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Sequential decision making using MDPs

- Consider a finite horizon MDP (&', &, r, P, v, sp)

- Given a policy 7 : & X |T] — &, we are interested in the risk related to the
sum of cumulative dlscounted reward:

Ry(m) := Z y'r(5, d,)

where {3,},_, is a trajectory traversed using &, i.e. d, ~ m(S,), starting from s,,.

Reward r,
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Risk neutral sequential decision making

- Traditional form considers a risk neutral (RN) attitude:

min [E [—RT]
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Risk neutral sequential decision making

- Traditional form considers a risk neutral (RN) attitude:

min -[—ET]
T
- Different forms of objectives:
> Finite horizon: -[—RT(ﬂ)]
» Infinite horizon (T = o0): lim E[—R(7)] with y < 1

T— o0
» Average expected reward: lim (1/7) E[—R(x)] withy =1

T— o0
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Risk neutral sequential decision making

- Traditional form considers a risk neutral (RN) attitude:

min -[—RT]
T
- Different forms of objectives:
> Finite horizon: -[—RT(ﬂ)]
» Infinite horizon (T = o0): lim E[—R(7)] with y < 1

T— o0
» Average expected reward: lim (1/7) E[—R(x)] withy =1

T— o0

- Different forms of policy:
> History dependent: 7, : 8" X "~ — o
> Markovian : 7, : & — &
> Stationary: r, = x, for all ¢
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The role of MDPs in stochastic programming

- Consider the following multi-stage stochastic program:
T—1

min o Elco(xo, 20) + Z ’Vtct(xt(glzt)a Zt)]
0,4zt () }i—1 t=1
T—1
s.t. do;(xo,20) + Z dij(xe(21:4),2¢) <0, Vji=1,...,J, as.
t=1

with Markov Z,i.e. Z,, ;.71 L Zy.,-11Z, for all 7
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The role of MDPs in stochastic programming

- Consider the following multi-stage stochastic program:

T—1
min . Elco(xo, 20) + Z Ve (@ (Z1it), Z)]
3307{3375(°)}t:—1 t=1
T—1
S.T. d()j (Qf(), Z()) —+ Z dt] (mt(51:t>7 215) S 07 \V/] — 17 Tt J’ d.5.
t—1

with Markov Z,i.e. Z,, ;.71 L Zy.,-11Z, for all 7

- An equivalent risk neutral MDP takes the form:

—1
. T 7T 7. IS =/
L s=1[g] 4T A7 whered,; = dy(x0.20) + ) dy(x/Z 1), 2,

t'=1
" a, = X,
(s, a) — 00 if t =T & max; d; > 0
> 1= .
’ —c¢(x,z) otherwise
HEC MONTREAL 143



The rise of deep reinforcement learning

- 1991: TD-Gammon learns to play backgammon and surpasses some of the
best human players (Tesauro [1995]).
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The rise of deep reinforcement learning

- 1991: TD-Gammon learns to play backgammon and surpasses some of the
best human players (Tesauro [1995]).

= 2015: DeepMind trains an agent that achieves human level performance
on Atari games (Mnih et al. [2015]).

Pong Breakout Space Invaders Seaquest Beam Rider
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The rise of deep reinforcement learning

- 1991: TD-Gammon learns to play backgammon and surpasses some of the
best human players (Tesauro [1995]).

= 2015: DeepMind trains an agent that achieves human level performance
on Atari games (Mnih et al. [2015]).

- 2016: DeepMing’s AlphaGo defeats world champion Lee Sedol in 4 out of
5 games (Silver et al. [2016]).
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The rise of deep reinforcement learning

- 1991: TD-Gammon learns to play backgammon and surpasses some of the
best human players (Tesauro [1995]).

= 2015: DeepMind trains an agent that achieves human level performance
on Atari games (Mnih et al. [2015]).

- 2016: DeepMing’s AlphaGo defeats world champion Lee Sedol in 4 out of
5 games (Silver et al. [2016]).

= 2022: ChatGPT uses DRL to fine-tune its LLM to account for human
feedback (Ooyang et al. [2022]).

ChatGPT

Ask anything

Summarize text  dl) Analyze data

HEC MONTREAL > /43



Q-learning for inf. horizon RN MDPs

- When 1" = 00, RL methods to solve RN MDPs rely on solution of
Bellman equations:

O*(s,a) = [ — 1(s,a) +ymin Q*(s’, a) | S, a] , V(s,a)

which gives 7*(s) := arg min Q*(s, a).
acd
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Q-learning for inf. horizon RN MDPs

- When 1" = 00, RL methods to solve RN MDPs rely on solution of
Bellman equations:

O*(s,a) = [ — 1(s,a) +ymin Q*(s’, a) | S, a] , V(s,a)

which gives 7*(s) := arg min Q*(s, a).
acd

- In tabular setting, Q-learning is a model-free solution scheme, i.e. based
/100
on {Sk, a, Sk}k=1'

Qk(Ska a;) < Qk_l(ska a;) + alk) - (—r(sk, a) +vy mi,n Qk_l(slé’ a’) — Qk_l(Ska Clk))
Qk(Sa Cl) — Qk_l(sa Cl), V(Sa Cl) # (Ska ak)

It is guaranteed to converge to O if each (s, a) is visited infinitely often
and learning rate satisfies Robbins-Monro conditions.
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Deep RL for risk neutral MDPs with
continuous & and &

Algorithm Deep Deterministic Policy Gradient (DDPG)

Initialize the main actor 6. and critic QQ networks , the target actor, 0., and critic, H_Q, networks
forj = 1 : #Episodes do
Initialize a random process N for action exploration;

Initialize state to sy and effective horizon T
fort =0:T — 1do
Select actiona; = mg__ (s¢) + Ny

Execute a; and store transition (s¢, at, ¢, s{)

Sample a minibatch of N transitions { (s;, a;, 7, sl{ ) }z\]: 1
/ /

Sety, := —r; + ’YQ@Q (Si » o (51' ))

Update the main critic network:

|
Op < 0+ N Z (Vi = Qo (5 @) Vg, Op (5;> a;)
i=1

Update the main actor network :

1 N
O < 0= a— D Va0, (51 a) s s V0, 70,(5)
=1

Update the target networks: (0, Q_Q) — (1 —a)(0x, Q_Q) + a(0r, 00)
end for

end for
7 143
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Moving beyond the RN MDPs

