

Solving 2-stage DRO with mixed-integer ambiguity sets via a hybrid Benders and C&C

XVIIth International Conference on Stochastic Programming, France

Pascal Quach, Yiping Fang, Anne Barros

July 28, 2025

¹Laboratoire Génie Industriel, CentraleSupélec

²Risk and Resilience of Complex Systems Chair, CentraleSupélec

Outline

1. Defender-Attacker-Defender	2
2. Approximating the robust recourse problem	5
3. Reformulations	9

1. Defender-Attacker-Defender

1.1 Problem statement

$$\begin{array}{ccc} \text{Supplier} & \text{“Nature”} & \text{Operator } Q(x, Z, \xi) \\ \min_{x \in \mathcal{X}} c^T x + \max_{\mathbb{P}_Z \in \mathcal{P}_Z} \max_{\mathbb{P}_\xi \in \mathcal{P}_\xi} \mathbb{E}_{\mathbb{P}_Z} \mathbb{E}_{\mathbb{P}_\xi} & & \min_{y \in \mathcal{Y}(x, Z, \xi)} q^T y \end{array} \quad (1.1)$$

Figure 1: 2-stage DRO with continuous and discrete uncertainties, resp. ξ and Z

1. (Supplier) x : the defender's investments (integer)
2. (Attacker) Z : the attacker's disruption (binary)
3. (Operator) y : the operator's operations (continuous)

Modelling Discrete Adverse Events: stronger modelling power

Events with negative outcomes can be modelled by discrete random variables Z , e.g., physical failure, connectivity loss, unsafe operation, etc.

Some relevant problems: network design, facility location, network hardening, vehicle routing

Assume relatively complete recourse

As long as “last resort” operational actions are modelled, the assumption is verified.

Random variables

Let Z be a discrete random vector modelling k failures with support

$$\mathcal{Z} : \left\{ z \in \{0, 1\}^N : \sum z \geq N - k \right\}. \quad (1.2)$$

Let ξ be a continuous random vector with polyhedral support

$$\Xi = \{ \xi \in \mathbb{R} : C\xi \leq d \}. \quad (1.3)$$

We are given empirical distributions $\hat{\mathbb{P}}_Z^J$ and $\hat{\mathbb{P}}_\xi^I$ of Z and ξ , resp. with J and I samples.

Ambiguity sets: ϕ -divergence and p -Wasserstein distance

$$\mathcal{P}_Z(\kappa) = \left\{ \mathbb{P} \in \mathcal{M}(\mathcal{Z}) : I_\phi(\mathbb{P}, \hat{\mathbb{P}}_Z^J) \leq \kappa \right\} \quad (1.4)$$

$$\mathcal{P}_\xi(\varepsilon) = \left\{ \mathbb{P} \in \mathcal{M}(\Xi) : W_p(\mathbb{P}, \hat{\mathbb{P}}_\xi^I) \leq \varepsilon \right\} \quad (1.5)$$

In our work, we choose $\phi(t) = |t - 1|$ (total variation) and $p = 1$.

2. Approximating the robust recourse problem

2.1 Approximating by decomposing

The worst-case distributions $\mathbb{P}_Z^*, \mathbb{P}_\xi^*$ are given by the robust recourse problem

$$\max_{\mathbb{P}_Z \in \mathcal{P}_Z} \max_{\mathbb{P}_\xi \in \mathcal{P}_\xi} \mathbb{E}_{\mathbb{P}_Z} \mathbb{E}_{\mathbb{P}_\xi} Q(x, Z, \xi) \quad (2.1)$$

The above is difficult to solve.

Instead, we can naively approximate by taking the supremum successively

$$\begin{aligned} \max_{\mathbb{P}_Z} \max_{\mathbb{P}_\xi} \mathbb{E}_{\mathbb{P}_Z} \mathbb{E}_{\mathbb{P}_\xi} Q(x, Z, \xi) &\leq \max_{\mathbb{P}_Z} \mathbb{E}_{\mathbb{P}_Z} \max_{\mathbb{P}_\xi} \mathbb{E}_{\mathbb{P}_\xi} Q(x, Z, \xi) \\ &\leq \max_{\mathbb{P}_Z} \mathbb{E}_{\mathbb{P}_Z} \psi(x, Z) \end{aligned} \quad (2.2)$$

Roughly, we consider a finite number of independent subproblems $\psi(x, Z(\omega))$.

