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1. Defender-Attacker-Defender



1.1 Problem statement

Supplier “Nature” Operator Q(z, Z, )
. ; T
minc’ £ + max max E, [E min 1.1
xeX PreP,P.eP, Pz P yeY(x,Z,€) L ( )

Figure 1: 2-stage DRO with continuous and discrete uncertainties, resp. £ and Z

1. (Supplier) x: the defender’s investments (integer)
2. (Attacker) Z: the attacker’s disruption (binary)
3. (Operator) y: the operator’s operations (continuous)

Modelling Discrete Adverse Events: stronger modelling power

Events with negative outcomes can be modelled by discrete random variables Z,
e.g., physical failure, connectivity loss, unsafe operation, etc.

Some relevant problems: network design, facility location, network hardening,
vehicle routing

Assume relatively complete recourse

As long as “last resort” operational actions are modelled, the assumption is

verified.
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1.2 Mixed-integer ambiguity

Random variables

Let Z be a discrete random vector modelling k failures with support
2:{ze€{0,1}V:) 2>N—k}. (1.2)
Let £ be a continuous random vector with polyhedral support
E={(eR:C¢<d} (1.3)

We are given empirical distributions I@’é and I@’g of Z and &, resp. with J and I
samples.

Ambiguity sets: ¢-divergence and p-Wasserstein distance

Py(k) ={P € M(2): I,(P,P}) <k} (1.4)

Pe(e) ={P e M(E): W,(P,B]) <&} (1.5)

In our work, we choose ¢(t) = |t — 1| (total variation) and p = 1.
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2. Approximating the robust
recourse problem




2.1 Approximating by decomposing

The worst-case distributions [P, P¢ are given by the robust recourse problem

Pgleag:;cz P{?aj}i Ep,Ep, Qx, Z,&) (2.1)

The above is difficult to solve.

Instead, we can naively approximate by taking the supremum successively

p(z, Z)
max max Ep Ep Q(z,7Z,§) < maxEp_ max Ep, Qx, Z,¢)
P, P, P, P, 2.2
< I%&XEP V(x, Z) (2

Roughly, we consider a finite number of independent subproblems ¥ (z, Z(w)).
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2.2 Scenario reduction: truncated problem v(x)

The number of outcomes Z(w), Vw € Z is finite, but combinatorial. Let {2 = | Z| and
p; =Pz(z;),j € [Q]. Then, we write equivalently

Q
r%aXEpzw(x, zj) = II;&Xij’QD(x, zj) (2.3)
Z I =1

Scenario reduction

To reduce the combinatorial complexity, we truncate the number of scenarios €2 to
be exactly J, the number of available data points.

J . : :
Assume that the dataset {zj} s representative of worst-case scenarios.
J:

Scenario reduction v(z)’

Consider the quantized problem

J
v/ (z) = meax ijzp(:c, z;) (2.4)
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2.3 Conservative Decision problem

Conservative Decision problem
Adding back the 1st stage gives us an upper bound of the original problem.

T — min T E A 2.5
;rgclc x + v(x) ;rél;{}c x—l—r%zX ]pzlb(xa ) (2.5)

where 1(x, 2) is the robust recourse problem wrt to £.

¥(a,2) = max Bp Q(r, 2, (26)

8/18



3. Reformulations




3.1 Inner DRO - ¢(z, 2)

Reformulation of ¢ (z, z) (Mohajerin Esfahani and Kuhn 2018)

Y
With dataset {ﬁz} , we can write the strong duality reformulation as follows
i=1

Y(x, z) =
1 Jd
min fe+ - » s,
0’817’71'(» I i=1
T T 2 A S (3.1)
a’wgi + bw + ’Yiw (d o Cﬁz) S 872 \V/Z S __17 I__,‘v’w S V(Z)
||C’T’yz-w — a,w”* <4 Vi e [1,1I],Vw € V(z)
Vi = 0 Vi € [1,1],Vw € V(2)

where V(z) is the set of all extreme points of the dual feasible space of Q(z, z, §),
(a,,,b,) are the coefficients of the linear function Q(z, z,£) : £ = al € + b, for

w? rw

the vertex w.
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3.2 Outer DRO - v(x)

Formulation of v(z) (Ben-Tal et al. 2013)

The Lagrange dual function of v(x) is given by

(Y 2) = B
g(a, B) == B+ ka + « ijgb* ,a>0 (3.2)
=1 “
Given the variation distance ¢(t) = |t — 1|, the Lagrange dual problem of v(x) is
L
v(r):=infB+rKa+ > Pu;
o, —
J_
s.t.u; > —a Vie |1, J]

w, > (z,2,) — B Vi € [1,J] 83)

(x,2;) =B <a Vjie[l,J]
a > 0,0 free
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3.3 Full problem