- Two popular approaches for handling risk aversion:
|.  Static law-invariant risk measure (SRM):

min (—R(x)) := o(F_p)

T
- E.g.:E[—R(x)],VaR(—=R(x)), CVaR(—R(x))
- Pros: Easy to interpret
- Cons: Can violate dynamic consistency

HEC MONTREAL

Frobability

0,00

Cost distribution

Mean=2,72

Range = [0,2, o°]

Median = 2,19

Mode = 1,42

3,00

95% VaR = 95 percentile =7,5

Conditional VaR 95% =9
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Moving beyond the RN MDPs

- Two popular approaches for handling risk aversion:
|.  Static law-invariant risk measure (SRM):

min (—R(x)) := o(F_p)

2. Dynamic law-invariant risk measure (DRM):
min p(—R(x)) := po(p(...p7_(—R(x) | Go.7_p, S1.7-1)* | Ay §1))
T
- E.g:E[—R(7)], VaR(VaR(...VaR(=R(7) | dy.7—2, S1.7—1)--- | dgp» §1)),
CVaR(CVaR(...CVaR(—=R(x) | dy.7—rs S1.7-1)--- | dpy, §1))
- Pros: Satisfies dynamic consistency, associated to Bellman equation
- Cons: Can be hard to interpret

HEC MONTREAL 7143



Outline

- Introduction

- Q-learning with Dynamic Expectile Risk Measure
- Q-learning with Static Quantile Measure

- Q-learning for Average Risk-aware MDP

- Conclusion

HEC MONTREAL 10/43



Q-learning with
Dynamic Expectile Risk Measure

Risk seeking agent

L
L
L
!
.
A - I I A

Saeed Marzban, D, Jonathan Y. Li, Deep Reinforcement
Learning for Equal Risk Pricing and Hedging under Dynamic
Expectile Risk Measures, Quantitative Finance, 2023.

t Risk averse agent

' ..'_ -1t » - B .Start(r=-|)
- 1

Fas Goal (= 0

. . Damage (r = -50)
5 5 % > 3 - [ | Nothing (r = -1)

*—1—» Optimal policy

- = = = = -
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Coherent risk measure [araner et al. 1999]

- Definition:

A risk measure is said to be coherent if it satisfies the following properties:
- Monotone: VX, Y such that X > Y a.s., we have p(X) > p(Y)

HEC MONTREAL

-1

-1) = p(X) -

- Translation invariant: VX and f, we have ,0()2 -

- Positive homogeneous: VX and a > 0, we have p(aX) = ap(X)

- Subadditive: VX, Y, we have p(X + ¥) < p(X)
Furthermore, it can be

- Law-invariant: VX, Y such that X = Y in distribution, we have p(X) = p(Y)

+ p(Y)
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Coherent risk measure [araner et al. 1999]

- Definition:

A risk measure is said to be coherent if it satisfies the following properties:
- Monotone: VX, Y such that X > Y a.s., we have p(X) > p(Y)
- Translation invariant: VX and 7, we have p(X + 1) = p(X) +
- Positive homogeneous: VX and a > 0, we have p(aX) = ap(X)
- Subadditive: VX, Y, we have p(X + Y) < p(X) + p(Y)

> Furthermore, it can be
- Law-invariant: VX, Y such that X = Y in distribution, we have p(X) = p(Y)

- Examples:
> Expected value: p(X) := E[X]
> Conditional Value-at-Risk: p(X) := E[X| X > Fgl(a)]

HEC MONTREAL 12143



Elicitable risk measure [gelini and Bignozzi, 2015]

- Definition:

A risk measure is said to be elicitable if it can be expressed as the unique
minimizer of a certain scoring function.

p(X) := arg min [E [S(q,f()] .
q

HEC MONTREAL 3743



Elicitable risk measure [gelini and Bignozzi, 2015]

- Definition:

A risk measure is said to be elicitable if it can be expressed as the unique
minimizer of a certain scoring function.

p(X) := arg min [E [S(q,f()] .
q

- We focus on cases where S(g, x) := (g — x):

> Expected value: Z(y) := (1/2)y?
> Quantile: 7 (y) := (1 — 7) max(y,0) + 7 max(—y,0)
> Expectile: £ (y) := (1 — 1) max(y,0)? + 7 max(—y,0)?
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Elicitable risk measure [gelini and Bignozzi, 2015]

- Definition:

A risk measure is said to be elicitable if it can be expressed as the unique
minimizer of a certain scoring function.

p(X) := arg min [E [S(q,f()] .
q

- We focus on cases where S(g, x) := (g — x):

> Expected value: Z(y) := (1/2)y?
> Quantile: 7 (y) := (1 — 7) max(y,0) + 7 max(—y,0)
> Expectile: £ (y) := (1 — 1) max(y,0)? + 7 max(—y,0)?

- If #'(-) is concave, then p(X) is a utility-based shortfall risk measure

HEC MONTREAL 3743



Expectile risk measure

- Definition:

The 7-expectile of a random liability X is defined as:

p(X) ;= argmin E [(1 — 7)max(qg — X,0)* + 7 max(X — q)z]
q

HEC MONTREAL 4743



Expectile risk measure

- Definition:

The 7-expectile of a random liability X is defined as:

p(X) ;= argmin E [(1 — 7)max(qg — X,0)* + 7 max(X — q)2]
q

- Examples:
» 7 =0 = p(X) = essinf[X], i.e. best-case scenario
> 7=05=> ,5()2) = E[X], i.e. risk neutral
>7=1= ,5()2) = esSs sup[X], l.e. worst-case scenario
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Expectile risk measure

- Definition:

The 7-expectile of a random liability X is defined as:

p(X) ;= argmin E [(1 — 7)max(qg — X,0)* + 7 max(X — q)2]
q

- Examples:
» 7 =0 = p(X) = essinf[X], i.e. best-case scenario
> 7=05=> ,D(X) = E[X], i.e. risk neutral
>7=1= ,5()2) = esSs sup[X], l.e. worst-case scenario

- Expectile with 7 € [0.5, 1] is the class of all elicitable coherent risk
measures [Bellini and Bignozzi, 201 5]