2.2 Scenario reduction: truncated problem $v(x)$

The number of outcomes $Z(\omega), \forall \omega \in \mathcal{Z}$ is finite, but combinatorial. Let $\Omega = |\mathcal{Z}|$ and $p_j = \mathbb{P}_Z(z_j), j \in [\Omega]$. Then, we write equivalently

$$\max_{\mathbb{P}_Z} \mathbb{E}_{\mathbb{P}_Z} \psi(x, z_j) = \max_{p_j} \sum_{j=1}^{\Omega} p_j \psi(x, z_j) \quad (2.3)$$

Scenario reduction

To reduce the combinatorial complexity, we truncate the number of scenarios Ω to be exactly J , the number of available data points.

Assume that the dataset $\{z_j\}_{j=1}^J$ is representative of worst-case scenarios.

Scenario reduction $v(x)^J$

Consider the quantized problem

$$\nu^J(x) := \max_{p_j} \sum_{j=1}^J p_j \psi(x, z_j) \quad (2.4)$$

2.3 Conservative Decision problem

Conservative Decision problem

Adding back the 1st stage gives us an upper bound of the original problem.

$$\min_{x \in \mathcal{X}} c^T x + v(x) = \min_{x \in \mathcal{X}} c^T x + \max_{\mathbb{P}_Z} \mathbb{E}_{\mathbb{P}_Z} \psi(x, Z) \quad (2.5)$$

where $\psi(x, z)$ is the robust recourse problem wrt to ξ .

$$\psi(x, z) := \max_{\mathbb{P}_\xi \in \mathcal{P}_\xi} \mathbb{E}_{\mathbb{P}_\xi} Q(x, z, \xi) \quad (2.6)$$

3. Reformulations

3.1 Inner DRO - $\psi(x, z)$

Reformulation of $\psi(x, z)$ (Mohajerin Esfahani and Kuhn 2018)

With dataset $\{\hat{\xi}_i\}_{i=1}^I$, we can write the strong duality reformulation as follows

$$\psi(x, z) :=$$

$$\begin{aligned} & \min_{\theta, s_i, \gamma_{i\omega}} \theta\varepsilon + \frac{1}{I} \sum_{i=1}^I s_i \\ & a_{\omega}^T \hat{\xi}_i + b_{\omega} + \gamma_{i\omega}^T (d - C\hat{\xi}_i) \leq s_i \quad \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in \mathcal{V}(z) \quad (3.1) \\ & \|C^T \gamma_{i\omega} - a_{\omega}\|_* \leq \theta \quad \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in \mathcal{V}(z) \\ & \gamma_{i\omega} \geq 0 \quad \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in \mathcal{V}(z) \end{aligned}$$

where $\mathcal{V}(z)$ is the set of all extreme points of the dual feasible space of $Q(x, z, \xi)$, (a_{ω}, b_{ω}) are the coefficients of the linear function $Q(x, z, \xi) : \xi \mapsto a_{\omega}^T \xi + b_{\omega}$ for the vertex ω .

3.2 Outer DRO - $v(x)$

Formulation of $v(x)$ (Ben-Tal et al. 2013)

The Lagrange dual function of $v(x)$ is given by

$$g(\alpha, \beta) := \beta + \kappa\alpha + \alpha \sum_{j=1}^J \hat{p}_j \phi^* \left(\frac{\psi(x, z_j) - \beta}{\alpha} \right), \alpha \geq 0 \quad (3.2)$$

Given the variation distance $\phi(t) = |t - 1|$, the Lagrange dual problem of $v(x)$ is

$$\begin{aligned} v(x) := \inf_{\alpha, \beta} & \beta + \kappa\alpha + \sum_{j=1}^L \hat{p}_j u_j \\ \text{s.t. } & u_j \geq -\alpha \quad \forall j \in \llbracket 1, J \rrbracket \\ & u_j \geq \psi(x, z_j) - \beta \quad \forall j \in \llbracket 1, J \rrbracket \\ & \psi(x, z_j) - \beta \leq \alpha \quad \forall j \in \llbracket 1, J \rrbracket \\ & \alpha \geq 0, \beta \text{ free} \end{aligned} \quad (3.3)$$

