
Erick Delage
Department of Decision Sciences

Reinforcement Learning Methods for
Risk Averse Sequential Decision Making

17th Conference on Stochastic Programming
Friday, August 1st, 2025

(joint work with Saeed Marzban (HEC Montréal), Jonathan Y. Li (U. of Ottawa), Jia Lin Hau, Marek Petrik (U. of
New Hampshire), Mohammad Ghavamzadeh (Amazon), Esther Derman (U. of Montréal), Weikai Wang (HEC

Montréal))

/43

Sequential decision making using MDPs

- Consider a finite horizon MDP

- Given a policy , we are interested in the risk related to the
sum of cumulative discounted reward:

where is a trajectory traversed using , i.e. , starting from .

(𝒮, 𝒜, r, P, γ, s0)
π : 𝒮 × [T] → 𝒜

R̃T(π) :=
T−1

∑
t=0

γtr(s̃t, ãt)
{s̃t}T

t=0 πt ãt ∼ πt(s̃t) s0

2

/43

Risk neutral sequential decision making

- Traditional form considers a risk neutral (RN) attitude:

min
π

𝔼[−R̃T]

3

/43

Risk neutral sequential decision making

- Traditional form considers a risk neutral (RN) attitude:

min
π

𝔼[−R̃T]

- Different forms of objectives:
‣ Finite horizon:

‣ Infinite horizon (): with

‣ Average expected reward: with

𝔼[−R̃T(π)]
T = ∞ lim

T→∞
𝔼[−R̃T(π)] γ < 1

lim
T→∞

(1/T) 𝔼[−R̃T(π)] γ = 1

3

/43

Risk neutral sequential decision making

- Traditional form considers a risk neutral (RN) attitude:

min
π

𝔼[−R̃T]

- Different forms of objectives:
‣ Finite horizon:

‣ Infinite horizon (): with

‣ Average expected reward: with

𝔼[−R̃T(π)]
T = ∞ lim

T→∞
𝔼[−R̃T(π)] γ < 1

lim
T→∞

(1/T) 𝔼[−R̃T(π)] γ = 1

- Different forms of policy:
‣ History dependent:

‣ Markovian :

‣ Stationary: , for all

πt : 𝒮t × 𝒜t−1 → 𝒜
πt : 𝒮 → 𝒜

πt = π t

3

/43

The role of MDPs in stochastic programming

- Consider the following multi-stage stochastic program:

with Markov , i.e. for all z̃ z̃t+1:T−1 ⊥ z̃1:t−1 | z̃t t

4

<latexit sha1_base64="TbuBETLpNPDmweB1h+gVrVnRNqU=">AAADAXicfVJNb9MwGHbC1yhfHRw4cLGoQK0WIgehgZgmTSAkxGlI6zap7iLHcTtvdpLFb9A6K1z4K1w4gBBX/gU3/g1OW1BZEa9k6/Hzfjz26zcplDRAyE/Pv3Dx0uUrK1db167fuHmrvXp71+RVyUWf5yov9xNmhJKZ6IMEJfaLUjCdKLGXHL9s/HvvRGlknu3ApBBDzcaZHEnOwFHxqneXapnF9jQmAXU7dClPc+jROrawGdUHdudRVNf4Id2gG5hqBodJYl/VAx6TbpN0FpMeXsPUVHoxA9Mx05odAOau5rQuSJUKe+YKR8+h7gULhDsOKW1RneSn1oQQ/hZMY0uO6j9Ca0syLgCmAf8VgB6mSpxgggN6UrGUjvKSKUWDo80ooO69JngT0GCmz0IT1q243SEhmRpeBtEcdNDctuP2D1eIV1pkwBUzZhCRAoaWlSC5EnWLVkYUjB+zsRg4mDEtzNBOf7DGDxyTYncrtzLXs4ZdzLBMGzPRiYtsvsCc9zXkv3yDCkbPhlZmRQUi4zOhUaUw5LgZB5zKUnBQEwcYL6W7K+aHrGQc3NA0TYjOP3kZ7D4Oo/Vw/e2TztaLeTtW0D10H3VRhJ6iLfQabaM+4t5776P32fvif/A/+V/9b7NQ35vn3EF/mf/9FzAU76c=</latexit>

min
x0,{xt(·)}T�1

t=1

E[c0(x0, z0) +
T�1X

t=1

�tct(xt(z̃1:t), z̃t)]

s.t. d0j(x0, z0) +
T�1X

t=1

dtj(xt(z̃1:t), z̃t)  0, 8 j = 1, . . . , J, a.s.

/43

The role of MDPs in stochastic programming

- Consider the following multi-stage stochastic program:

with Markov , i.e. for all z̃ z̃t+1:T−1 ⊥ z̃1:t−1 | z̃t t

- An equivalent risk neutral MDP takes the form:

‣ where

‣

‣

st := [z⊤
t d̄ ⊤t t]⊤ d̄tj := d0j(x0, z0) +

t−1

∑
t′ =1

dt′ j(x′ t(z̃1:t′
), z̃′ t)

at := xt

4

<latexit sha1_base64="bGeaYWXj00O4JRcyfKdEQQVJttk=">AAACbnicbVHLbtQwFHXCqwyPzoDUBRXCoqWaSu0oYVGqVkUFNiyL1GkrjUeR49zMuHWcyL6BSaMs+SL2fAQ7FnwBGz4BzwMJWo5k6ejce+61j+NCSYtB8N3zb9y8dfvO0t3WvfsPHi63O49ObF4aAX2Rq9ycxdyCkhr6KFHBWWGAZ7GC0/ji3bR++hGMlbk+xqqAYcZHWqZScHRS1P5sunaLb+4dMAUpsprFMJK65sbwqqmFaraZ1ClWdINlcT6pZUrX8eCYsn22wfYpy/gkOqcs5qZOmqg+b14HdL1hjG6LCLuTrcvNP84cx2A+SQsNA50sNjAjR2PsRe21oBfMQK+TcEHWDt8EX350vuqjqP2NJbkoM9AoFLd2EAYFDt1QlEJB02KlhYKLCz6CgaOaZ2CH9Syuhr5wSkLT3Lijkc7Uvx01z6ytsth1ZhzH9mptKv6vNigx3R3WUhclghbzRWmpKOZ0mj1NpAGBqnKECyPdXakYc8MFuh9quRDCq0++Tk5e9sKd3s4Hl8ZbMscSWSXPSZeE5BU5JO/JEekTQX56He+Jt+r98lf8p/6zeavvLTyPyT/wu78Bi1q+3A==</latexit>

r(s, a) :=

⇢
�1 if t = T & maxj d̄j > 0

�ct(x, z) otherwise

<latexit sha1_base64="TbuBETLpNPDmweB1h+gVrVnRNqU=">AAADAXicfVJNb9MwGHbC1yhfHRw4cLGoQK0WIgehgZgmTSAkxGlI6zap7iLHcTtvdpLFb9A6K1z4K1w4gBBX/gU3/g1OW1BZEa9k6/Hzfjz26zcplDRAyE/Pv3Dx0uUrK1db167fuHmrvXp71+RVyUWf5yov9xNmhJKZ6IMEJfaLUjCdKLGXHL9s/HvvRGlknu3ApBBDzcaZHEnOwFHxqneXapnF9jQmAXU7dClPc+jROrawGdUHdudRVNf4Id2gG5hqBodJYl/VAx6TbpN0FpMeXsPUVHoxA9Mx05odAOau5rQuSJUKe+YKR8+h7gULhDsOKW1RneSn1oQQ/hZMY0uO6j9Ca0syLgCmAf8VgB6mSpxgggN6UrGUjvKSKUWDo80ooO69JngT0GCmz0IT1q243SEhmRpeBtEcdNDctuP2D1eIV1pkwBUzZhCRAoaWlSC5EnWLVkYUjB+zsRg4mDEtzNBOf7DGDxyTYncrtzLXs4ZdzLBMGzPRiYtsvsCc9zXkv3yDCkbPhlZmRQUi4zOhUaUw5LgZB5zKUnBQEwcYL6W7K+aHrGQc3NA0TYjOP3kZ7D4Oo/Vw/e2TztaLeTtW0D10H3VRhJ6iLfQabaM+4t5776P32fvif/A/+V/9b7NQ35vn3EF/mf/9FzAU76c=</latexit>

min
x0,{xt(·)}T�1

t=1

E[c0(x0, z0) +
T�1X

t=1

�tct(xt(z̃1:t), z̃t)]

s.t. d0j(x0, z0) +
T�1X

t=1

dtj(xt(z̃1:t), z̃t)  0, 8 j = 1, . . . , J, a.s.

/43

The rise of deep reinforcement learning

5

people had realized.

Understanding the Learning Process
If TD-Gammon has been an exciting new development in the world of backgammon, it has been
even more exciting for the fields of neural networks and machine learning. By combining the TD
approach to temporal credit assignment with the MLP architecture for nonlinear function
approximation, rather surprising results have been obtained, to say the least. The TD self-play
approach has greatly surpassed the alternative approach of supervised training on expert examples,
and has achieved a level of play well beyond what one could have expected, based on prior
theoretical and empirical work in reinforcement learning. Hence there is now considerable interest
within the machine learning community in trying to extract the principles underlying the success of
TD-Gammon’s self-teaching process. This could form the basis for further theoretical progress in
the understanding of TD methods, and it could also provide some indication as to other classes of
applications where TD learning might also be successful. While a complete understanding of the
learning process is still far away, some important insights have been obtained, and are described in
more detail here.