HEC MONTREAL 4743



Dynamic expectile risk measure (DERM)

- Definition:
A dynamic expectile risk measure takes the form:

P(—R(ﬂ)) = ,50(,51(---/5T_1(—R(7T) | do.7—0s S1.7—-1) - | g, §1)) 5

where each p( - | dy.,_1,5;.,) is an expectile risk measure that employs the
conditional distribution given (d,.,_, S;.,)-

HEC MONTREAL |5/43



Data-driven conditional risk estimation

- When using elicitable risk measures, conditional risk can be estimated
based on i.i.d. data {x ,yl}M1 using regression:

O0* = arg m@mM Z C(hy(x) —y,) = p(Y|X) ~ h@*(X)

5Conditional expectile risk regression using quadratic function

] - data
AN ——7=0.01
N\ =01 |
—_—r=05
= (0.9 -

Dependent cost Y

e 05 0 0.5 :

HEC MONTR 'E AL Observed covariate X 16/43



Bellman eﬂuations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:

2
p(—R(n)) = py <,51 (/52( - 2 y'r(3,a,) | g1, 31.0) | o, 51))

=0

HEC MONTREAL 7743



Bellman eﬂuations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:

2
p(—R(n)) = py <,51 (/52( - 2 y'r(3,a,) | g1, 31.0) | o, 51))

=0

= 5, (—mo, a1 (=77 A=y ) | 1, 510) | s 5 1>>
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Bellman eﬂuations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:

2
p(—R(n)) = py <151 (/52( - 2 y'r(3,a,) | g1, 31.0) | o, 51))

=0

P (_F(S()a 67())"‘,51 (_7’”(§1a 671)"‘,52(_72’”(52, 672) | .15 51;2) dp, S1 ) )

— p'O( — r(s,, c'z0>+w31( — 181, P +ypy(=1(55, Gy) | gy, $10) | o, § 1>)
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Bellman eﬂuations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:

2
p(—R(n)) = py <151 (/52( - 2 y'r(3,a,) | g1, 31.0) | o, 51))

=0

— ,50( — r(sp, do)+7/51< — 181, A +ypy(=1(32, do) | g5 51.2) | o 51))
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Bellman eﬂuations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:
2

p(—R(n)) = py <151 (/52( - 2 y'r(3,a,) | g1, 31.0) | o, 51))

=0

— ,50( — r(sp, do)+7/51< — 181, A +ypy(=1(32, do) | g5 51.2) | o 51))

ag a a,

> minﬁg( — (S, ap) + yminp1< — (8, ap) + yminp,(—r(8y, a,) | ay.1, §1.) | Ay, 51))
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Bellman eﬂuations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:
2

p(—R(n)) = py <,51 (/52( - 2 y'r(3,a,) | g1, 31.0) | o, 51))

=0

> minﬁo( — 1(Sg, ) + ymin,51< — (81, @) + yminpy(—=r(8,, ay) | ay. 1, §1.2) | ), 51))

CZO al Clz
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Bellman eﬂuations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:
2

p(—R(n)) = py <151 (/52( - 2 y'r(3,a,) | g1, 31.0) | o, 51))

=0

> minﬁo( — 1(Sg, ) + ymin,51< — (81, @) + yminpy(—=r(8,, ay) | ay. 1, §1.2) | ), 51))

CZO al 612

= minﬁo( — (8o, dp) + ;/min,ﬁl( — r(§),a;) + y min p,(—r(S,, a,) | 5) 51))

a )
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Bellman eﬂuations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:
2

p(—R(n)) = py <151 (/52( - 2 y'r(3,a,) | g1, 31.0) | o, 51))

=0

> min,ﬁo( — r(sy, dg) + yminﬁl( — 1(81, a)) + y min py(—r(8,, ay) | 5,) 51))

dy ag %)

HEC MONTREAL 20/43



Bellman eauations for DERM-MDP

(Ruszczynski [2010], Shen et al. [2

3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to

obtain Bellman equations.

- For example, when T = 3:

2
p(—R(n)) = py <,51 (/52( - Z y'r(3,a,) | g1, 31.0) | o, 51))

=0

ag a a,

= /50< — (80, 7' (50)) %51< — (8, 77°(5))) + %52( — 1(85, 75(5,))
where
7} (s) € arg min Q5 (s, a) := py(—r(s,a) |5, =5) = —r1(s,a)
7 (s) € arg min QF(s,a) = p(=1(s,a) + yp(—r(5y, 7 (5)) | 5,) | 5] = 5)
= py(=1(s,a) + y min Q}(5,.a) |5, = 5)

7r6‘<(s) € arg main Qg(s, a) := po(—r(s,a) +vy IIlel Qf(&'l, a’))

HEC MONTREAL

> min,50< — 1(Sp, ag) + 7 minﬁl( — (8, a;) + y min p,(—r(S,, a,) | 55)

$5)
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Bellman eauations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:

2
p(—R(n)) = py <151 (/52( - Z y'r(3,a,) | g1, 31.0) | o, 51))

=0

= /50( — (80, 7' (50)) 7’/51< — (81, 77°(51)) }/ﬁz( ~ 8 1 ()]5) §1>)

where

7} (s) € arg min Q5 (s, a) := py(—r(s,a) |5, =5) = —r1(s,a)

7 (s) € argmin QF(s, a) := p(—1(s, a) + ypy(—1(5,, 75(3,)) [55)[5) =5)
= py(=r(s,@) +y min Q¥(3, @) |5, = 5)

7r6‘<(s) € arg min Qg(s, a) := po(—r(s,a) +y min Qf(ﬁl, a’))

a
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Bellman eauations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

- With DERMs, one can exploit Tl, PH, monotonicity, and mixture quasi-concavity to
obtain Bellman equations.