3.3 Full problem

Robust recourse problem

Developing $v(x)$ with the dual formulation of $\psi(x, z_j)$, $\forall j \in \llbracket 1, J \rrbracket$, we have

$$\begin{aligned}
 v(x) &:= \inf_{\alpha, \beta} \beta + \kappa \alpha + \sum_{j=1}^L \hat{p}_j u_j \\
 \text{s.t. } u_j &\geq -\alpha & \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket \\
 u_j &\geq r_j & \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket \\
 r_j &\leq \alpha & \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket \\
 \alpha &\geq 0, \beta \text{ free} & (3.4)
 \end{aligned}$$

$$\begin{aligned}
 r_j &:= \theta_j \varepsilon + \frac{1}{I} \sum_{i=1}^I s_{ji} - \beta & \text{finite but combinatorial} \\
 a_\omega^T \hat{\xi}_i + b_\omega + \gamma_{ji\omega}^T (d - C \hat{\xi}_i) &\leq s_{ji} & \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in \mathcal{V}(z) \\
 \|C^T \gamma_{ji\omega} - a_\omega\|_* &\leq \theta & \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in \mathcal{V}(z) \\
 \gamma_{ji\omega} &\geq 0 & \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in \mathcal{V}(z) \\
 \text{one variable for each } \omega
 \end{aligned}$$

3.5 Some remarks on the decomposition

Decompose with respect to ... what?

Benders:

- $Q(x, z, \xi)$ is a LP given $x \in \mathcal{X}$, otherwise it is bilinear. Then:
 1. Start with $x := x_0$
 2. Solve for a feasible solution \tilde{x}
 3. Solve $v(\tilde{x})$
 4. Create an optimality cut

C&CG:

- Given $x \in \mathcal{X}, z \in \mathcal{Z}, \psi(x, z)$ is combinatorial in the due to enumerating all the BFS of $Q(x, z, \xi)$. For every $\psi(x, z_j, \xi_i)$:
 1. Start with one vertex in a set $V(l, i) := \{\omega_0 \in \mathcal{V}(z)\}$
 2. Solve the current problem and get feasible solutions
 3. Find “**the best**” new vertex ω^k and add it to $V(l, i) = V(l, i) \cup \{\omega^k\}$
 4. Add the new variables and constraints associated with ω^k

3.5 Some remarks on the decomposition

(Generalized) Benders decomposition (Geoffrion 1972)

The master problem (MP^Q) with Q cuts is defined by

$$\begin{aligned} & \min_{x \in \mathcal{X}} c^T x + \nu \\ & \text{s.t. } \nu \geq \text{SP}(x_0) \\ & \quad \nu \geq \pi_q^T (x - x_q) + \text{SP}(x_q) \quad \forall q \in \llbracket Q \rrbracket \end{aligned} \tag{MP^Q}$$

where (SP) is the subproblem $v(x)$ given by

$$v(x) := \max_{\mathbb{P}_Z \in \mathcal{P}_Z} \mathbb{E}_{\mathbb{P}_Z} \psi(x, Z) \tag{SP}$$

and π_Q are the reduced costs of fixing $x = x_q$ in (SP) .

We can initialize (MP^Q) with an initial feasible solution x_0 .

Dual values

We need the reduced costs π of x , so **$v(x)$ must be a convex, continuous** problem. This is why we separate the Benders and C&CG procedures.