Absolute Accuracy vs. Relative Accuracy

In absolute terms, TD-Gammon’s equity estimates are commonly off by a tenth of a point or more.
At first glance, this would appear to be so large that the neural network ought to be essentially
useless for move selection. Making master-level plays very often requires discrimination on a much

TD-Gammon superior
positioning

This technique, known as "slotting," boldly risks a high probability of being hit in exchange for the
opportunity to quickly develop a menacing position if missed. However, when Bill Robertie’s
article on TD-Gammon appeared in Inside Backgammon in 1992, it included a rollout analysis by
TD-Gammon showing that the opening slot was inferior to splitting the back checkers with 24-23.
As a result, a few top players began experimenting with the split play, and after some notable
tournament successes, it quickly gathered more adherents. Today, the near-universal choice is now
the split play, whereas the slotting play has virtually disappeared from tournament competition.

TD-Gammon’s preference for splitting over slotting is just one simple example where its positional
judgment differs from traditional expert judgment. A more complex and striking example is
illustrated in Figure 3. This situation confronted Joe Sylvester, the highest-rated player in the world
at the time, in the final match of the 1988 World Cup of Backgammon tournament. Sylvester,
playing White, had rolled 4-4 and made the obvious-looking play of 8-4*, 8-4, 11-7, 11-7. His play
was approved by three world-class commentators on the scene (Kent Goulding, Bill Robertie and
Nack Ballard), and in fact it’s hard to imagine a good human player doing anything else. However,
TD-Gammon’s recommendation is the surprising 8-4*, 8-4, 21-17, 21-17! Traditional human
thinking would reject this play, because the 21 point would be viewed as a better defensive anchor
than the 17 point, and the 7 point would be viewed as a better blocking point than the 11 point.
However, an extensive rollout performed by TD-Gammon, summarized in Table 3, confirms that its
choice offers substantial improvement in equity of nearly a tenth of a point. Since a TD-Gammon
rollout is now generally regarded as the most reliable method available for analyzing checker plays,
most experts are willing to accept that its play here must be correct. Results such as this are leading
many experts to revise substantially their approach to evaluating complex positional battles. For
example, it appears that in general, the 17 point is simply a much better advanced anchor than most

Backgammon opening
position

- 1991: TD-Gammon learns to play backgammon and surpasses some of the
best human players (Tesauro [1995]).

/43

The rise of deep reinforcement learning

5

Pong Breakout Space Invaders Seaquest Beam Rider

- 1991: TD-Gammon learns to play backgammon and surpasses some of the
best human players (Tesauro [1995]).

- 2015: DeepMind trains an agent that achieves human level performance
on Atari games (Mnih et al. [2015]).

/43

The rise of deep reinforcement learning

5

- 1991: TD-Gammon learns to play backgammon and surpasses some of the
best human players (Tesauro [1995]).

- 2015: DeepMind trains an agent that achieves human level performance
on Atari games (Mnih et al. [2015]).

- 2016: DeepMing’s AlphaGo defeats world champion Lee Sedol in 4 out of
5 games (Silver et al. [2016]).

/43

The rise of deep reinforcement learning

5

- 1991: TD-Gammon learns to play backgammon and surpasses some of the
best human players (Tesauro [1995]).

- 2015: DeepMind trains an agent that achieves human level performance
on Atari games (Mnih et al. [2015]).

- 2016: DeepMing’s AlphaGo defeats world champion Lee Sedol in 4 out of
5 games (Silver et al. [2016]).

- 2022: ChatGPT uses DRL to fine-tune its LLM to account for human
feedback (Ooyang et al. [2022]).

/43

Q-learning for inf. horizon RN MDPs

- When , RL methods to solve RN MDPs rely on solution of
Bellman equations:

T = ∞

which gives .

Q*(s, a) = 𝔼[− r(s, a) + γ min
a′

Q*(s′ , a) s, a], ∀(s, a)

π*t (s) := arg min
a∈𝒜

Q*(s, a)

6

/43

Q-learning for inf. horizon RN MDPs

- When , RL methods to solve RN MDPs rely on solution of
Bellman equations:

T = ∞

which gives .

Q*(s, a) = 𝔼[− r(s, a) + γ min
a′

Q*(s′ , a) s, a], ∀(s, a)

π*t (s) := arg min
a∈𝒜

Q*(s, a)

- In tabular setting, Q-learning is a model-free solution scheme, i.e. based
on :{sk, ak, s′ k}∞

k=1

It is guaranteed to converge to if each is visited infinitely often
and learning rate satisfies Robbins-Monro conditions.

Qk(sk, ak) ← Qk−1(sk, ak) + α(k) ⋅ (−r(sk, ak) + γ min
a′

Qk−1(s′ k, a′) − Qk−1(sk, ak))
Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)

Q* (s, a)

6

/43

Deep RL for risk neutral MDPs with
continuous and 𝒮 𝒜

7

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RL FOR RISK NEUTRAL MDPS WITH
CONTINUOUS S AND A

Algorithm Deep Deterministic Policy Gradient (DDPG)

Initialize the main actor ✓⇡ and critic ✓Q networks , the target actor, ✓̄⇡ , and critic, ✓̄Q , networks
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Initialize state to s0 and effective horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡✓⇡ (st) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch of N transitions {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + �Q✓̄Q
(s0i ,⇡✓̄⇡

(s0i))

Update the main critic network:

✓Q ✓Q + ↵
1

N

NX

i=1
(yi � Q✓Q (si, ai))r✓Q Q✓Q (si, ai)

Update the main actor network :

✓⇡ ✓⇡ � ↵
1

N

NX

i=1
raQ✓Q (si, a)|a=⇡✓⇡

(si)
r✓⇡⇡✓⇡ (si) ;

Update the target networks: (✓̄⇡, ✓̄Q) (1� ↵)(✓̄⇡, ✓̄Q) + ↵(✓⇡, ✓Q)
end for

end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 5/42

 θQ ← θQ + α
1
N

N

∑
i=1

(yi − QθQ
(si, ai))∇θQ

QθQ
(si, ai)

 θπ ← θπ − α
1
N

N

∑
i=1

∇aQθQ
(si, a) |a=πθπ(si) ∇θπ

πθπ
(si)

/43

Moving beyond the RN MDPs

- Two popular approaches for handling risk aversion:
1. Static law-invariant risk measure (SRM):

- E.g. : , VaR , CVaR
- Pros: Easy to interpret
- Cons: Can violate dynamic consistency

min
π

ρ̄(−R̃(π)) := ϱ̄(F−R̃(π))
𝔼[−R̃(π)] (−R̃(π)) (−R̃(π))

8

95%	VaR =		95th percentile	=7,5

Conditional VaR 95%	=	9

Cost	distribution

Mean =	2,72

Median =	2,19

Mode	=	1,42

Range	=	[0,2,	∞]

/43

Moving beyond the RN MDPs

- Two popular approaches for handling risk aversion:
1. Static law-invariant risk measure (SRM):

min
π

ρ̄(−R̃(π)) := ϱ̄(F−R̃(π))

9

2. Dynamic law-invariant risk measure (DRM):

- E.g.: , ,

- Pros: Satisfies dynamic consistency, associated to Bellman equation
- Cons: Can be hard to interpret

min
π

ρ(−R̃(π)) := ρ̄0(ρ̄1(…ρ̄T−1(−R̃(π) | ã0:T−2, s̃1:T−1)⋯ | ã0, s̃1))
𝔼[−R̃(π)] VaR(VaR(…VaR(−R̃(π) | ã0:T−2, s̃1:T−1)… | ã0, s̃1))

CVaR(CVaR(…CVaR(−R̃(π) | ã0:T−2, s̃1:T−1)… | ã0, s̃1))

/43

Outline

- Introduction

- Q-learning with Dynamic Expectile Risk Measure

- Q-learning with Static Quantile Measure

- Q-learning for Average Risk-aware MDP

- Conclusion

10

/43

Q-learning with
Dynamic Expectile Risk Measure

11

Risk seeking agent Risk neutral agent Risk averse agent
Start (r = -1)

Goal (r = 0)

Damage (r = -50)

Nothing (r = -1)

Optimal policy

Saeed Marzban, D, Jonathan Y. Li, Deep Reinforcement
Learning for Equal Risk Pricing and Hedging under Dynamic
Expectile Risk Measures, Quantitative Finance, 2023.

/43

Coherent risk measure [Artzner et al. 1999]

- Definition:
A risk measure is said to be coherent if it satisfies the following properties:

- Monotone: such that a.s., we have
- Translation invariant: and , we have
- Positive homogeneous: and , we have
- Subadditive: , we have

‣ Furthermore, it can be
- Law-invariant: such that in distribution, we have

∀X̃, Ỹ X̃ ≥ Ỹ ρ(X̃) ≥ ρ(Ỹ)
∀X̃ t ρ(X̃ + t) = ρ(X̃) + t

∀X̃ α ≥ 0 ρ(αX̃) = αρ(X̃)
∀X̃, Ỹ ρ(X̃ + Ỹ) ≤ ρ(X̃) + ρ(Ỹ)

∀X̃, Ỹ X̃ = Ỹ ρ(X̃) = ρ(Ỹ)

12

/43

Coherent risk measure [Artzner et al. 1999]

- Definition:
A risk measure is said to be coherent if it satisfies the following properties:

- Monotone: such that a.s., we have
- Translation invariant: and , we have
- Positive homogeneous: and , we have
- Subadditive: , we have

‣ Furthermore, it can be
- Law-invariant: such that in distribution, we have

∀X̃, Ỹ X̃ ≥ Ỹ ρ(X̃) ≥ ρ(Ỹ)
∀X̃ t ρ(X̃ + t) = ρ(X̃) + t

∀X̃ α ≥ 0 ρ(αX̃) = αρ(X̃)
∀X̃, Ỹ ρ(X̃ + Ỹ) ≤ ρ(X̃) + ρ(Ỹ)

∀X̃, Ỹ X̃ = Ỹ ρ(X̃) = ρ(Ỹ)

- Examples:
‣ Expected value:

‣ Conditional Value-at-Risk:
ρ(X̃) := 𝔼[X̃]

ρ(X̃) := 𝔼[X̃ | X̃ ≥ F−1
X (α)]

12

/43

Elicitable risk measure [Bellini and Bignozzi, 2015]

- Definition:
A risk measure is said to be elicitable if it can be expressed as the unique
minimizer of a certain scoring function.