- For example, when T = 3:

2
p(—R(n)) = py <151 (/52( - Z y'r(3,a,) | g1, 31.0) | o, 51))

=0

> /50( — r(sg, (5p)) 7’/51< — (81, 7°(5))) yﬁz( — 18y, 75°(5,)) | 52) §1)>

2
= Py (,51 (/52(— Z y'r(S, 5 (5)) | 81.0) 51)) = p(—=R(7*)),

where =0

7} (s) € arg min Q5 (s, a) := py(—r(s,a) |5, =5) = —r1(s,a)

ﬂ;k(S) = al‘g IIliIl QIK(S, a) .= ,51(—1”(8, a) + }/p_z(_r(gz, ][;(52)) ‘ §2) ‘ §1 — S)
= py(=r(s,@) +y min Q¥(3, @) |5, = 5)

7r6‘<(s) € arg min Qg(s, a) := po(—r(s,a) +y min Qf(ﬁl, a’))

a
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Bellman eauations for DERM-MDP

(Ruszczynski [2010], Shen et al. [201 3], Pichler and Shapiro [2018], Bauerle and Glauber [2022])

Theorem:
For general 1,

min p(—R(x)) = p(—R(x*)) = min Q*(sy, o)

dy

where

0F(s.@) = p = r(s. @)+ ymin Q% 5,1.a) |5, = 5)

and Q7(s, a) := 0 while z7¥(s) € arg min Q*(s, a).

HEC MONTREAL 22/43



Converting Bellman equations to Q-learning

- Exploiting the elicitability property, we get

QF(s,a) = ,5;( —r(s,a) + yrgin Qlfrl(EtH,atH) §. = s)

= arg min
q

HEC MONTREAL

- lf<q — (—I”(S, a) + ymin Qt+1(§t+1’ at+1))

|

)
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Converting Bellman equations to Q-learning

- Exploiting the elicitability property, we get

QF(s,a) = pt( —r(s,a) + ;/I?in erl(EtH,atH) §. = s)

t+1
= arg min [ lf(q — (=r(s,a) +ymin Q,, (S, , at+1))) S, = s]

q Ayl
- This gives rise to a stochastic gradient algorithm that learns from sample
s'~P(-|s,a):

0(5.@) = Qs.0) = a- £'( Q5. = (=r(s.0) +y min Q% (s'.a)

HEC MONTREAL 23143



Converting Bellman equations to Q-learning

- Exploiting the elicitability property, we get

QF(s,a) = pt( —r(s,a) + }/Ifllin Qtjl(§t+1,at+1) §. = s)

t+1
= arg min [ lf(q — (=r(s,a) +ymin Q,, (S, , at+1))) S, = s]

q Ayl
- This gives rise to a stochastic gradient algorithm that learns from sample
s'~P(-|s,a):

0(5.@) = Qs.0) = a- £'( Q5. = (=r(s.0) +y min Q% (s'.a)

- This generalizes the Q-learning update for RN case, where

£(y) := (1/2)y*and £'(y) = y:
0(5.@) < Qs.0) = a- (Q(s.@) = (=r(s.@) — ymin Q,,,(s.a) )

HEC MONTREAL 23143



Convergence of risk-sensitive Q-learning
([Shen et al. [2014], Hau et al. [2025])

Theorem (finite horizon):
In tabular setting, let 7 € (0,1). Assume that a(k) and {(#, s;, a4, S;) } -, used in

05 a) — OF (s, ) — a(k) - £ (Q;,j*(sk, a) + (s @) — y min Q5 (s, a'))
Qf(s, a) < th_l(s, a), V(,s,a)F (t,s,a;)

satisfy the Robbins-Monro conditions:

Z a(k) = oo, Z a(k)? < 00, V(t,5,a) a.s.

k:(t,,8,,a,)=(1,5,a) k:(t,,8,,a,)=(t,s,a)

then, the sequence {Qk},‘z‘;o converges almost surely to OQ*.
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Convergence of risk-sensitive Q-learning
([Shen et al. [2014], Hau et al. [2025])

Theorem (infinite horizon):
In tabular setting, let 7 € (0,1). Assume that a(k) and { (S, 4. S) }—o used in

Qk(sk, a,) < Qk_l(sk, a,) —a(k) -’ ( Qk_l(sk, a,) +r(s,a)—vy nzln Qk_l(slg, a’))
Qk(sa Cl) N Qk_l(sa Cl), V(Sa CZ) 7& (Sk9 ak)

satisfy the Robbins-Monro conditions:

Z a(k) = oo, Z a(k)? < 0o, V(s,a) a.s.

k:(Sp-a)=(5,a) k:(S1-a)=(5,a)

then, the sequence {Qk},‘z‘;o converges almost surely to OQ*.
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Deep risk averse RL using DERMs

In Marzban et al. [2023], we
extend the deep deterministic
policy gradient (DDPG)
algorithm to solve dynamic
problems formulated based on

dynamic expectile risk measures:

Q*(s,a) = ,5( — r(s,a)+
% mi,n Q*(s’,a’) S)

Algorithm Traditional RN DDPG

Initialize the main actor 6. and critic 00 networks

Initialize the target actor, 0., and critic, G_Q, networks
forj = 1 : #Episodes do
Initialize a random process N for action exploration;

Receive initial observation state sy and horizon T
fort =0: T — 1do
Select action a; = mg__ (st) + N;

Execute a; and store transition (s¢, a, r¢, St/)
Sample a minibatch {(s;, a;, 17, 5] ) }?]:1

/ /
Setyi = —1; + QQ_Q (Si » o (Si ))

Update the main critic network:

|
Oy < 0y + a 2 (Vi = Qg (51 a)) Vg, Qg (51> ;)
i=1

Update the main actor network :

| &
0, «— 6 — aﬁ Z \% anQ(Si, a) |a:ﬂ9ﬂ(si) Vo 79 (S;)
i=1
Update the target networks (6, 0 )
end for
end for
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Sample a minibatch {(s;, a;, 17, 5] ) }?]:1

/ /
Setyi = —1; + QQ_Q (Si » o (Si ))

Update the main critic network:

|
QQ < QQ T aﬁ Z c /(QQQ(S,-, a) —y;) VQQQQQ(Sia a;)
i=1

Update the main actor network :

| &
0, «— 6 — aﬁ Z \% anQ(Si, a) |a:ﬂ9ﬂ(si) Vo 79 (S;)
i=1
Update the target networks (6, 0 )
end for
end for
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Deep risk averse RL using DERMs

- In Marzban et al. [2023], we
extend the deep deterministic

HEC MONTREAL

policy gradient (DDPG)

algorithm to solve dynamic

problems formulated based on

dynamic expectile risk measures:

O*(s,a) = ,5( — r(s,a)+

y min Q*(s’, a’)
-

')

