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1 Introduction

Motivation & Challenges

- Markov Decision Process (S, A, P, r,7)
- S and A finite state and action space
- r(s,a) e [0,1]and vy € (0,1)

Infinite Horizon Discounted Reward
Find 7 such that

Vi(s) = maxV”( ),

where V' (s) := ET [Zk 0 Y<r(sk, ak)]

state

Agent

reward

action

Reinforcement Learning Loop
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2 Problem Formulation

RL as a Saddle Point Problem

Linear Programming formulation

V. is the minimizer to the LP

( min\/eR\$| ,U,T\/
st 0>—-V(s)+r(s a)+ ’YZP(S/|S, a)V(s) VseS ae A
| s'eS |
\ =A[V](s,a)
with € RY
. p(s, a)

max min L, (V.0) :=u'V + s, a)A[V](s, a), mP(als) =
e i LuVep) =WV 3 ol BMs.), wels) = Py

"Manne (1960); Borkar (2002); Puterman (1994); Chen and Wang (2016); Lee and He (2019)
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2 Problem Formulation

Regularized Lagrangian Formulation

- Entropy regularization® and convex modification

in L, (V.p):=un'V ,a)A[V](s,
max min Ly (V. p) := i +SESZ;€AP(S a)A[V](s, a)

)

max min L(V, p) = %HV”% + Z p(s, a) (A[V](S, a) — 1, log (Z p(s,a) ))

/
p>0 VeRIS| o yeaP(s, @)

?Haarnoja et al. (2018); Zhan et al. (2022)
3Geist et al. (2019); Neu et al. (2017); Ying and Zhu (2020); Li et al. (2024)
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2 Problem Formulation

Properties of Regularized RL Objective

- Exploration and robustness* at the cost of bounded suboptimality®

|Og ‘Al y *
1—~ < Vir' (s) < V5(s)

Vu*r(5> — Mo

- Unique stochastic optimal policy 77 induced by optimal dual p* € H C ]R';SAM'

- No effect of strongly convex modification in V on optimal regularized primal solution®

‘Derman et al. (2021)
’Geist et al. (2019, Theorem 2)
SLi et al. (2024, Theorem 2.1)
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3 PGDA-RL Algorithm - 3.1 Synchronous Setting

Overview of PGDA-RL — Generative Model Access

1. Sample state-transitions s’ ~ P(-|s,a) forall (s,a) e S x A

|

2. Primal update: Vi1 < Vi — o, Vi L(V4, i)

|

3. Dual update: o 1 < Iy [Pk + Bk@pL(Vk, ,Ok)]

|

Repeatfor k=1,2,..., K

Output: final iterates (Vk, px)
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3 PGDA-RL Algorithm - 3.1 Synchronous Setting

Convergence of PGDA-RL

- Stochastic gradients VL and V,L estimated via generative model

- Step sizes on two timescales:  limg_.o g—i =0,

Under the above assumptions on step sizes and bounded noise, the iterates of PGDA-RL
converge almost surely:

lim (Vk, px) = (V*,p*) a.s.
K—o0

Proof: Two-timescale ODE method from stochastic approximation theory (Borkar, 1997)
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3 PGDA-RL Algorithm - 3.1 Synchronous Setting

ODE Approach to Stochastic Approximation

- Classic SA update with martingale difference noise sequence (MDS)’:

Xi+1 = Xk + o (h(xx) + My)

- Noisy Euler discretization of the ODE:
x(t) = h(x(t))

- For Y, cn 0k = 00, Y ey @2 < 00, well-behaved MDS My, and supy || x| < oo a.s.:

xx — x* a.s., where h(x*) =0

7 Kushner and Yin (2003); Borkar (2023)
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3 PGDA-RL Algorithm - 3.1 Synchronous Setting

Two-Timescale Structure and Limiting Dynamics

| Stochastic Recursion Limiting ODEs |

Vi = Vi1 — a (VoL + MV) V(t) = —VyL(V(1),p) (fast)

ok = My [Pk—l + B (vpL + /\//,9)] A(p) € argmin L(V, p)
| o(t) = V,oL(A(p(1)), p(t)) + ¢(t) |

- ok > [ (fast primal, slow dual)

M,((l), M,Ez) are MDS - ((t) projects flow to stay within H

Coupled stochastic recursion tracks a globally asymptotically stable two-timescale dynamical system.
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3 PGDA-RL Algorithm - 3.2 Asynchronous Extension

From Synchronous to Asynchronous PGDA-RL

- No access to generative model — learn from a single trajectory
- Only visited (s, a) pairs are updated per iteration
- Use the current dual iterate to guide on-policy exploration

Synchronous Asynchronous
Gradient Estimation Per-step simulator samples Replay-based estimates
Policy Exploration - Adaptive via py
Gradient Noise l.I.D. across all (s, a) Asymptotically unbiased
Step Sizes Uniform schedule Entry-specific steps
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3 PGDA-RL Algorithm - 3.2 Asynchronous Extension

Convergence via Stochastic Differential Inclusion

Under suitable step-size conditions and the replay-based gradient structure, the
iterates of Asynchronous PGDA-RL converge almost surely:

lim (Vk, px) = (V*,p") a.s.
K—00

Captures non-uniform, time-varying update structure

V(t) € =Q% - VL, p(t) € Qs q- VoL +¢(2)

®Perkins and Leslie (2013)
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3 PGDA-RL Algorithm - 3.3 Simulation

Simulation Results on Frozen Lake

(a) Value Function RMSE Evolution (b) Stochastic Policy KL-Divergence
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Copyright © 2025 Farama Foundation Pa ramete rs :
Frozen Lake? Asynchronous PGDA-Agent, 10 runs a 10° steps,
{v. M, mv} =1{0.9,0.1,0.1}, ay = %5k = m,

aTowers et al. (2024)
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4 Conclusion

Comparison to Related Work

Paper Model Access Function Appr. Convergence
Chen and Wang (2016) Generator Tabular PAC

Dai et al. (2018) Markovian Non-linear Sketch

Lee and He (2019) Markovian Tabular PAC
Gabbianelli et al. (2024) Offline Linear PAC

Li et al. (2024) Full Model Tabular Det. Asympt.
Our paper Markovian Tabular Almost Sure
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4 Conclusion

Conclusion and Key Takeaways

Proposed PGDA-RL: primal-dual algorithm with almost
sure convergence

Asynchronous learning using replay buffers (on-policy
exploration and off-policy data)

Two-timescale updates ensure stable value and dual
variable learning

arXiv:2505.04494
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6 Backup Slides

Structured Experience Replay Buffer

Buffer Construction Sampling for Gradient Estimation

Current state-action: (5, a)

Trajectory step: (sx_1, ak_1, Sk) 1
1 Sample m transitions from D, (5, a)
Append s, to Dk(Sk_l, ak_1> 1
! Estimate P\? (5|5, 3) via empirical freq.
Add (sk—1, ak—1) 10 Dinc,k(sk) 1

Compute V,L(V, p)(3, 3)

13/13 30.07.2025 A Two-Timescale Primal-Dual Framework for Reinforcement Learning via Online Dual Variable Guidance Axel Friedrich Wolter



	Introduction
	Problem Formulation
	PGDA-RL Algorithm
	Synchronous Setting
	Asynchronous Extension
	Simulation

	Conclusion
	Literatur
	Backup Slides