ρ̄(X̃) := arg min
q

𝔼 [S(q, X̃)] .

13

/43

Elicitable risk measure [Bellini and Bignozzi, 2015]

- Definition:
A risk measure is said to be elicitable if it can be expressed as the unique
minimizer of a certain scoring function.

ρ̄(X̃) := arg min
q

𝔼 [S(q, X̃)] .

- We focus on cases where :
‣ Expected value:

‣ Quantile:

‣ Expectile:

S(q, x) := ℓ(q − x)
ℓ(y) := (1/2)y2

ℓτ(y) := (1 − τ) max(y,0) + τ max(−y,0)
ℓτ(y) := (1 − τ) max(y,0)2 + τ max(−y,0)2

13

/43

Elicitable risk measure [Bellini and Bignozzi, 2015]

- Definition:
A risk measure is said to be elicitable if it can be expressed as the unique
minimizer of a certain scoring function.

ρ̄(X̃) := arg min
q

𝔼 [S(q, X̃)] .

- We focus on cases where :
‣ Expected value:

‣ Quantile:

‣ Expectile:

S(q, x) := ℓ(q − x)
ℓ(y) := (1/2)y2

ℓτ(y) := (1 − τ) max(y,0) + τ max(−y,0)
ℓτ(y) := (1 − τ) max(y,0)2 + τ max(−y,0)2

- If is concave, then is a utility-based shortfall risk measureℓ′ (⋅) ρ̄(X̃)

13

/43

Expectile risk measure

- Definition:
The -expectile of a random liability is defined as:τ X̃

ρ̄(X̃) := arg min
q

𝔼 [(1 − τ) max(q − X̃,0)2 + τ max(X̃ − q)2]

14

/43

Expectile risk measure

- Definition:
The -expectile of a random liability is defined as:τ X̃

ρ̄(X̃) := arg min
q

𝔼 [(1 − τ) max(q − X̃,0)2 + τ max(X̃ − q)2]

- Examples:
‣ , i.e. best-case scenario

‣ , i.e. risk neutral
‣ , i.e. worst-case scenario

τ = 0 ⇒ ρ̄(X̃) = ess inf[X̃]
τ = 0.5 ⇒ ρ̄(X̃) = 𝔼[X̃]
τ = 1 ⇒ ρ̄(X̃) = ess sup[X̃]

14

/43

Expectile risk measure

- Definition:
The -expectile of a random liability is defined as:τ X̃

ρ̄(X̃) := arg min
q

𝔼 [(1 − τ) max(q − X̃,0)2 + τ max(X̃ − q)2]

- Examples:
‣ , i.e. best-case scenario

‣ , i.e. risk neutral
‣ , i.e. worst-case scenario

τ = 0 ⇒ ρ̄(X̃) = ess inf[X̃]
τ = 0.5 ⇒ ρ̄(X̃) = 𝔼[X̃]
τ = 1 ⇒ ρ̄(X̃) = ess sup[X̃]

- Expectile with is the class of all elicitable coherent risk
measures [Bellini and Bignozzi, 2015]

τ ∈ [0.5, 1]

14

/43

Dynamic expectile risk measure (DERM)

- Definition:
A dynamic expectile risk measure takes the form:

where each is an expectile risk measure that employs the
conditional distribution given .

ρ(−R̃(π)) := ρ̄0(ρ̄1(…ρ̄T−1(−R̃(π) | ã0:T−2, s̃1:T−1)… | ã0, s̃1)) ,
ρ̄t(⋅ | ã0:t−1, s̃1:t)

(ã0:t−1, s̃1:t)

15

/43

Data-driven conditional risk estimation

- When using elicitable risk measures, conditional risk can be estimated
based on i.i.d. data using regression:{xi, yi}M

i=1

θ* = arg min
θ

1
M

M

∑
i=1

ℓ(hθ(xi) − yi) ⇒ ρ̄(Ỹ | X̃) ≈ hθ*(X̃)

16
-1 -0.5 0 0.5 1

Observed covariate X

-5

-4

-3

-2

-1

0

1

2

3

4

5

D
e
p
e
n
d
e
n
t
co

st
 Y

Conditional expectile risk regression using quadratic function

data
 = 0.01
 = 0.1
 = 0.5
 = 0.9
 = 0.99

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

17

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

= ρ̄0(−r(s0, ã0)+ρ̄1(−γr(s̃1, ã1)+ρ̄2(−γ2r(s̃2, ã2) | ã0:1, s̃1:2) ã0, s̃1))

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

17

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

= ρ̄0(−r(s0, ã0)+ρ̄1(−γr(s̃1, ã1)+ρ̄2(−γ2r(s̃2, ã2) | ã0:1, s̃1:2) ã0, s̃1))
= ρ̄0(− r(s0, ã0)+γρ̄1(− r(s̃1, ã1)+γρ̄2(−r(s̃2, ã2) | ã0:1, s̃1:2) ã0, s̃1))

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

17

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

= ρ̄0(− r(s0, ã0)+γρ̄1(− r(s̃1, ã1)+γρ̄2(−r(s̃2, ã2) | ã0:1, s̃1:2) ã0, s̃1))

18

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

 ≥ min
a0

ρ̄0(− r(s0, a0) + γmin
a1

ρ̄1(− r(s̃1, a1) + γmin
a2

ρ̄2(−r(s̃2, a2) |a0:1, s̃1:2) a0, s̃1))
= ρ̄0(− r(s0, ã0)+γρ̄1(− r(s̃1, ã1)+γρ̄2(−r(s̃2, ã2) | ã0:1, s̃1:2) ã0, s̃1))

18

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

 ≥ min
a0

ρ̄0(− r(s0, a0) + γmin
a1

ρ̄1(− r(s̃1, a1) + γmin
a2

ρ̄2(−r(s̃2, a2) |a0:1, s̃1:2) a0, s̃1))

19

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

 ≥ min
a0

ρ̄0(− r(s0, a0) + γmin
a1

ρ̄1(− r(s̃1, a1) + γmin
a2

ρ̄2(−r(s̃2, a2) |a0:1, s̃1:2) a0, s̃1))
= min

a0
ρ̄0(− r(s0, a0) + γ min

a1
ρ̄1(− r(s̃1, a1) + γ min

a2
ρ̄2(−r(s̃2, a2) | s̃2) s̃1))

19

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

= min
a0

ρ̄0(− r(s0, a0) + γ min
a1

ρ̄1(− r(s̃1, a1) + γ min
a2

ρ̄2(−r(s̃2, a2) | s̃2) s̃1))

20

≥

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

= ρ̄0(− r(s0, π*0 (s0)) + γρ̄1(− r(s̃1, π*1 (s̃1)) + γρ̄2(− r(s̃2, π*2 (s̃2)) s̃2) s̃1))
= min

a0
ρ̄0(− r(s0, a0) + γ min

a1
ρ̄1(− r(s̃1, a1) + γ min

a2
ρ̄2(−r(s̃2, a2) | s̃2) s̃1))

20

≥

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

= ρ̄0(− r(s0, π*0 (s0)) + γρ̄1(− r(s̃1, π*1 (s̃1)) + γρ̄2(− r(s̃2, π*2 (s̃2)) s̃2) s̃1))

21

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

- With DERMs, one can exploit TI, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when :

where

T = 3

ρ(−R̃(π)) = ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) ã0, s̃1))

π*2 (s) ∈ arg min
a

Q*2 (s, a) := ρ̄2(−r(s, a) | s̃2 = s) = − r(s, a)
π*1 (s) ∈ arg min

a
Q*1 (s, a) := ρ̄1(−r(s, a) + γρ̄2(−r(s̃2, π*2 (s̃2)) | s̃2) | s̃1 = s)

= ρ̄1(−r(s, a) + γ min
a′

Q*2 (s̃2, a′) | s̃1 = s)
π*0 (s) ∈ arg min

a
Q*0 (s, a) := ρ̄0(−r(s, a) + γ min

a′

Q*1 (s̃1, a′))

= ρ̄0(ρ̄1(ρ̄2(−
2

∑
t=0

γtr(s̃t, π*t (s̃t)) | s̃1:2) s̃1)) = ρ(−R̃(π*)),

= ρ̄0(− r(s0, π*0 (s0)) + γρ̄1(− r(s̃1, π*1 (s̃1)) + γρ̄2(− r(s̃2, π*2 (s̃2)) s̃2) s̃1))

21

≥

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

Theorem:
For general ,

where

and while .