C&CG

The reduced master problem is

$$\begin{aligned}
 & \inf_{\alpha, \beta} \beta + \kappa \alpha + \sum_{j=1}^L \hat{p}_j u_j \\
 \text{s.t. } & u_j \geq -\alpha, u_j \geq r_j, r_j \leq \alpha \quad \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket \\
 & \alpha \geq 0, \beta \text{ free} \tag{RMP} \\
 & a_\omega^T \hat{\xi}_i + b_\omega + \gamma_{ji\omega}^T (d - C \hat{\xi}_i) \leq s_{ji} \quad \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in V(j, i) \\
 & \|C^T \gamma_{ji\omega} - a_\omega\|_* \leq \theta \quad \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in V(j, i) \\
 & \gamma_{ji\omega} \geq 0 \quad \forall j \in \llbracket 1, J \rrbracket, \forall i \in \llbracket 1, I \rrbracket, \forall \omega \in V(j, i)
 \end{aligned}$$

where $V(j, i)$ is the set of vertices for a given scenario (z_j, ξ_i) and represent a “worst-case realization”.

Pricing

In order to populate $V(j, i)$, we need a new $\omega \in \mathcal{V}(z_j)$ from which we can derive a new constraint

$$a_\omega^T \hat{\xi}_i + b_\omega + \gamma_{ji\omega}^T (d - C \hat{\xi}_i) \leq s_{ji}. \quad (3.8)$$

$\mathcal{V}(z_j)$ is the dual feasible set of $Q(x, z_j, \xi_i)$, therefore we can simply solve the dual problem.

$$\begin{array}{ll} \min_{y \in \mathcal{Y}(x, Z, \xi)} q^T y & \max_{\lambda, \nu} \lambda^T (Tx - h) + \nu^T (S_\xi x - g_\xi) \\ \text{s.t. } Wy \leq h - Tx & \text{s.t. } W^T \lambda + V_z^T \nu + q = 0 \\ V_Z y = g_\xi - S_\xi x & \lambda \geq 0 \\ x \in \mathcal{X} & \nu \text{ free} \end{array} \Rightarrow$$

Then,

$$\mathcal{V}(z_j) := \{\omega := (\lambda, \nu) : W^T \lambda + V_z^T \nu + q = 0, \lambda \geq 0, \nu \text{ free}\} \quad (3.9)$$

Pricing

The pricing problem must be derived to “find ω that has the most violation” with respect to

$$a_\omega^T \hat{\xi}_i + b_\omega + \gamma_{ji\omega}^T (d - C \hat{\xi}_i) \leq s_{ji}. \quad (3.10)$$

By construction, the LHS of (3.10) is the objective of the dual problem for a given ω . Then, we also write

$$h(\lambda, \nu; \tilde{\xi}) := \max_{\omega \in \mathcal{V}(z_l)} a(\omega)^T \tilde{\xi} + b(\omega) + \gamma_{ji}^{*T} (d - C \tilde{\xi}) - s^*(ji) \quad (3.11)$$

given optimal dual values γ_{ji}^* and s_{ji}^* of the (RMP).

However, unless we found a new scenario $\tilde{\xi}$, $h(\lambda, \nu)$ will always return an identical ω .

But, can't you just enumerate them all??

But, can't you just enumerate them all??

No, not really.