Algorithm Traditional RN DDPG

Initialize the main actor 6. and critic 00 networks

Initialize the target actor, 0., and critic, G_Q, networks
forj = 1 : #Episodes do
Initialize a random process N for action exploration;

Receive initial observation state sy and horizon T
fort =0: T — 1do
Select action a; = mg__ (st) + N;

Execute a; and store transition (s¢, a, r¢, St/)
Sample a minibatch {(s;, a;, 17, 5] ) }?]:1

/ /
Setyi = —1; + QQ_Q (Si » o (Si ))

Update the main critic network:

|
QQ < QQ T aﬁ Z c /(QQQ(S,-, a) —y;) VQQQQQ(Sia a;)
i=1

where £(A) := (1/2) A%
Update the main actor network :

| &
0, «— 6 — aﬁ Z \% anQ(Si, a) |a:ﬂ9ﬂ(si) Vo 79 (S;)
i=1
Update the target networks (6, 0 )
end for
end for
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Deep risk averse RL using DERMs

Algorithm Risk averse DDPG

Initialize the main actor 6. and critic 00 networks

- I N M arzban et al . [202 3] we Eirt}al.:iﬁ jc}l;c;ll;gise;cde;tgz 0., and critic, .GQ, networlfs
exten d th e d ee P d eterministic Initialize a random process N for action exploration;

Receive initial observation state sy and horizon T

policy gradient (DDPG) fort =0: T — 1do

. . Select action a; = mg__ (st) + N;
algo rlthm to SOIVe d)’nam 1C Execute a; and store transition (s¢, a, r¢, St/)
problems formulated based on Sample a minibatch {(s;, ai, 7i, 57) }iq
Sety;, := —r; + QQ_Q (Sl{a o (51/))

dynamic expectile risk measures:

Update the main critic network:

|
Oy < Oy + OCN Z Qo (51> @) = ¥) Vg, 0, (5> ;)

oK — nl — i=
Q (S’ a) R /0( r(S’ a)_l_ where’e'eléﬁﬂ?;hLza‘lQLA
£(A) = (1 — 7) max(0, A)? 4+ 7 max(0, —A)?
}/ min Q* ( Ry /, a /) Ry ) Update the mlamNactor network :
a’ 0, «—0_— aﬁ Z \% anQ(Si, a) |a:ﬂ9ﬂ(si) Vo 7y (5;)

i=1
Update the target networks (G_Q, 0r)
end for
end for
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Q-learning with
Static Quantile Measure

nt

Jia Lin Hau, D, Esther Derman, Mohammad Ghavamzadeh,

Marek Petrik, Q-learning for Quantile MDPs: A Decomposition,
Performance, and Convergence Analysis, AISTATS 2025.

. Start (r = -1)

Goal (r = 0)

*—I—’ Optimal policy
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Forms of Quantile MDPs

- Epistemic uncertainty: Considers that there is uncertainty about the MDP
model (7, P), and policy must optimize:

min Quant._ ( -[RT(ir) | 7, f’])
T
> E.g.: D and Mannor [2010], Russel and Petrik [2019], Lobo et al. [2023]
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Forms of Quantile MDPs

- Epistemic uncertainty: Considers that there is uncertainty about the MDP
model (7, P), and policy must optimize:

min Quant._ ( -[RT(ir) | 7, P])
T
> E.g.: D and Mannor [2010], Russel and Petrik [2019], Lobo et al. [2023]

- Aleatoric uncertainty: Considers that the model is determined but policy
should control the distribution of total reward

min Quant.T(—RT(ﬂ))
T
> E.g. Filar et al. [1995], Gilbert et al. [2016], Li et al [2022b]
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A decomposition for quantile risk

- We focus on value-at-risk:
VaR.(X) := ¢~ (X) = min{z| P(X < 2) > 7}
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VaR.(X) := ¢~ (X) = min{z| P(X < 2) > 7}
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VaR (X) = inf {ess sup lVaRé(y)(X\ 17)] C[E(Y)] = T}
&y —0,1]

- Qur's:
VaR (X) = VaR (VaR (X | Y)) with & ~ U([0,1])

- Sketch of proof: -
P(X <z)=E[P(X<z|V)]
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A decomposition for quantile risk

- We focus on value-at-risk:

VaR.(X) := q~(X) = min{z]| !

- Li et al. [2022b]’s decomposition:

VaR (X) =

= Qur's:

- Sketch of proof:

HEC MONTREAL

P(X <z) =

¢y —10,1]

inf {ess sup lVaRé(y)(X\ 17)]

X<z >1)

(7)) = }

VaR (X) = VaR (VaR (X | Y)) with & ~ U([0,1])

_[l_

X<zIN]=

(1
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A decomposition for quantile risk

- We focus on value-at-risk:

VaR.(X) := q~(X) = min{z]| !

- Li et al. [2022b]’s decomposition:

VaR.(X) = inf {ess sup lVaRé(y)(X\ 17)]

¢y —10,1]

= Qur's:

X<z >1)

(7)) = }

VaR (X) = VaR (VaR (X | Y)) with & ~ U([0,1])

- Sketch of proof:

HEC MONTREAL

PX <z)=E[PX <z|V)]=
= P(Fg(ii) < 2)

(1
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A decomposition for quantile risk

- We focus on value-at-risk:

VaR.(X) := q~(X) = min{z]| !

- Li et al. [2022b]’s decomposition:

VaR,(X) = inf {ess sup lVaRé(y)(X\ 17)]
£ Y —[0,1]

= Qur's:

X<z >1)

(7)) = }

VaR (X) = VaR (VaR (X | Y)) with & ~ U([0,1])

- Sketch of proof: 3 | .
P(X < 2) = E[P(X < z| V)] = E[P(Fy, (i) < z|Y)]

HEC MONTREAL

P(Fgil) < 2) =

P(VaRy(X|Y) < 2)
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A decomposition for quantile risk

- We focus on value-at-risk:

VaR.(X) := q~(X) = min{z]| !

- Li et al. [2022b]’s decomposition:

HEC MONTREAL

VaR (X) =

Our's:

¢y —10,1]

inf {ess sup lVaRé(y)(X\ 17)]

X<z >1)

(7)) = }

VaR (X) = VaR (VaR (X | Y)) with & ~ U([0,1])

Sketch of proof:

P(X < 7) = El

= P(Fy () < 2) =
Hence, X = VaR (X | Y) in distribution.