T
min

π
ρ(−R̃(π)) = ρ(−R̃(π*)) = min

a0
Q*0 (s0, a0)

Q*t (s, a) := ρ̄t(− r(s, a) + γ min
a′

Q*t+1(s̃t+1, a′) s̃t = s)
Q*T (s, a) := 0 π*t (s) ∈ arg min

a
Q*t (s, a)

22

Bellman equations for DERM-MDP
(Ruszczynski [2010], Shen et al. [2013], Pichler and Shapiro [2018], Bäuerle and Glauber [2022])

/43

- Exploiting the elicitability property, we get

 Q*t (s, a) = ρ̄t(− r(s, a) + γ min
at+1

Q*t+1(s̃t+1, at+1) s̃t = s)
= arg min

q
𝔼[ℓ(q − (−r(s, a) + γ min

at+1
Qt+1(s̃t+1, at+1))) s̃t = s]

Converting Bellman equations to Q-learning

23

/43

- Exploiting the elicitability property, we get

 Q*t (s, a) = ρ̄t(− r(s, a) + γ min
at+1

Q*t+1(s̃t+1, at+1) s̃t = s)
= arg min

q
𝔼[ℓ(q − (−r(s, a) + γ min

at+1
Qt+1(s̃t+1, at+1))) s̃t = s]

- This gives rise to a stochastic gradient algorithm that learns from sample
:s′ ∼ P(⋅ |s, a)

Qt(s, a) ← Qt(s, a) − α ⋅ ℓ′ (Qt(s, a) − (−r(s, a) + γ min
a′

Q*t+1(s′ , a′)))

Converting Bellman equations to Q-learning

23

/43

- Exploiting the elicitability property, we get

 Q*t (s, a) = ρ̄t(− r(s, a) + γ min
at+1

Q*t+1(s̃t+1, at+1) s̃t = s)
= arg min

q
𝔼[ℓ(q − (−r(s, a) + γ min

at+1
Qt+1(s̃t+1, at+1))) s̃t = s]

- This gives rise to a stochastic gradient algorithm that learns from sample
:s′ ∼ P(⋅ |s, a)

Qt(s, a) ← Qt(s, a) − α ⋅ ℓ′ (Qt(s, a) − (−r(s, a) + γ min
a′

Q*t+1(s′ , a′)))
- This generalizes the Q-learning update for RN case, where

 and :ℓ(y) := (1/2)y2 ℓ′ (y) = y
Qt(s, a) ← Qt(s, a) − α ⋅ (Qt(s, a) − (−r(s, a) − γ min

a′

Qt+1(s′ , a′)))

Converting Bellman equations to Q-learning

23

/43

Convergence of risk-sensitive Q-learning
([Shen et al. [2014], Hau et al. [2025])

Theorem (finite horizon):
In tabular setting, let . Assume that and used in

satisfy the Robbins-Monro conditions:

,

then, the sequence converges almost surely to .

τ ∈ (0,1) α(k) {(tk, sk, ak, s′ k)}∞
k=0

Qk
tk(sk, ak) ← Qk−1

tk (sk, ak) − α(k) ⋅ ℓ′ (Qk−1
tk (sk, ak) + r(sk, ak) − γ min

a′

Qk−1
tk+1(s′ k, a′))

Qk
t (s, a) ← Qk−1

t (s, a), ∀(t, s, a) ≠ (tk, sk, ak)

∑
k:(tk,sk,ak)=(t,s,a)

α(k) = ∞ ∑
k:(tk,sk,ak)=(t,s,a)

α(k)2 < ∞, ∀(t, s, a) a.s.

{Qk}∞
k=0 Q*

24

/43

Convergence of risk-sensitive Q-learning
([Shen et al. [2014], Hau et al. [2025])

Theorem (finite horizon):
In tabular setting, let . Assume that and used in

satisfy the Robbins-Monro conditions:

,

then, the sequence converges almost surely to .

τ ∈ (0,1) α(k) {(tk, sk, ak, s′ k)}∞
k=0

Qk
tk(sk, ak) ← Qk−1

tk (sk, ak) − α(k) ⋅ ℓ′ (Qk−1
tk (sk, ak) + r(sk, ak) − γ min

a′

Qk−1
tk+1(s′ k, a′))

Qk
t (s, a) ← Qk−1

t (s, a), ∀(t, s, a) ≠ (tk, sk, ak)

∑
k:(tk,sk,ak)=(t,s,a)

α(k) = ∞ ∑
k:(tk,sk,ak)=(t,s,a)

α(k)2 < ∞, ∀(t, s, a) a.s.

{Qk}∞
k=0 Q*

25

(infinite horizon)

Qk(sk, ak) ← Qk−1(sk, ak) − α(k) ⋅ ℓ′ (Qk−1(sk, ak) + r(sk, ak) − γ min
a′

Qk−1(s′ k, a′))

 ∑
k:(sk,ak)=(s,a)

α(k) = ∞, ∑
k:(sk,ak)=(s,a)

α(k)2 < ∞, ∀(s, a) a.s.

 Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)

{(sk, ak, s′ k)}∞
k=0

/43

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DERMS

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures:

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Traditional RN DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓̄⇡ , and critic, ✓̄Q , networks
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡✓⇡ (st) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q✓̄Q
(s0i ,⇡✓̄⇡

(s0i))

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q✓Q (si, ai) � yi)r✓Q Q✓Q (si, ai)

where `(�) := (1/2)�2

Update the main actor network :

✓⇡ ✓⇡ � ↵
1

N

NX

i=1
raQ✓Q (si, a)|a=⇡✓⇡

(si)
r✓⇡⇡✓⇡ (si) ;

Update the target networks (✓̄Q, ✓̄⇡)
end for

end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 21/42

θπ ← θπ − α

1
N

N

∑
i=1

∇aQθQ
(si, a) |a=πθπ(si) ∇θπ

πθπ
(si)

θQ ← θQ + α

1
N

N

∑
i=1

(yi − QθQ
(si, ai))∇θQ

QθQ
(si, ai)

Deep risk averse RL using DERMs

- In Marzban et al. [2023], we
extend the deep deterministic
policy gradient (DDPG)
algorithm to solve dynamic
problems formulated based on
dynamic expectile risk measures:

Q*(s, a) = ρ̄(− r(s, a)+
γ min

a′

Q*(s′ , a′) s)

26

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DERMS

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures:

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Traditional RN DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓⇡

0
, and critic, ✓Q0

, networks
Initialize replay buffers R
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡(st|✓⇡) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q(s0i ,⇡(s0i |✓
⇡0

)|✓Q0
)

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q(si, ai|✓Q) � yi)r✓Q Q(si, ai|✓Q)

where `(�) := (1/2)�2

Update the main actor network :

✓⇡ ✓⇡�↵
1

N

NX

i=1
raQ(si, a|✓Q)|a=⇡(si|✓⇡)r✓⇡⇡(si|✓

⇡) ;

Update the target networks (✓Q0
, ✓⇡

0
)

end for
end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 21/42

θQ ← θQ + α
1
N

N

∑
i=1

(yi − QθQ
(si, ai))∇θQQθQ

(si, ai)

/43

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DERMS

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures:

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Traditional RN DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓̄⇡ , and critic, ✓̄Q , networks
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡✓⇡ (st) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q✓̄Q
(s0i ,⇡✓̄⇡

(s0i))

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q✓Q (si, ai) � yi)r✓Q Q✓Q (si, ai)

where `(�) := (1/2)�2

Update the main actor network :

✓⇡ ✓⇡ � ↵
1

N

NX

i=1
raQ✓Q (si, a)|a=⇡✓⇡

(si)
r✓⇡⇡✓⇡ (si) ;

Update the target networks (✓̄Q, ✓̄⇡)
end for

end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 21/42

θπ ← θπ − α

1
N

N

∑
i=1

∇aQθQ
(si, a) |a=πθπ(si) ∇θπ

πθπ
(si)

θQ ← θQ + α

1
N

N

∑
i=1

ℓ′ (QθQ
(si, ai) − yi)∇θQ

QθQ
(si, ai)

Deep risk averse RL using DERMs

27

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DERMS

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures:

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Traditional RN DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓⇡

0
, and critic, ✓Q0

, networks
Initialize replay buffers R
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡(st|✓⇡) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q(s0i ,⇡(s0i |✓
⇡0

)|✓Q0
)

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q(si, ai|✓Q) � yi)r✓Q Q(si, ai|✓Q)

where `(�) := (1/2)�2

Update the main actor network :

✓⇡ ✓⇡�↵
1

N

NX

i=1
raQ(si, a|✓Q)|a=⇡(si|✓⇡)r✓⇡⇡(si|✓

⇡) ;

Update the target networks (✓Q0
, ✓⇡

0
)

end for
end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 21/42

θQ ← θQ + α
1
N

N

∑
i=1

(yi − QθQ
(si, ai))∇θQQθQ

(si, ai)

- In Marzban et al. [2023], we
extend the deep deterministic
policy gradient (DDPG)
algorithm to solve dynamic
problems formulated based on
dynamic expectile risk measures:

Q*(s, a) = ρ̄(− r(s, a)+
γ min

a′

Q*(s′ , a′) s)

/43

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DERMS

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures:

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Traditional RN DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓̄⇡ , and critic, ✓̄Q , networks
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡✓⇡ (st) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q✓̄Q
(s0i ,⇡✓̄⇡

(s0i))

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q✓Q (si, ai) � yi)r✓Q Q✓Q (si, ai)

where `(�) := (1/2)�2

Update the main actor network :

✓⇡ ✓⇡ � ↵
1

N

NX

i=1
raQ✓Q (si, a)|a=⇡✓⇡

(si)
r✓⇡⇡✓⇡ (si) ;

Update the target networks (✓̄Q, ✓̄⇡)
end for

end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 21/42

θπ ← θπ − α

1
N

N

∑
i=1

∇aQθQ
(si, a) |a=πθπ(si) ∇θπ

πθπ
(si)

θQ ← θQ + α

1
N

N

∑
i=1

ℓ′ (QθQ
(si, ai) − yi)∇θQ

QθQ
(si, ai)

Deep risk averse RL using DERMs

27

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DERMS

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures:

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Traditional RN DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓⇡

0
, and critic, ✓Q0

, networks
Initialize replay buffers R
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡(st|✓⇡) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q(s0i ,⇡(s0i |✓
⇡0

)|✓Q0
)

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q(si, ai|✓Q) � yi)r✓Q Q(si, ai|✓Q)

where `(�) := (1/2)�2

Update the main actor network :

✓⇡ ✓⇡�↵
1

N

NX

i=1
raQ(si, a|✓Q)|a=⇡(si|✓⇡)r✓⇡⇡(si|✓

⇡) ;

Update the target networks (✓Q0
, ✓⇡

0
)

end for
end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 21/42

θQ ← θQ + α
1
N

N

∑
i=1

(yi − QθQ
(si, ai))∇θQQθQ

(si, ai)

- In Marzban et al. [2023], we
extend the deep deterministic
policy gradient (DDPG)
algorithm to solve dynamic
problems formulated based on
dynamic expectile risk measures:

Q*(s, a) = ρ̄(− r(s, a)+
γ min

a′

Q*(s′ , a′) s)

/43

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DERMS

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures:

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Traditional RN DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓̄⇡ , and critic, ✓̄Q , networks
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡✓⇡ (st) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q✓̄Q
(s0i ,⇡✓̄⇡

(s0i))

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q✓Q (si, ai) � yi)r✓Q Q✓Q (si, ai)

where `(�) := (1/2)�2

Update the main actor network :

✓⇡ ✓⇡ � ↵
1

N

NX

i=1
raQ✓Q (si, a)|a=⇡✓⇡

(si)
r✓⇡⇡✓⇡ (si) ;

Update the target networks (✓̄Q, ✓̄⇡)
end for

end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 21/42

θπ ← θπ − α

1
N

N

∑
i=1

∇aQθQ
(si, a) |a=πθπ(si) ∇θπ

πθπ
(si)

θQ ← θQ + α

1
N

N

∑
i=1

ℓ′ (QθQ
(si, ai) − yi)∇θQ

QθQ
(si, ai)

Deep risk averse RL using DERMs

28

θQ ← θQ + α
1
N

N

∑
i=1

(yi − QθQ
(si, ai))∇θQQθQ

(si, ai)
Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DYNAMIC RISK
MEASURES

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Risk averse DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓⇡

0
, and critic, ✓Q0

, networks
Initialize replay buffers R
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡(st|✓⇡) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q(s0i ,⇡(s0i |✓
⇡0

)|✓Q0
)

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q(si, ai|✓Q) � yi)r✓Q Q(si, ai|✓Q)

where `(�) := (1/2)�2

`(�) := (1 � ⌧) max(0,�)2 + ⌧ max(0,��)2

Update the main actor network :

✓⇡ ✓⇡�↵
1

N

NX

i=1
raQ(si, a|✓Q)|a=⇡(si|✓⇡)r✓⇡⇡(si|✓

⇡) ;

Update the target networks (✓Q0
, ✓⇡

0
)

end for
end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 22/42

Introduction Q-learning for DERM Quantile Q-learning Q-learning for Average Risk Conclusion

DEEP RISK AVERSE RL USING DYNAMIC RISK
MEASURES

I We extend a popular deep
deterministic policy
gradient (DDPG)
algorithm to solve
dynamic problems
formulated based on
time-consistent dynamic
expectile risk measures

Q⇤(s, a) = ⇢̄
⇣
� r(s, a)+

� min
a0

Q⇤(s0, a0)
���s
⌘

Algorithm Risk averse DDPG

Initialize the main actor ✓⇡ and critic ✓Q networks
Initialize the target actor, ✓⇡

0
, and critic, ✓Q0

, networks
Initialize replay buffers R
for j = 1 : #Episodes do

Initialize a random process N for action exploration;
Receive initial observation state s0 and horizon T̃
for t = 0 : T̃ � 1 do

Select action at = ⇡(st|✓⇡) + Nt
Execute at and store transition (st, at, rt, s0t)
Sample a minibatch {(si, ai, ri, s0i)}

N
i=1

Set yi := �ri + Q(s0i ,⇡(s0i |✓
⇡0

)|✓Q0
)

Update the main critic network:

✓Q ✓Q�↵
1

N

NX

i=1
@`(Q(si, ai|✓Q) � yi)r✓Q Q(si, ai|✓Q)

where `(�) := (1/2)�2

`(�) := (1 � ⌧) max(0,�)2 + ⌧ max(0,��)2

Update the main actor network :

✓⇡ ✓⇡�↵
1

N

NX

i=1
raQ(si, a|✓Q)|a=⇡(si|✓⇡)r✓⇡⇡(si|✓

⇡) ;

Update the target networks (✓Q0
, ✓⇡

0
)

end for
end for

Erick Delage http://tintin.hec.ca/pages/erick.delage 22/42

- In Marzban et al. [2023], we
extend the deep deterministic
policy gradient (DDPG)
algorithm to solve dynamic
problems formulated based on
dynamic expectile risk measures:

Q*(s, a) = ρ̄(− r(s, a)+
γ min

a′

Q*(s′ , a′) s)

/43

Q-learning with
Static Quantile Measure

29

10-th percentile agent Median agent 90-th percentile agent
Start (r = -1)

Goal (r = 0)

Damage (r = -50)

Nothing (r = -1)

Optimal policy

Jia Lin Hau, D, Esther Derman, Mohammad Ghavamzadeh,
Marek Petrik, Q-learning for Quantile MDPs: A Decomposition,
Performance, and Convergence Analysis, AISTATS 2025.

/43

Forms of Quantile MDPs

- Epistemic uncertainty: Considers that there is uncertainty about the MDP
model , and policy must optimize:(r̃, P̃)

‣ E.g.: D and Mannor [2010], Russel and Petrik [2019], Lobo et al. [2023]

min
π

Quant.τ (𝔼[R̃T(π) | r̃, P̃])

30

/43

Forms of Quantile MDPs

- Epistemic uncertainty: Considers that there is uncertainty about the MDP
model , and policy must optimize:(r̃, P̃)

‣ E.g.: D and Mannor [2010], Russel and Petrik [2019], Lobo et al. [2023]

min
π

Quant.τ (𝔼[R̃T(π) | r̃, P̃])

- Aleatoric uncertainty: Considers that the model is determined but policy
should control the distribution of total reward

‣ E.g. Filar et al. [1995], Gilbert et al. [2016], Li et al [2022b]

min
π

Quant.τ(−R̃T(π))

30

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

A decomposition for quantile risk

31

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

- Li et al. [2022b]’s decomposition:

VaRτ(X̃) = inf
ξ:𝒴→[0,1] {ess sup [VaRξ(Ỹ)(X̃ | Ỹ)] 𝔼[ξ(Ỹ)] = τ}

A decomposition for quantile risk

31

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

- Li et al. [2022b]’s decomposition:

VaRτ(X̃) = inf
ξ:𝒴→[0,1] {ess sup [VaRξ(Ỹ)(X̃ | Ỹ)] 𝔼[ξ(Ỹ)] = τ}

- Our's:
 with VaRτ(X̃) = VaRτ(VaRũ(X̃ | Ỹ)) ũ ∼ U([0,1])

A decomposition for quantile risk

31

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

- Li et al. [2022b]’s decomposition:

VaRτ(X̃) = inf
ξ:𝒴→[0,1] {ess sup [VaRξ(Ỹ)(X̃ | Ỹ)] 𝔼[ξ(Ỹ)] = τ}

- Our's:
 with VaRτ(X̃) = VaRτ(VaRũ(X̃ | Ỹ)) ũ ∼ U([0,1])

- Sketch of proof:
ℙ(X̃ ≤ z) = 𝔼[ℙ(X̃ ≤ z | Ỹ)] = 𝔼[ℙ(F−1

X|Y(ũ) ≤ z | Ỹ)]
= ℙ(F−1

X|Y(ũ) ≤ z) = ℙ(VaRũ(X̃ | Ỹ) ≤ z)

A decomposition for quantile risk

31

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

- Li et al. [2022b]’s decomposition:

VaRτ(X̃) = inf
ξ:𝒴→[0,1] {ess sup [VaRξ(Ỹ)(X̃ | Ỹ)] 𝔼[ξ(Ỹ)] = τ}

- Our's:
 with VaRτ(X̃) = VaRτ(VaRũ(X̃ | Ỹ)) ũ ∼ U([0,1])

- Sketch of proof:
ℙ(X̃ ≤ z) = 𝔼[ℙ(X̃ ≤ z | Ỹ)] = 𝔼[ℙ(F−1

X|Y(ũ) ≤ z | Ỹ)]
= ℙ(F−1

X|Y(ũ) ≤ z) = ℙ(VaRũ(X̃ | Ỹ) ≤ z)

A decomposition for quantile risk

31

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

- Li et al. [2022b]’s decomposition:

VaRτ(X̃) = inf
ξ:𝒴→[0,1] {ess sup [VaRξ(Ỹ)(X̃ | Ỹ)] 𝔼[ξ(Ỹ)] = τ}

- Our's:
 with VaRτ(X̃) = VaRτ(VaRũ(X̃ | Ỹ)) ũ ∼ U([0,1])

- Sketch of proof:
ℙ(X̃ ≤ z) = 𝔼[ℙ(X̃ ≤ z | Ỹ)] = 𝔼[ℙ(F−1

X|Y(ũ) ≤ z | Ỹ)]
= ℙ(F−1

X|Y(ũ) ≤ z) = ℙ(VaRũ(X̃ | Ỹ) ≤ z)

A decomposition for quantile risk

31

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

- Li et al. [2022b]’s decomposition:

