition methods for a spatial model for long-term energy pricing problem, in Math Meth Oper Res (2017) 85:137-153
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More generally : multistage stochastic problems

Based on F. Atenas’s PhD thesis: Proximal decomposition methods for optimization problems with structure, State University of Campinas, SP, Brazil - September 2023.
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Progressive Hedging

Introduced in Rockafellar, R. T., and Wets, R. J-B, “Scenarios and policy aggregation in optimization under uncertainty.”” Mathematics of Operations Research 16 (1991), 119-1473
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Proximal step : For all s,
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Projection step: zp1, = PA’S(:IIIhLl/Q), Wit = PA_L’S(?,Uk_l—l/Q) and k < k + 1.

blind ?



Proximal Decomposition

Introduced in Mahey P, Oualibouch S, Pham DT (1995) Proximal decomposition on the graph of a maximal monotone operator. SIAM J Optim 5:454-466

Proximal step : For all s,
. t
k+1/2 : k 2
333+ / = argmlnmSE[RnfS(xS) — g ® ’UJS —|— 5“1'3 — IS”

and
wk—{—l/Q - wk n t($k+1/2 o J:k)

Projection step: zi11 = P g(z*TY/2), wpyq = PA_L’X(’LUI\H—]'/Q) and k + k + 1.

mm) When A is a subspace and distribution is uniform, PD and PH are the same !



Bundle methods

Based on Correa, R., Lemaréchal, C. Convergence of some algorithms for convex minimization. Mathematical Programming 62, 261-275 (1993)

Goal : Minimize a convex and finite-valued function f over the whole of X

Having only a Black Box : given x € X , the value f(x) and some g = g(x) € df (x)

Step 1 : Choose a convex function ¢* : H — R, and compute
_ 1
y* = argmin, 0" (y) + FHU — z°|%.
Step 2 : Compute f(y* If a good decrease if obtained, namely if
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Bundle Progressive Hedging

Based on F. Atenas’s PhD thesis: Proximal decomposition methods for optimization problems with structure, State University of Campinas, SP, Brazil —- September 2023.

Algorithm 3: Bundle Progressive Hedging

Initialization : k=0, (zo,wo) € A X AL, 0 < tymin < to < tmaw,m,1 €]0,1[, and TOL > 0. (3.9) and (3.10) can also be written
Proximal step : For all s,

' : 2 k+1/2 _ . % 2 g
(3.9) w§+1/2 = argmin,, cgnhs(ws) +ws I‘S‘/’ + t_lws - w§|2 i = argmin,_fs(zs) +wizs + > l|lzs — 2|
2
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(3.10) ZhH1/2 _ gl | l(w;cﬂ/z = w = w” + tg(z — "),
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Stopping test : Compute the model descent :

Same can be done for Proximal Decomposition

5:";wd = h(w") - h(wkH/Q) = (wkﬂ/zs IL>S
If 8¢ < TOL : return (z*, w"). Step size can be changed !
Projection step: zy.1 = Pa s(z*71/2), wyiq = Ppu g(wh1/2).
Descent test : Compute the real descent : Cost: One more dual functional evaluation to be made
ok = h(w*) — h(x*).
If 5§:c 2 m: 67Emd : we have a serious Stepa wk—H - 'uk—l—la and fk-l—l = Hla'X(fmz’na Hlin(tma,:va tk/l))
Else : we have a null step, w**! = w*, and ter1 = max(tin, min(tmae, L - te))-
Kt k|




Convergence analysis of BPH :previous results

Based on F. Atenas’s PhD thesis: Proximal decomposition methods for optimization problems with structure, State University of Campinas, SP, Brazil — September 2023.