(X <z|Y)] =

(1

(F

(i) < z| V)

P(VaR;(X|Y) < z)
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Bellman equations for Quantile MDP

- Similarly as before, when T = 3:
2

VaR, (—R(r)) = VaR,(VaRz, (VaRs,( = ) ¥'r(5, a4, | dig.y. 51.0) 1. 5))
=0
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Bellman equations for Quantile MDP

- Similarly as before, when T = 3:

>
VaR, (—R(x)) = VaR (VaR; (VaR; ( — 2 y'r(8;,a,) | dy.y,81.0) | dg, 51))
=0
= VaR (—7(sy, dy) + yVaRg (—=r(5, a;) + yVaR; (—r(35,, ay) | dg.15 §1.0) | dg, §1))
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Bellman equations for Quantile MDP

- Similarly as before, when T = 3:

>
VaR, (—R(x)) = VaR (VaR; (VaR; ( — 2 y'r(8;,a,) | dy.y,81.0) | dg, 51))
=0
= VaR (—7(sy, dy) + yVaRg (—=r(5, a;) + yVaR; (—r(35,, ay) | dg.15 §1.0) | dg, §1))

> minVaR, (—r(sy, ap) + yminVaR; (— (8, a;) + yminVaR; (—r(5,, a,) | ap.15510) | G, S1))

dy a %)
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Bellman equations for Quantile MDP

- Similarly as before, when T = 3:

>
VaR, (—R(x)) = VaR (VaR; (VaR; ( — 2 y'r(8;,a,) | dy.y,81.0) | dg, 51))

=0
= VaR (—7(sy, dy) + yVaRg (—=r(5, a;) + yVaR; (—r(35,, ay) | dg.15 §1.0) | dg, §1))

> minVaR, (—r(sy, ap) + yminVaR; (— (8, a;) + yminVaR; (—r(5,, a,) | ap.15510) | G, S1))

a, a )

= min VaR, (—r(sy, ay) + y min VaR; (—r(8;, a;) + y min VaR; (—=r(5,,a,) [ 5,) | §;))

ao Cll a2
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Bellman equations for Quantile MDP

- Similarly as before, when T = 3:

>
VaR, (—R(x)) = VaR (VaR; (VaR; ( — 2 y'r(8;,a,) | dy.y,81.0) | dg, 51))
=0
= VaR (—7(sy, dy) + yVaRg (—=r(5, a;) + yVaR; (—r(35,, ay) | dg.15 §1.0) | dg, §1))

> minVaR, (—r(sy, ap) + yminVaR; (— (8, a;) + yminVaR; (—r(5,, a,) | ap.15510) | G, S1))

a, a )
= min VaR, (—r(sy, ay) + y min VaR; (—r(8;, a;) + y min VaR; (—=r(5,,a,) [ 5,) | §;))
a, a, )

— VaRTO(—I”(SO, 7T6I<(So)) -+ }/VaRﬁl(—l”(51, ﬂ{k(fl, ﬁl)) -+ ]/vaRﬁz(—r(Ez, ﬂ;(gz, 1/72)) ‘ 52) ‘ 51))

where

(s, 7) € argmin Q*(s,7,a) := VaR(—r(s,a) + y min Q;i 1(s, n)|s, =s)
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- Similarly as before, when T = 3:

>
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=0
= VaR (—7(sy, dy) + yVaRg (—=r(5, a;) + yVaR; (—r(35,, ay) | dg.15 §1.0) | dg, §1))

> minVaR, (—r(sy, ap) + yminVaR; (— (8, a;) + yminVaR; (—r(5,, a,) | ap.15510) | G, S1))

dy a %)

= min VaR, (—r(sy, ay) + y min VaR; (—r(8;, a;) + y min VaR; (—=r(5,,a,) [ 5,) | §;))

Ay ag %)

— VaRT()(_r(SO’ 7T6X<(So)) —+ }/VaRﬁl(—l’(51, ﬂik(gl, ﬁl)) + )/VaR,;iz(—l’(ﬁz, ﬂ;(gz, 1/72)) ‘ 52) ‘ gl))
= VaR; (—7(sg, 75 (5p)) + yVaR; (= r(5y, 77(51)) + yVaR; (= r(8y, 75(51.0)) | §1:0) [ 51))

where

(s, 7) € argmin Q*(s,7,a) := VaR(—r(s,a) + y min Q;i 1(s, n)|s, =s)

t—1
(81, = (s, 7,), with 7, 1= sup{z : min QF(s, 7o, @) Z y' r(s,, m(s,.,)) > min Q*(s,, 7,,a)}
a
1'=0
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Bellman equations for Quantile MDP

- Similarly as before, when T = 3:

>
VaR, (—R(x)) = VaR (VaR; (VaR; ( — 2 y'r(8;,a,) | dy.y,81.0) | dg, 51))
=0
= VaR (—7(sy, dy) + yVaRg (—=r(5, a;) + yVaR; (—r(35,, ay) | dg.15 §1.0) | dg, §1))

> minVaR, (—r(sy, ap) + yminVaR; (— (8, a;) + yminVaR; (—r(5,, a,) | ap.15510) | G, S1))

a, a )
= min VaR, (—r(sy, ay) + y min VaR; (—r(8;, a;) + y min VaR; (—=r(5,,a,) [ 5,) | §;))
a, a, )

— VaRT()(_r(SO’ 7T6X<(So)) —+ }/VaRﬁl(—l’(51, ﬂik(gl, ﬁl)) + )/VaR,;iz(—l’(ﬁz, ﬂ;(gz, 1/72)) ‘ 52) ‘ gl))
= VaR; (—7(sg, 75 (5p)) + yVaR; (= r(5y, 77(51)) + yVaR; (= r(8y, 75(51.0)) | §1:0) [ 51))

2
— VaRTO(VaRﬁl(VaRﬁz(— Z Vt’”(fp ﬁ';k(gl;t)) ‘ 51;2) ‘ 51)) — VaRTO(_R(ﬁ-*))a

where =0

(s, 7) € argmin Q*(s,7,a) := VaR(—r(s,a) + y min Q;i 1(s, n)|s, =s)

t—1
(81, = (s, 7,), with 7, 1= sup{z : min QF(s, 7o, @) Z y' r(s,, m(s,.,)) > min Q*(s,, 7,,a)}
a
1'=0
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Bellman equations for Quantile MDP