Robust recourse problem

L

az;gz + bw + 'YszT (d T C§z> < S ji Vj €
HCT’yjiw — awH <40 Vj e
Yjiw = 0 \ES

one variable for each w

j=1
s.t.u; > —a Vie|[l,J]
U; 2T Vie |1, J]
r; <« Vie|[l,J]
a > 0,0 free
1 U
T —Hjs—l—fi_l S — B

[1,J]

[1,J]

Vi€
=

=

[1,1]
[1,1]

[1,1]

[1,1]
[1,1]

[1,1]

Developping v(x) with the dual formulation of ¥(, z,), Vj € [1, J], we have

(3.4)

finite but combinatorial

[1,J]

,Yw € V(z)
,Yw € V(z)
,Yw € V(z)

12/ 18



3.5 Some remarks on the decomposition

Decompose with respect to ... what?

Benders:
e Q(x,2,&)isalP given x € X, otherwise it is bilinear. Then:
1. Start with z := z,
2. Solve for a feasible solution T
3. Solve v(Z)
4. Create an optimality cut

C&CG:
« Givenz € X, z € Z, ¢(x, z) is combinatorial in the due to enumerating all the
BFS of Q(z, 2, £). For every w(:c, Z;, 51)3
1. Start with one vertex in a set V' (,1) := {wy € V(2)}
2. Solve the current problem and get feasible solutions
3. Find new vertex w® and add it to V'(1,7) = V(i) U {w*}
4. Add the new variables and constraints associated with w¥
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3.5 Some remarks on the decomposition

(Generalized) Benders decomposition (Geoffrion 1972)

The master problem (MP®) with @ cuts is defined by

minelz + v
xeX
s.t. v > SP(z) (MP@)

v>m, (r—x,) +SP(z,) Vq € [Q]

where (SP) is the subproblem v(z) given by

v(z) = max By, ¥(z,2) (SP)

and 7, are the reduced costs of fixing z = x, in (SP).

We can initialize (MP€) with an initial feasible solution .

Dual values

We need the reduced costs 7 of z, so
problem. This is why we separate the Benders and C&CG procedures.
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3.6 Column & Constraint Generation

C&CG

The reduced master problem is

L
inf 8 + ko + Zﬁjuj
o,p p
st.u; > —a,u; 21 < a Viel[l,J],Vie[l,1I]
a > 0, free (RMP)
[CT 50— a]| <6 vj € [1,J],¥i € [1,1], Yo € V(5,1)
Vjiw = 0 vjie[1,J],Vie[L,I],Vw e V(j,i)

where V/(j, ) is the set of vertices for a given scenario (z;,&;) and represent a

(13 . . ”
worst-case realization”.
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3.7 C&CG pricing (WIP)

Pricing

In order to populate V'(j,4), we need a new w € V(z;) from which we can derive
a new constraint

agéi + b, + ’Y};w (d — ng) < S (3.8)
V(zj) is the dual feasible set of Q(:c, Zj, 57;), therefore we can simply solve the
dual problem.
MINycy(y 7 ¢) qly maxy ,, MN(Tx —h) + VT(ng — gg)
s.t. Wy < h—Tx st. WIAX+VIv4+qg=0
=

VZyzgg—ng A>0

xreX v free
Then,

V(z;) ={w:=\v) : WX+ Vv +q=0,X>0,v free} (3.9)
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3.7 C&CG pricing (WIP)

Pricing

The pricing problem must be derived to “find w that has the most violation” with
respect to

af& + b, + ’Y};w (d — ng) < S (3.10)

By construction, the LHS of (3.10) is the objective of the dual problem for a given
w. Then, we also write

h(Xv;€) = max a(w)"€+bw)+f (d—CE&) —s*(ji)  (3.11)

weV(z;)

given optimal dual values 7}; and s7; of the (RMP).
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But, can’t you just enumerate them all??



But, can’t you just enumerate them all??
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Figure 2: (Non)convergence of C&CG



3.7 C&CG pricing (WIP)

Solving the nonconvex nonlinear problem maXp, Epg Q(z, z,§)

A
Givenx € X, z € Z, and samples {ﬁz} > can we directly solve v(x)?

minZTiQ(w,z, )
J
1
I, = Vi e [1,1]

27'7; _ (3.12)

Z §i fjHHz'j<5
(%]

0<1I; <1

0<r, <1

& €2
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Summary

1.

Unlocking the modelling power of mixed-
integer models is primordial for industrial
applications.

. We approximate a discrete-continuous “2-

DRO” problem leveraging existing strong

duality formulations to derive a finite, convex
reformulation.

: We propose an nested Benders and
C&CG decomposition algorithm to solve the
problem. ( )




Thank you!
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