VaRτ(X̃) = inf
ξ:𝒴→[0,1] {ess sup [VaRξ(Ỹ)(X̃ | Ỹ)] 𝔼[ξ(Ỹ)] = τ}

- Our's:
 with VaRτ(X̃) = VaRτ(VaRũ(X̃ | Ỹ)) ũ ∼ U([0,1])

- Sketch of proof:
ℙ(X̃ ≤ z) = 𝔼[ℙ(X̃ ≤ z | Ỹ)] = 𝔼[ℙ(F−1

X|Y(ũ) ≤ z | Ỹ)]
= ℙ(F−1

X|Y(ũ) ≤ z) = ℙ(VaRũ(X̃ | Ỹ) ≤ z)

A decomposition for quantile risk

31

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

- Li et al. [2022b]’s decomposition:

VaRτ(X̃) = inf
ξ:𝒴→[0,1] {ess sup [VaRξ(Ỹ)(X̃ | Ỹ)] 𝔼[ξ(Ỹ)] = τ}

- Our's:
 with VaRτ(X̃) = VaRτ(VaRũ(X̃ | Ỹ)) ũ ∼ U([0,1])

- Sketch of proof:
ℙ(X̃ ≤ z) = 𝔼[ℙ(X̃ ≤ z | Ỹ)] = 𝔼[ℙ(F−1

X|Y(ũ) ≤ z | Ỹ)]
= ℙ(F−1

X|Y(ũ) ≤ z) = ℙ(VaRũ(X̃ | Ỹ) ≤ z)

A decomposition for quantile risk

31

/43

- We focus on value-at-risk:

 VaRτ(X̃) := 𝔮−(X̃) = min{z |ℙ(X̃ ≤ z) ≥ τ}

- Li et al. [2022b]’s decomposition:

VaRτ(X̃) = inf
ξ:𝒴→[0,1] {ess sup [VaRξ(Ỹ)(X̃ | Ỹ)] 𝔼[ξ(Ỹ)] = τ}

- Our's:
 with VaRτ(X̃) = VaRτ(VaRũ(X̃ | Ỹ)) ũ ∼ U([0,1])

- Sketch of proof:
ℙ(X̃ ≤ z) = 𝔼[ℙ(X̃ ≤ z | Ỹ)] = 𝔼[ℙ(F−1

X|Y(ũ) ≤ z | Ỹ)]
= ℙ(F−1

X|Y(ũ) ≤ z) = ℙ(VaRũ(X̃ | Ỹ) ≤ z)
Hence, in distribution.X̃ = VaRũ(X̃ | Ỹ)

A decomposition for quantile risk

31

/43

Bellman equations for Quantile MDP
- Similarly as before, when :T = 3

VaRτ0(−R̃(π)) = VaRτ0(VaRũ1(VaRũ2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) | ã0, s̃1))

32

/43

Bellman equations for Quantile MDP
- Similarly as before, when :T = 3

VaRτ0(−R̃(π)) = VaRτ0(VaRũ1(VaRũ2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) | ã0, s̃1))

= VaRτ0(−r(s0, ã0) + γVaRũ1(−r(s̃1, ã1) + γVaRũ2(−r(s̃2, ã2) | ã0:1, s̃1:2) | ã0, s̃1))

32

/43

Bellman equations for Quantile MDP
- Similarly as before, when :T = 3

VaRτ0(−R̃(π)) = VaRτ0(VaRũ1(VaRũ2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) | ã0, s̃1))

= VaRτ0(−r(s0, ã0) + γVaRũ1(−r(s̃1, ã1) + γVaRũ2(−r(s̃2, ã2) | ã0:1, s̃1:2) | ã0, s̃1))
≥ min

a0
VaRτ0(−r(s0, a0) + γmin

a1
VaRũ1(−r(s̃1, a1) + γmin

a2
VaRũ2(−r(s̃2, a2) |a0:1, s̃1:2) | ã0, s̃1))

32

/43

Bellman equations for Quantile MDP
- Similarly as before, when :T = 3

VaRτ0(−R̃(π)) = VaRτ0(VaRũ1(VaRũ2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) | ã0, s̃1))

= VaRτ0(−r(s0, ã0) + γVaRũ1(−r(s̃1, ã1) + γVaRũ2(−r(s̃2, ã2) | ã0:1, s̃1:2) | ã0, s̃1))
≥ min

a0
VaRτ0(−r(s0, a0) + γmin

a1
VaRũ1(−r(s̃1, a1) + γmin

a2
VaRũ2(−r(s̃2, a2) |a0:1, s̃1:2) | ã0, s̃1))

 = min
a0

VaRτ0(−r(s0, a0) + γ min
a1

VaRũ1(−r(s̃1, a1) + γ min
a2

VaRũ1(−r(s̃2, a2) | s̃2) | s̃1))

32

/43

Bellman equations for Quantile MDP
- Similarly as before, when :T = 3

VaRτ0(−R̃(π)) = VaRτ0(VaRũ1(VaRũ2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) | ã0, s̃1))

= VaRτ0(−r(s0, ã0) + γVaRũ1(−r(s̃1, ã1) + γVaRũ2(−r(s̃2, ã2) | ã0:1, s̃1:2) | ã0, s̃1))
≥ min

a0
VaRτ0(−r(s0, a0) + γmin

a1
VaRũ1(−r(s̃1, a1) + γmin

a2
VaRũ2(−r(s̃2, a2) |a0:1, s̃1:2) | ã0, s̃1))

 = min
a0

VaRτ0(−r(s0, a0) + γ min
a1

VaRũ1(−r(s̃1, a1) + γ min
a2

VaRũ1(−r(s̃2, a2) | s̃2) | s̃1))

= VaRτ0(−r(s0, π*0 (s0)) + γVaRũ1(−r(s̃1, π*1 (s̃1, ũ1)) + γVaRũ2(−r(s̃2, π*2 (s̃2, ũ2)) | s̃2) | s̃1))

32

where

π*t (s, τ) ∈ arg min
a

Q*t (s, τ, a) := VaRτ(−r(s, a) + γ min
a

Q*t+1(s, ũ) | s̃t = s)

/43

Bellman equations for Quantile MDP
- Similarly as before, when :T = 3

VaRτ0(−R̃(π)) = VaRτ0(VaRũ1(VaRũ2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) | ã0, s̃1))

= VaRτ0(−r(s0, ã0) + γVaRũ1(−r(s̃1, ã1) + γVaRũ2(−r(s̃2, ã2) | ã0:1, s̃1:2) | ã0, s̃1))
≥ min

a0
VaRτ0(−r(s0, a0) + γmin

a1
VaRũ1(−r(s̃1, a1) + γmin

a2
VaRũ2(−r(s̃2, a2) |a0:1, s̃1:2) | ã0, s̃1))

 = min
a0

VaRτ0(−r(s0, a0) + γ min
a1

VaRũ1(−r(s̃1, a1) + γ min
a2

VaRũ1(−r(s̃2, a2) | s̃2) | s̃1))

= VaRτ0(−r(s0, π*0 (s0)) + γVaRũ1(−r(s̃1, π*1 (s̃1, ũ1)) + γVaRũ2(−r(s̃2, π*2 (s̃2, ũ2)) | s̃2) | s̃1))
= VaRτ0(−r(s0, π̄*0 (s0)) + γVaRũ1(−r(s̃1, π̄*1 (s̃1)) + γVaRũ2(−r(s̃2, π̄*2 (s̃1:2)) | s̃1:2) | s̃1))

32

where

π*t (s, τ) ∈ arg min
a

Q*t (s, τ, a) := VaRτ(−r(s, a) + γ min
a

Q*t+1(s, ũ) | s̃t = s)

π̄*t (s1:t) := πt(st, τt), with τt := sup{τ : min
a

Q*0 (s0, τ0, a) +
t−1

∑
t′ =0

γt′ r(st′
, πt′

(s1:t′
)) ≥ min

a
Q*t (st, τt, a)}

/43

Bellman equations for Quantile MDP
- Similarly as before, when :T = 3

VaRτ0(−R̃(π)) = VaRτ0(VaRũ1(VaRũ2(−
2

∑
t=0

γtr(s̃t, ãt) | ã0:1, s̃1:2) | ã0, s̃1))

= VaRτ0(−r(s0, ã0) + γVaRũ1(−r(s̃1, ã1) + γVaRũ2(−r(s̃2, ã2) | ã0:1, s̃1:2) | ã0, s̃1))
≥ min

a0
VaRτ0(−r(s0, a0) + γmin

a1
VaRũ1(−r(s̃1, a1) + γmin

a2
VaRũ2(−r(s̃2, a2) |a0:1, s̃1:2) | ã0, s̃1))

 = min
a0

VaRτ0(−r(s0, a0) + γ min
a1

VaRũ1(−r(s̃1, a1) + γ min
a2

VaRũ1(−r(s̃2, a2) | s̃2) | s̃1))

= VaRτ0(−r(s0, π*0 (s0)) + γVaRũ1(−r(s̃1, π*1 (s̃1, ũ1)) + γVaRũ2(−r(s̃2, π*2 (s̃2, ũ2)) | s̃2) | s̃1))
= VaRτ0(−r(s0, π̄*0 (s0)) + γVaRũ1(−r(s̃1, π̄*1 (s̃1)) + γVaRũ2(−r(s̃2, π̄*2 (s̃1:2)) | s̃1:2) | s̃1))

= VaRτ0(VaRũ1(VaRũ2(−
2

∑
t=0

γtr(s̃t, π̄*t (s̃1:t)) | s̃1:2) | s̃1)) = VaRτ0(−R̃(π̄*)),

32

where

π*t (s, τ) ∈ arg min
a

Q*t (s, τ, a) := VaRτ(−r(s, a) + γ min
a

Q*t+1(s, ũ) | s̃t = s)