Theorem:

For general 7,
min VaRTO(—ﬁ(ﬂ)) = VaRTO(—R(ﬁ*)) = min Q5‘<(SO, To, dp)

Ay

where

QF(s,7,a) ;= VaRT< —r(s,a) + ynlliln QF Sy, a) |5, = S),
and Q}k(s, 7,a) .= 0, while
7(s,.,) 1= arg min Q*(s, (s,.), @)

d

with
—1

f(sy.,) ;= sup {T > min QOF (8o, 7p, @) + Z y' r(s,, mAsy.p)) = min Q*(s,, 7,, a)}
a a

1'=0
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Converting Bellman equations to Q-learning

- Exploiting the elicitability property of quantiles, we get

0F(s,7,a) = VaR ( = r(s,0) + min O G s )| 5, = 5)

+1
= arg min [t lﬂ(q — (=r(s,a) +ymin Q,, (5,1 U, 1, atH))) S, = sl

q A
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Converting Bellman equations to Q-learning

- Exploiting the elicitability property of quantiles, we get

0F(s,7,a) = VaR ( = r(s,0) + min O G s )| 5, = 5)

+1
= arg min [t lﬂ(q — (=r(s,a) +ymin Q,, (5,1 U, 1, atH))) S, = sl

q A

- This gives rise to a stochastic gradient algorithm that learns from sample
s'~ P(-|s,a)and " ~ U([0,1)):

O/ 70 @) — O,(5p Ty ) — a(k)f;k<Qt(sk, @) = (=r(s @) + 7 min Oy, (5,7, ) )

A

with £/(y) = (1 —7)1{y 2 0} + 71{y < 0} as a subgradient
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Convergence of risk-sensitive Q-learning

Theorem:

In tabular setting, let finite set & C (0,1).Assume that a(k) and
{(tk’ Sts Tps Uy Slg’ T]:T)}ZO:O’ with Ty = 9 and TIQ ~ U(g), used in

k k—1 Z k—1 : k—1
QS Tio i) < Q™ (Spo Tpo @) — a(k) - Lﬂ;k (th (S Tpo A) + 7(Spo A1) — 7 [ th+1(5129 Ty CZ/)>

a

th(sa T, a) <~ Qt _I(Sa T, Cl), V(t, Sa T, Cl) # (tka Sk . Tka ak)
satisfy the Robbins-Monro conditions:

Z a(k) = co, Z a(k)? < 00, V(1,5,a) as.

k:(t,8.,a,)=(1,5,a) k:(t,s.,a,)=(1,5,a)

then OF - Q® ~ O%*.
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Q-learning
Average Risk-aware MDP

for

R e T T 1 T
44444 1 1
0 B [ e S 1 1

Weikai Wang, D, Planning and Learning in Average
Risk-aware MDPs, working draft.

t Risk neutral agent Risk averse agent

I I -

. Start (r = -1)

Goal (r = 0)

*—I—’ Optimal policy
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Average Cost MDP problem

- Consider the infinite horizon average cost problem:

max lim (1/7) —[RT(JZ)]

T T— o0

- Such models are useful in continuing tasks:
> Supply chain management (Pontrandolfo et al. [2002])
> Queueing control (van Leeuwen and Nunez-Queija [2017])
> Ambulance dispatching (Jagtenberg et al. [2017])
> Traffic control (Haijema et al. [2017])
> Lot scheduling (van Foreest and Wijngaard [2017])
> Etc.
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Q-learning for RN Average Cost MDPs

- For MDP that is unichain under all 7, any O* and g* satisfying :

0(s,a) = E[~r(s,a) + min O(s',a)] - g

gives 1(s) := arg min Q*(s, a) achieving optimal value g*.
a
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Q-learning for RN Average Cost MDPs

- For MDP that is unichain under all 7, any O* and g* satisfying :

0(s,a) = E[~r(s,a) + min O(s',a)] - g

gives 1(s) := arg min Q*(s, a) achieving optimal value g*.
a

- RN Relative Q-value lteration (Abounadi et al. [2001]):

0"*(s,a) = E[~r(s,a) + min Q(s’,a)] - f(Q)

with for example f(g) := max g(s, a), converges to optimal (O*, f(O*)).

S.a
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Q-learning for RN Average Cost MDPs

- For MDP that is unichain under all 7, any O* and g* satisfying :

0(s,a) = E[~r(s,a) + min O(s',a)] - g

gives 1(s) := arg min Q*(s, a) achieving optimal value g*.
a

- RN Relative Q-value lteration (Abounadi et al. [2001]):

0"*(s,a) = E[~r(s,a) + min Q(s’,a)] - f(Q)

with for example f(g) := max g(s, a), converges to optimal (O*, f(O*)).

S.a

- RN Q-learning based on {s;, a;, s} ;- ;:

Qk(Ska a;) < Qk_l(Ska a;) + a(k) - (—r(sk, a;) + H;ln Qk_l(sléa a’) — f(Qk)—Qk_l(Ska ak))>
Qk(sa Cl) N Qk_l(sa CZ), V(Sa CZ) # (Ska ak)

also converges to optimal (O*, f(O%))
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Q-learning for RN Average Cost MDPs

- For MDP that is unichain under all 7, any O* and g* satisfying :
12,

(s, a) = E[-r(s,a) + min (s, a’)] — g 144
a
gives 1(s) := arg min Q*(s, a) achieving optimal value g*.
- RN Relative Q-valuealteration (Abounadi et al. [20017):
Q" *'(s,a) = Q—[ r(s, @) + min Q(s’, )] — f(O") 2772

with for example f(g) := max g(s, a), converges to optimal (O*, f(O*)).