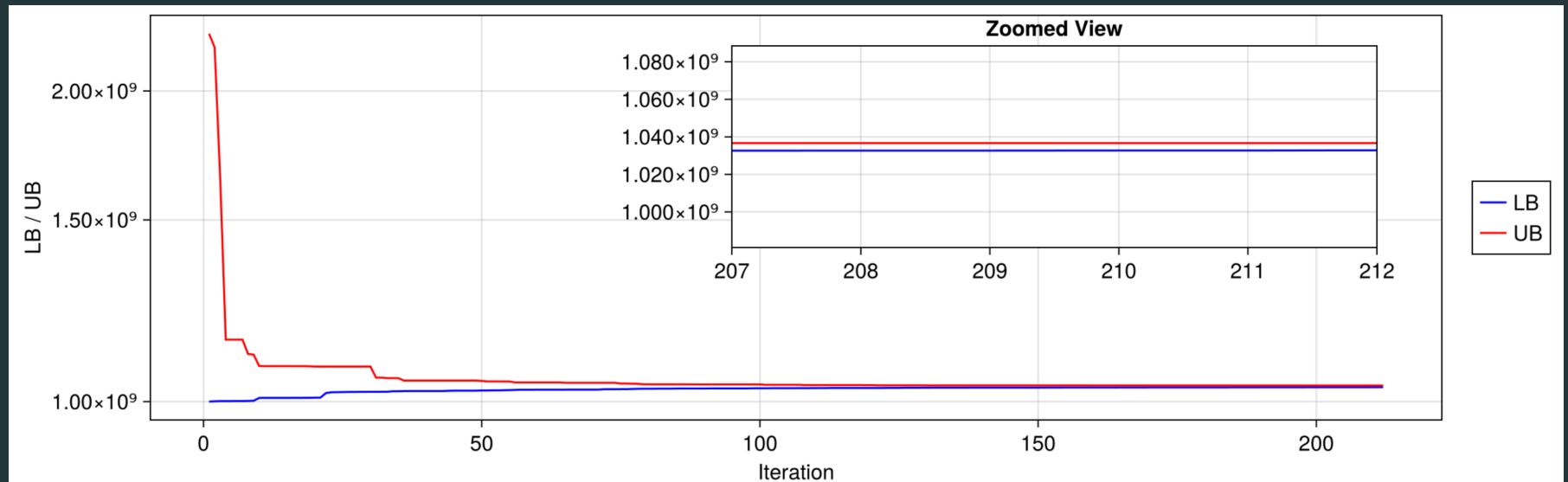


Figure 2: (Non)convergence of C&CG

3.7 C&CG pricing (WIP)

Solving the nonconvex nonlinear problem $\max_{\mathbb{P}_\xi} \mathbb{E}_{\mathbb{P}_\xi} Q(x, z, \xi)$

Given $x \in \mathcal{X}$, $z \in \mathcal{Z}$, and samples $\{\hat{\xi}_i\}_{i=1}^I$, can we directly solve $\nu(x)$?

$$\begin{aligned} & \min_{\xi_i} \sum_i^M \tau_i Q(x, z, \xi) \\ \text{s.t. } & \sum_j \Pi_{ij} = \tau_i \quad \forall j \in \llbracket 1, M \rrbracket \\ & \sum_i \Pi_{ij} = \frac{1}{I} \quad \forall i \in \llbracket 1, I \rrbracket \\ & \sum_i \tau_i = 1 \end{aligned} \tag{3.12}$$
$$\sum_{ij} \|\xi_i - \hat{\xi}_j\| \Pi_{ij} \leq \varepsilon$$
$$0 \leq \Pi_{ij} \leq 1$$
$$0 \leq \tau_i \leq 1$$
$$\xi_i \in \Xi$$

Summary

1. Unlocking the modelling power of mixed-integer models is primordial for industrial applications.
2. We approximate a discrete-continuous “2-DRO” problem leveraging existing strong duality formulations to derive a finite, convex reformulation.
3. **WIP**: We propose an nested Benders and C&CG decomposition algorithm to solve the problem. (**pricing to be refined!**)

Thank you!

Research grant by the French National Research Agency (ANR) “Robust and Scalable Prescriptive Analytics for the Resilience of Critical Infrastructure Networks”, (Fang 2022, ANR-22-CE39-0003) aiming at improving the ability to:

- take robust *ex ante* mitigation and adaptation decisions under deep uncertainty of future disruptions caused by natural extremes
- plan effective *ex post* response and recovery, with emphasis on computational efficiency and scalability

References

Ben-Tal, Aharon, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. “Robust Solutions of Optimization Problems Affected by Uncertain Probabilities”. *Management Science* 59 (2): 341–57. <https://doi.org/10.1287/mnsc.1120.1641>.

Fang, Yiping. 2022. “Stochastic Optimization and Reinforcement Learning for the Resilience of Networked Infrastructures against Climate Change.”

Geoffrion, A. M. 1972. “Generalized Benders Decomposition”. *Journal of Optimization Theory and Applications* 10 (4): 237–60. <https://doi.org/10.1007/BF00934810>.

Mohajerin Esfahani, Peyman, and Daniel Kuhn. 2018. “Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations”. *Mathematical Programming* 171 (1): 115–66. <https://doi.org/10.1007/s10107-017-1172-1>.