π̄*t (s1:t) := πt(st, τt), with τt := sup{τ : min
a

Q*0 (s0, τ0, a) +
t−1

∑
t′ =0

γt′ r(st′
, πt′

(s1:t′
)) ≥ min

a
Q*t (st, τt, a)}

/43

Bellman equations for Quantile MDP

Theorem:
For general ,

where

and , while

with

T
min

π
VaRτ0(−R̃(π)) = VaRτ0(−R̃(π̄*)) = min

a0
Q*0 (s0, τ0, a0)

Q*t (s, τ, a) := VaRτ(− r(s, a) + γ min
a′

Q*t+1(s̃t+1, ũ, a′) s̃t = s),

Q*T (s, τ, a) := 0
π̄*t (s1:t) := arg min

a
Q*t (s, f(s1:t), a)

f(s1:t) := sup {τ : min
a

Q*0 (s0, τ0, a) +
t−1

∑
t′ =0

γt′ r(st′
, πt′

(s1:t′
)) ≥ min

a
Q*t (st, τt, a)}

33

/43

Converting Bellman equations to Q-learning

- Exploiting the elicitability property of quantiles, we get

Q*t (s, τ, a) = VaRτ(− r(s, a) + γ min
at+1

Q*t+1(s̃t+1, ũt+1, at+1) s̃t = s)
= arg min

q
𝔼[ℓτ(q − (−r(s, a) + γ min

at+1
Qt+1(s̃t+1, ũt+1, at+1))) s̃t = s]

34

/43

Converting Bellman equations to Q-learning

- Exploiting the elicitability property of quantiles, we get

Q*t (s, τ, a) = VaRτ(− r(s, a) + γ min
at+1

Q*t+1(s̃t+1, ũt+1, at+1) s̃t = s)
= arg min

q
𝔼[ℓτ(q − (−r(s, a) + γ min

at+1
Qt+1(s̃t+1, ũt+1, at+1))) s̃t = s]

- This gives rise to a stochastic gradient algorithm that learns from sample
 and :s′ ∼ P(⋅ |sk, ak) τ′ ∼ U([0,1])

with as a subgradientℓ′ τ(y) = (1 − τ)1{y ≥ 0} + τ1{y < 0}

34

Qt(sk, τk, ak) ← Qt(sk, τk, ak) − α(k)ℓ′ τk(Qt(sk, τk, ak) − (−r(sk, ak) + γ min
a′

Qt+1(s′ , τ′ , a′)))

/43

Convergence of risk-sensitive Q-learning

Theorem:
In tabular setting, let finite set . Assume that and

, with and , used in

satisfy the Robbins-Monro conditions:

,

then .

𝒯 ⊂ (0,1) α(k)
{(tk, sk, τk, ak, s′ k, τ′ k)}∞

k=0 τk ∈ 𝒯 τ′ k ∼ U(𝒯)

∑
k:(tk,sk,ak)=(t,s,a)

α(k) = ∞ ∑
k:(tk,sk,ak)=(t,s,a)

α(k)2 < ∞, ∀(t, s, a) a.s.

Qk → Q∞ ≈ Q*

35

 Qk
tk(sk, τk, ak) ← Qk−1

tk (sk, τk, ak) − α(k) ⋅ ̂ℓ′ τk (Qk−1
tk (sk, τk, ak) + r(sk, ak) − γ min

a′

Qk−1
tk+1(s′ k, τ′ k, a′))

 Qk
t (s, τ, a) ← Qk−1

t (s, τ, a), ∀(t, s, τ, a) ≠ (tk, sk . τk, ak)

/43

Q-learning for
Average Risk-aware MDP

36

Risk seeking agent Risk neutral agent Risk averse agent
Start (r = -1)

Goal (r = 0)

Damage (r = -50)

Nothing (r = -1)

Optimal policy

Weikai Wang, D, Planning and Learning in Average
Risk-aware MDPs, working draft.

/43

Average Cost MDP problem

- Consider the infinite horizon average cost problem:

- Such models are useful in continuing tasks:
‣ Supply chain management (Pontrandolfo et al. [2002])

‣ Queueing control (van Leeuwen and Nunez-Queija [2017])

‣ Ambulance dispatching (Jagtenberg et al. [2017])

‣ Traffic control (Haijema et al. [2017])

‣ Lot scheduling (van Foreest and Wijngaard [2017])

‣ Etc.

max
π

lim
T→∞

(1/T)𝔼[R̃T(π)]

37

/43

Q-learning for RN Average Cost MDPs

- For MDP that is unichain under all , any and satisfying :π Q* g*

gives achieving optimal value .

Q(s, a) = 𝔼[−r(s, a) + min
a′

Q(s′ , a′)] − g

π*(s) := arg min
a

Q*(s, a) g*

38

/43

Q-learning for RN Average Cost MDPs

- For MDP that is unichain under all , any and satisfying :π Q* g*

gives achieving optimal value .

Q(s, a) = 𝔼[−r(s, a) + min
a′

Q(s′ , a′)] − g

π*(s) := arg min
a

Q*(s, a) g*

- RN Relative Q-value Iteration (Abounadi et al. [2001]):

with for example , converges to optimal .

Qk+1(s, a) = 𝔼[−r(s, a) + min
a′

Qk(s′ , a′)] − f(Qk)
f(q) := max

s,a
q(s, a) (Q*, f(Q*))

38

/43

Q-learning for RN Average Cost MDPs

- For MDP that is unichain under all , any and satisfying :π Q* g*

gives achieving optimal value .

Q(s, a) = 𝔼[−r(s, a) + min
a′

Q(s′ , a′)] − g

π*(s) := arg min
a

Q*(s, a) g*

- RN Relative Q-value Iteration (Abounadi et al. [2001]):

with for example , converges to optimal .

Qk+1(s, a) = 𝔼[−r(s, a) + min
a′

Qk(s′ , a′)] − f(Qk)
f(q) := max

s,a
q(s, a) (Q*, f(Q*))

- RN Q-learning based on :

also converges to optimal

{sk, ak, s′ k}∞
k=1

Qk(sk, ak) ← Qk−1(sk, ak) + α(k) ⋅ (−r(sk, ak) + min
a′

Qk−1(s′ k, a′) − f(Qk)−Qk−1(sk, ak)))
Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)

(Q*, f(Q*))
38

/43

Q-learning for RN Average Cost MDPs

- For MDP that is unichain under all , any and satisfying :π Q* g*

gives achieving optimal value .

Q(s, a) = 𝔼[−r(s, a) + min
a′

Q(s′ , a′)] − g

π*(s) := arg min
a

Q*(s, a) g*

- RN Relative Q-value Iteration (Abounadi et al. [2001]):

with for example , converges to optimal .

Qk+1(s, a) = 𝔼[−r(s, a) + min
a′

Qk(s′ , a′)] − f(Qk)
f(q) := max

s,a
q(s, a) (Q*, f(Q*))

- RN Q-learning based on :

also converges to optimal

{sk, ak, s′ k}∞
k=1

Qk(sk, ak) ← Qk−1(sk, ak) + α(k) ⋅ (−r(sk, ak) + min
a′

Qk−1(s′ k, a′) − f(Qk)−Qk−1(sk, ak)))
Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)

(Q*, f(Q*))
38

ρ̄
𝔼

ρ̄
𝔼

ℓ′

????

????

????

/43

Average Risk MDPs

- Consider the risk averse problem:

min
π

lim
T→∞

(1/T) 𝔼[−R̃T(π)]

ρ̄0(ρ̄1(…ρ̄T−1(−R̃T(π) | ã0:T−2, s̃1:T−1)… ã0, s̃1))

39

/43

Average Risk MDPs

- Consider the risk averse problem:

min
π

lim
T→∞

(1/T) 𝔼[−R̃T(π)]

ρ̄0(ρ̄1(…ρ̄T−1(−R̃T(π) | ã0:T−2, s̃1:T−1)… ã0, s̃1))
- With “proper” MDP and , any and satisfying (Shen et al. [2013]):ρ̄ Q* g*

gives achieving optimal value .

Q(s, a) = ρ̄(−r(s, a) + min
a′

Q(s′ , a′)) − g

π*(s) := arg min
a

Q*(s, a) g*

39

/43

Average Risk MDPs

- Consider the risk averse problem:

min
π

lim
T→∞

(1/T) 𝔼[−R̃T(π)]

ρ̄0(ρ̄1(…ρ̄T−1(−R̃T(π) | ã0:T−2, s̃1:T−1)… ã0, s̃1))
- With “proper” MDP and , any and satisfying (Shen et al. [2013]):ρ̄ Q* g*

gives achieving optimal value .

Q(s, a) = ρ̄(−r(s, a) + min
a′

Q(s′ , a′)) − g

π*(s) := arg min
a

Q*(s, a) g*

- Risk averse Relative Q-value Iteration (Wang and D [2025]):

converges to optimal .

Qk+1(s, a) = ρ̄(−r(s, a) + min
a′

Qk(s′ , a′) − f(Qk))
(Q*, f(Q*))

39

/43

Q-learning for Average Risk MDPs (I)

- If is elicitable, based on risk averse Relative Q-value Iteration:

ρ̄
Qk+1(s, a) = ρ̄(−r(s, a) + min

a′

Qk(s′ , a′) − f(Qk))
= arg min

q
𝔼[ℓ(q − (−r(s, a) + min

a′

Qk(s′ , a′) − f(Qk)))]

40

/43

Q-learning for Average Risk MDPs (I)

- If is elicitable, based on risk averse Relative Q-value Iteration:

ρ̄
Qk+1(s, a) = ρ̄(−r(s, a) + min

a′

Qk(s′ , a′) − f(Qk))
= arg min

q
𝔼[ℓ(q − (−r(s, a) + min

a′

Qk(s′ , a′) − f(Qk)))]

- This gives rise to the stochastic gradient algorithm (UBSR Q-learning):

based on a single sample .