If finite termination (and TOL = 0 ) : last primal and dual iterates are optimal

set of dual solutions

\

If infinitely many serious steps + error bound : d(w,5) < «||x|| forx € 0r(w) N B(0,¢€)

- dual functional values at serious steps converge towards optimum monotonically, linearly
- dual serious (intermediate) iterates converge towards optimum linearly

- primal serious (intermediate) iterates converge subsequentially towards optimum

If infinite tail of null StEPS : (with stabilizing step size)

1
- last serious dual iterate W is optimal (and u*, witz converge towards it)

- primal (intermediate) iterates converge subsequentially towards optimum ... can we say more?



Convergence analysis of BPH : strongly convex function

. . . k+1 k k
PI'O_]@Cted gradlent (PG) algorlthm . ) By — PA(y e akvf(y )) Last serious dualiterate, optimal

/

Here primal iterates are given by PG on the Moreau envelope of — ¢(z) = f(z) + (W, z)

set of primal solutions

L - I
Projection error bound (PEB): d(z,S) <l||z — Pa(x — ?Vf(g_«;))n
Theorem': a function is strongly convex iff its Moreau envelope is strongly convex
Proposition*: PEB holds for strongly convex function

Theorem °: if PEB holds , then iterates of PG converge R-linearly

1 : Theorem 2.1 from Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent methods: a general approach. Annals of Operations Research, 46(1):157—-178, 1993.
2 : Proposition 2.19 from C. Planiden and X. Wang. Strongly convex functions, moreau envelopes, and the generic nature of convex functions with strong minimizers. SIAM Journal on Optimization, 26(2):1341-1364, 2016.

3 : Theorem 5.3 from Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent methods: a general approach. Annals of Operations Research, 46(1):157—178, 1993 9



Convergence analysis : general case

We show that if PEB holds and the zeroes of f are 1solated, then
- primal iterates and intermediate iterates converge towards an optimum

- primal iterates converge Q-linearly

What does it mean ?
We found the dual Optlmal .. but we don’t know 1t yet' (stopping test is a sufficient condition for optimality, not a necessary one)
We proved that it takes a “linear time” to realize it !

AThis 1s a convergence rate analysis... not one of arithmetic complexity !
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Simulations on the multizonal optimization problem

Evolution of the primal and dual objective values (shifted and rescaled)

1.0+

Primal values

0.5 1

0.0 4

Dual values |
=]
un
1

|
=
(=]
|

0l% B

X MEK e
-I-IHHH-IH-‘-‘PHI'HHI'n T

T T T T T
0 25 50 75 100 125 150 175 200
Iteration

Xxe

XeO+4

PD, stepsize =0.1, running time :1.382401 35

BPD, null steps, init stepsize = 0.1, running time :161e+01 5
BPD, serious steps, init stepsize = 0.1, running time :1.6le+01 s
PD, stepsize =1, running time -1.40=+01 5

BPD. null steps, init stepsize = 1. running time :1.63a+01 5

BPD, serious steps, init stepsize = 1, running time :1.63e+01 =
PD, stepsize =100, running time :1.362401 =

BPD, null steps, init stepsize = 100, running tima :1.6124+01 5
BPD, serious steps, init stepsize = 100, running time "1.61e+01 s
PD, stepsize =0.1, running time :1.38=+01 s

BPD, null steps, init stepsize = 0.1, running time :1.61e+01 s
BPD, serious steps, init stepsize = 0.1, running time :1.6le+01 s
PD, stepsize =1, running time -1.40=+01 5

BPD, null steps, init stepsize = 1, running time :1.63e+01 s

BPD, serious steps, init stepsize = 1. running time :1. 632401 =
PD, stepsize =100, running time :1.36e+01 =

BPD, null steps, init stepsize = 100, running time :1.61e+01 5
BPD, serious steps, init stepsize = 100, running time '1.612+01 5

11



Simulations on the multizonal optimization problem

Evolution of log distance to optimal value, starting from optimal dual iterates
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Conclusion... what’s next?

Extend the convergence results to non subspace constraint sets
Allowing to use a model of the objective function itself
Why? Extension to not so easy subproblems

How? With a super-serious descent test ? More soon!

Thank you for your time and attention ©
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