S.a

- RN Q-learning based on {s;, a;, s} ;- ;:

Q (s @) — O (s @) + a(k) £ (—F(Sk, a) +min Q' (s, a’) — f(Q")—0 (s, ak))> 2227
Qk(sa Cl) — Qk_l(sa CZ), V(Sa CZ) # (Ska ak)

also converges to optimal (O*, f(O%))
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Average Risk MDPs

- Consider the risk averse problem:

~J

min lim (1/7) H—R =4

T T— o0
:50 (pl ( . ‘pT—l(_RT(ﬂ) ‘ dO:T—Z’ EI:T—I)‘ . d()’ §1>>

HEC MONTREAL 397143



Average Risk MDPs

- Consider the risk averse problem:

min lim (1/7) H—R =4

T T— o0
:50 (:51 ( . ‘pT—l(_RT(ﬂ) ‘ dO:T—Z’ S:I:T—l)‘ . d()’ §1)>

- With “proper” MDP and p, any O* and g* satisfying (Shen et al. [2013]):
O(s, @) = j(=r(s,a) + min O(s’, @) — g

gives *(s) := arg min OQ*(s, a) achieving optimal value g*.
a
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Average Risk MDPs

- Consider the risk averse problem:

min lim (1/7) H—R =4

T T— o0
:50 (:51 ( . ‘pT—l(_RT(ﬂ) ‘ ZiO:T—Z’ S;I:T—l)‘ . Zi()’ §1)>

- With “proper” MDP and p, any O* and g* satisfying (Shen et al. [2013]):

O(s, @) = p(—r(s,a) + min (s, @) — g
gives *(s) := arg min OQ*(s, a) achieving optimal value g*.

- Risk averse Relative Q-value Iteration (Wang and D [2025]):
O *'(s,a) = p(=r(s,a) + min Q*(s', a’) — Q"))
a/
converges to optimal (O*, f(O*)).
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Q-learning for Average Risk MDPs (1)

- If p is elicitable, based on risk averse Relative Q-value Iteration:
Q'*'(s,a) = p(—=r(s,a) + min Q*(s’, a) — Q"))

— arg min E[£(q — (=r(s, a) + min 0 (s’ a") — Q)]
q a
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Q-learning for Average Risk MDPs (1)

- If p is elicitable, based on risk averse Relative Q-value Iteration:
Q'*'(s,a) = p(—=r(s,a) + min Q*(s’, a) — Q"))

— arg min E[£(q — (=r(s, a) + min 0 (s’ a") — Q)]
q da

= This gives rise to the stochastic gradient algorithm (UBSR Q-learning):

O (s ap) < O (s ap) — alk) - £/ (Qk_l(ska ap) — (—=r(Sp ap) + nzm 0" !(s",a’) — f(Qk)))
Qk(Sa CZ) N Qk_l(sa Cl), V(Sa Cl) ?é (Ska ak)
based on a single sample s' ~ P( - |s,a).
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Q-learning for Average Risk MDPs (1)

- If p is elicitable, based on risk averse Relative Q-value Iteration:
Q'*'(s,a) = p(—=r(s,a) + min Q*(s’, a) — Q"))

— arg min E[£(q — (=r(s, a) + min 0 (s’ a") — Q)]
q da

= This gives rise to the stochastic gradient algorithm (UBSR Q-learning):

O (s ap) < O (s ap) — alk) - £/ (Qk_l(ska ap) — (—=r(Sp ap) + nzm 0" !(s",a’) — f(Qk)))
Qk(Sa CZ) N Qk_l(sa Cl), V(Sa Cl) ;é (Ska ak)
based on a single sample s' ~ P( - |s,a).

- In risk neutral setting, i.e. Z(y) := (1/2)y?, reduces to Q-learning proposed
by Abounadi et al. [2001]
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Q-learning for Average Risk MDPs (1)

- If p is elicitable, based on risk averse Relative Q-value Iteration:
Q'*'(s,a) = p(—=r(s,a) + min Q*(s’, a) — Q"))

— arg min E[£(q — (=r(s, a) + min 0 (s’ a") — Q)]
q da

= This gives rise to the stochastic gradient algorithm (UBSR Q-learning):

O (s ap) < O (s ap) — alk) - £/ (Qk_l(ska ap) — (—=r(Sp ap) + nzm 0" !(s",a’) — f(Qk)))
Qk(Sa CZ) N Qk_l(sa Cl), V(Sa Cl) ;é (Ska ak)
based on a single sample s' ~ P( - |s,a).

- In risk neutral setting, i.e. Z(y) := (1/2)y?, reduces to Q-learning proposed
by Abounadi et al. [2001]

- Converges empirically but unfortunately no theoretical guarantees yet
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Q-learning for Average Risk MDPs (ll)

- If one has access to a simulator, the risk averse Relative Q-value Iteration:
Q*(s,a) = p(=r(s,a) + Hzln Q*(s’,a’) — Q7))
can motivate a different Q-learning algorithm using Robbins-Munro algorithm:
0¥(s @) — OF (51 1) + a(k) - (ﬁm—r(sk, @) +min Q*\(s'.a) ~f(Q") — 0" (s ak»)

Qk(sa CZ) N Qk_l(sa Cl), V(Sa Cl) 7& (Ska ak)
where p,/(X) is an unbiased sample-based estimator of p(X)
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Q-learning for Average Risk MDPs (ll)

- If one has access to a simulator, the risk averse Relative Q-value Iteration:
Q*(s,a) = p(=r(s,a) + Hzln Q*(s’,a’) — Q7))
can motivate a different Q-learning algorithm using Robbins-Munro algorithm:
0¥(s @) — OF (51 1) + a(k) - (ﬁN<—r<sk, @) +min Q*\(s'.a) ~f(Q") — 0" (s ak»)

0%(s,a) < 0 !(s,a), Y(s,a) # (s @)
where p,/(X) is an unbiased sample-based estimator of p(X)
- We prove convergence to optimal (O, f(O*)) under the conditions:
> MDP has a reset state: P(s|s,a) > 0, V(s, a)
> p is e-strictly monotone: VX > Y, p(X) > p(Y) + €E|X — Y]
> Py is unbiased and has bounded variance (e.g. MLMC)

> Robbins-Monro step size
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Take-away messages

- Elicitability allows one to adapt model-free reinforcement learning
methods to risk aware setting.

- Different types of risk measures can be used:
> Dynamic risk measures
> Static risk measures

- Different types of problems:
> Finite, infinite discounted, infinite average risk

- By developing Deep Reinforcement Learning algorithms that are based on
these Q-learning results, one can potentially identify risk aware policies in
real world large-scale sequential decision making problems.

- Many potential applications !
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