Qk(sk, ak) ← Qk−1(sk, ak) − α(k) ⋅ ℓ′ (Qk−1(sk, ak) − (−r(sk, ak) + min
a′

Qk−1(s′ , a′) − f(Qk)))
Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)

s′ ∼ P(⋅ |s, a)

40

/43

Q-learning for Average Risk MDPs (I)

- If is elicitable, based on risk averse Relative Q-value Iteration:

ρ̄
Qk+1(s, a) = ρ̄(−r(s, a) + min

a′

Qk(s′ , a′) − f(Qk))
= arg min

q
𝔼[ℓ(q − (−r(s, a) + min

a′

Qk(s′ , a′) − f(Qk)))]

- This gives rise to the stochastic gradient algorithm (UBSR Q-learning):

based on a single sample .

Qk(sk, ak) ← Qk−1(sk, ak) − α(k) ⋅ ℓ′ (Qk−1(sk, ak) − (−r(sk, ak) + min
a′

Qk−1(s′ , a′) − f(Qk)))
Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)

s′ ∼ P(⋅ |s, a)
- In risk neutral setting, i.e. , reduces to Q-learning proposed

by Abounadi et al. [2001]
ℓ(y) := (1/2)y2

40

/43

Q-learning for Average Risk MDPs (I)

- If is elicitable, based on risk averse Relative Q-value Iteration:

ρ̄
Qk+1(s, a) = ρ̄(−r(s, a) + min

a′

Qk(s′ , a′) − f(Qk))
= arg min

q
𝔼[ℓ(q − (−r(s, a) + min

a′

Qk(s′ , a′) − f(Qk)))]

- This gives rise to the stochastic gradient algorithm (UBSR Q-learning):

based on a single sample .

Qk(sk, ak) ← Qk−1(sk, ak) − α(k) ⋅ ℓ′ (Qk−1(sk, ak) − (−r(sk, ak) + min
a′

Qk−1(s′ , a′) − f(Qk)))
Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)

s′ ∼ P(⋅ |s, a)
- In risk neutral setting, i.e. , reduces to Q-learning proposed

by Abounadi et al. [2001]
ℓ(y) := (1/2)y2

- Converges empirically but unfortunately no theoretical guarantees yet

40

/43

Q-learning for Average Risk MDPs (II)

- If one has access to a simulator, the risk averse Relative Q-value Iteration:

can motivate a different Q-learning algorithm using Robbins-Munro algorithm:

Q*(s, a) = ρ̄(−r(s, a) + min
a′

Q*(s′ , a′) − f(Q*))

Qk(sk, ak) ← Qk−1(sk, ak) + α(k) ⋅ (̂ρN(−r(sk, ak) + min
a′

Qk−1(s′ , a′) − f(Qk) − Qk−1(sk, ak)))

where is an unbiased sample-based estimator of

Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)
̂ρN(X) ρ̄(X)

41

/43

Q-learning for Average Risk MDPs (II)

- If one has access to a simulator, the risk averse Relative Q-value Iteration:

can motivate a different Q-learning algorithm using Robbins-Munro algorithm:

Q*(s, a) = ρ̄(−r(s, a) + min
a′

Q*(s′ , a′) − f(Q*))

Qk(sk, ak) ← Qk−1(sk, ak) + α(k) ⋅ (̂ρN(−r(sk, ak) + min
a′

Qk−1(s′ , a′) − f(Qk) − Qk−1(sk, ak)))

where is an unbiased sample-based estimator of

Qk(s, a) ← Qk−1(s, a), ∀(s, a) ≠ (sk, ak)
̂ρN(X) ρ̄(X)

- We prove convergence to optimal under the conditions:
‣ MDP has a reset state:
‣ is -strictly monotone:
‣ is unbiased and has bounded variance (e.g. MLMC)
‣ Robbins-Monro step size

(Q*, f(Q*))
P(s̄ |s, a) > 0, ∀(s, a)

ρ̄ ε ∀X ≥ Y, ρ̄(X) ≥ ρ̄(Y) + ε𝔼[X − Y]
̂ρN

41

/43

Comparison of MLMC and UBSR Q-learning

42

UBSR Q-learning algorithm MLMC Q-learning algorithm

/43

Take-away messages

- Elicitability allows one to adapt model-free reinforcement learning
methods to risk aware setting.

- Different types of risk measures can be used:
‣ Dynamic risk measures
‣ Static risk measures

- Different types of problems:
‣ Finite, infinite discounted, infinite average risk

- By developing Deep Reinforcement Learning algorithms that are based on
these Q-learning results, one can potentially identify risk aware policies in
real world large-scale sequential decision making problems.

- Many potential applications !

43

/43

References
Jinane Abounadi, Dimitri P. Bertsekas, and Vivek S. Borkar. Learning algorithms for Markov decision processes with average cost. SIAM Journal on Control and Optimization, 40(3):681–698,
2001.
Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk. Mathematical finance, 9(3):203–228, 1999.
Fabio Bellini and Valeria Bignozzi. On elicitable risk measures. Quantitative Finance, 15(5):725–733, 2015.
Nicole Bäuerle and Alexander Glauner. Markov Decision Processes with Recursive Risk Measures. European Journal of Operational Research, 296(3):953–966, 2022.
Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for distributional reinforcement learning. ICML, pages 1096–1105, 2018.
Erick Delage and Shie Mannor. Percentile Optimization for Markov Decision Processes with Parameter Uncertainty. Operations Research, 58(1):203–213, 2010. ISSN 0030-364X, 1526-5463.
Jerzy A. Filar, Dmitry Krass, and Keith W. Ross. Percentile Performance Criteria For Limiting Average Markov Decision Processes. IEEE Transactions on Automatic Control, 40(1):2–10, 1995.
Hugo Gilbert, Paul Weng, and Yan Xu. Optimizing Quantiles in Preference-based Markov Decision Processes, arXiv:1612.00094, 2016.
Rene Haijema, Eligius M. T. Hendrix, and Jan van der Wal. Dynamic control of traffic lights. In Markov Decision Processes in Practice, pages 371–386. Springer, 2017.
Jia Lin Hau, Erick Delage, Esther Derman, Mohammad Ghavamzadeh, and Marek Petrik. Q-learning for Quantile MDPs: A Decomposition, Performance, and Convergence Analysis. AISTATS,
2025.
Caroline J. Jagtenberg, Sandjai Bhulai, and Robert D. van der Mei. Optimal Ambulance Dispatching. In Richard J. Boucherie and Nico M. van Dijk, editors, Markov Decision Processes in Practice,
pages 269–291. Springer International Publishing, 2017.
Xiaocheng Li, Huaiyang Zhong, and Margaret L. Brandeau. Quantile Markov Decision Processes. Operations Research, 70(3):1428–1447, 2022.
Elita A. Lobo, Cyrus Cousins, Yair Zick, and Marek Petrik. Percentile criterion optimization in offline reinforcement learning. NeurIPS, 2023.
Saeed Marzban, Erick Delage, Jonathan Y. Li, Deep Reinforcement Learning for Equal Risk Pricing and Hedging under Dynamic Expectile Risk Measures, Quantitative Finance, 23(10):1411-1430,
2023.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, et al. Human-Level Control through Deep Reinforcement Learning. Nature
518(7540): 529–33, 2015.
Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, et al. Training Language Models to Follow Instructions with Human Feedback. NeurIPS,
2022.
Alois Pichler and Alexander Shapiro. Risk averse stochastic programming: time consistency and optimal stopping. arXiv:1808.10807, 2018.
Pierpaolo Pontrandolfo, Abhijit Gosavi, O. Geoffrey Okogbaa, , and Tapas K. Das. Global supply chain management: A reinforcement learning approach. International Journal of Production
Research, 40(6):1299–1317, 2002.
Reazul Hasan Russel and Marek Petrik. Beyond confidence regions: tight Bayesian ambiguity sets for robust MDPs. NeurIPS, 2019.
Andrzej Ruszczynski. Risk-averse dynamic programming for Markov decision processes. Mathematical Programming, 125(2):235–261, 2010.
Yun Shen, Wilhelm Stannat, and Klaus Obermayer. Risk-sensitive Markov control processes. SIAM Journal on Control and Optimization, 51(5):3652–3672, 2013.
Yun Shen, Michael J. Tobia, Tobias Sommer, and Klaus Obermayer. Risk-sensitive reinforcement learning. Neural Computation, 26(7):1298–1328, 2014.
David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, et al. Mastering the Game of Go with Deep Neural Networks and Tree
Search. Nature 529(7587): 484–89, 2016.
Gerald Tesauro. Temporal Difference Learning and TD-Gammon. Communication of the ACM 38(3): 58–68, 1995.
Nicky D. van Foreest and Jacob Wijngaard. Analysis of a Stochastic Lot Scheduling Problem with Strict Due-Dates. In Richard J. Boucherie and Nico M. van Dijk, editors, Markov Decision
Processes in Practice, pages 407–423. Springer International Publishing, 2017.
Daphne van Leeuwen and Rudesindo Nunez-Queija. Near-Optimal Switching Strategies for a Tandem Queue. Richard J. Boucherie and Nico M. van Dijk, editors, Markov Decision Processes in
Practice, pages 439–459. Springer International Publishing, Cham, 2017.
Weikai Wang and Erick Delage. Planning and Learning in Average Risk-aware MDPs, arXiv:2503.17629, 2025.

44

