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1. Defender-Attacker-Defender



1.1 Problem statement

�� min
𝑥∈𝒳

𝑐𝑇 𝑥��� + �� max
ℙ𝑍∈𝒫𝑍

max
ℙ𝜉∈𝒫𝜉

𝔼ℙ𝑍
𝔼ℙ𝜉

����� min
𝑦∈𝒴(𝑥,𝑍,𝜉)

𝑞𝑇 𝑦����
Supplier

��
“Nature”

��
Operator 𝑄(𝑥, 𝑍, 𝜉)

� (1.1)

Figure 1: 2-stage DRO with continuous and discrete uncertainties, resp. 𝜉 and 𝑍

1. (Supplier) 𝑥: the defender’s investments (integer)
2. (Attacker) 𝑍: the attacker’s disruption (binary)
3. (Operator) 𝑦: the operator’s operations (continuous)

Modelling Discrete Adverse Events: stronger modelling power

Events with negative outcomes can be modelled by discrete random variables 𝑍 ,
e.g., physical failure, connectivity loss, unsafe operation, etc.

Some relevant problems: network design, facility location, network hardening,
vehicle routing

Assume relatively complete recourse

As long as “last resort” operational actions are modelled, the assumption is
verified.
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1.2 Mixed-integer ambiguity

Random variables

Let 𝑍 be a discrete random vector modelling 𝑘 failures with support

𝒵 : {𝑧 ∈ {0, 1}𝑁 : ∑ 𝑧 ≥ 𝑁 − 𝑘}. (1.2)

Let 𝜉 be a continuous random vector with polyhedral support

Ξ = {𝜉 ∈ ℝ : 𝐶𝜉 ≤ 𝑑}. (1.3)

We are given empirical distributions ℙ̂𝐽
𝑍  and ℙ̂𝐼

𝜉  of 𝑍 and 𝜉, resp. with 𝐽  and 𝐼
samples.

Ambiguity sets: 𝜙-divergence and 𝑝-Wasserstein distance

𝒫𝑍(𝜅) = {ℙ ∈ ℳ(𝒵) : 𝐼𝜙(ℙ, ℙ̂𝐼
𝑍) ≤ 𝜅} (1.4)

𝒫𝜉(𝜀) = {ℙ ∈ ℳ(Ξ) : 𝑊𝑝(ℙ, ℙ̂𝐽
𝜉 ) ≤ 𝜀} (1.5)

In our work, we choose 𝜙(𝑡) = |𝑡 − 1| (total variation) and 𝑝 = 1.
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2. Approximating the robust
recourse problem



2.1 Approximating by decomposing

The worst-case distributions ℙ∗
𝑍 , ℙ∗

𝜉 are given by the robust recourse problem

max
ℙ𝑍∈𝒫𝑍

max
ℙ𝜉∈𝒫𝜉

𝔼ℙ𝑍
𝔼ℙ𝜉

𝑄(𝑥, 𝑍, 𝜉) (2.1)

The above is difficult to solve.

Instead, we can naively approximate by taking the supremum successively

max
ℙ𝑍

max
ℙ𝜉

𝔼ℙ𝑍
𝔼ℙ𝜉

𝑄(𝑥, 𝑍, 𝜉) ≤ �� max
ℙ𝑍

𝔼ℙ𝑍
�� max

ℙ𝜉
𝔼ℙ𝜉

𝑄(𝑥, 𝑍, 𝜉)������

≤ max
ℙ𝑍

𝔼ℙ𝑍
𝜓(𝑥, 𝑍)�

𝜓(𝑥, 𝑍)

��

𝜐(𝑥)

�
(2.2)

Roughly, we consider a finite number of independent subproblems 𝜓(𝑥, 𝑍(𝜔)).
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2.2 Scenario reduction: truncated problem 𝜐(𝑥)

The number of outcomes 𝑍(𝜔), ∀𝜔 ∈ 𝒵 is finite, but combinatorial. Let Ω = |𝒵| and
𝑝𝑗 = ℙ𝑍(𝑧𝑗), 𝑗 ∈ [Ω]. Then, we write equivalently

max
ℙ𝑍

𝔼ℙ𝑍
𝜓(𝑥, 𝑧𝑗) = max

𝑝𝑗
∑
Ω

𝑗=1
𝑝𝑗𝜓(𝑥, 𝑧𝑗) (2.3)

Scenario reduction

To reduce the combinatorial complexity, we truncate the number of scenarios Ω to
be exactly 𝐽 , the number of available data points.

Assume that the dataset {𝑧𝑗}𝐽
𝑗=1

 is representative of worst-case scenarios.

Scenario reduction 𝜐(𝑥)𝐽

Consider the quantized problem

𝜈𝐽(𝑥) ≔ max
𝑝𝑗

∑
𝐽

𝑗=1
𝑝𝑗𝜓(𝑥, 𝑧𝑗) (2.4)
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2.3 Conservative Decision problem

Conservative Decision problem

Adding back the 1st stage gives us an upper bound of the original problem.

min
𝑥∈𝒳

𝑐𝑇 𝑥 + 𝜐(𝑥) = min
𝑥∈𝒳

𝑐𝑇 𝑥 + max
ℙ𝑍

𝔼ℙ𝑍
𝜓(𝑥, 𝑍) (2.5)

where 𝜓(𝑥, 𝑧) is the robust recourse problem wrt to 𝜉.

𝜓(𝑥, 𝑧) ≔ max
ℙ𝜉∈𝒫𝜉

𝔼ℙ𝜉
𝑄(𝑥, 𝑧, 𝜉) (2.6)
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3. Reformulations



3.1 Inner DRO - 𝜓(𝑥, 𝑧)

Reformulation of 𝜓(𝑥, 𝑧) (Mohajerin Esfahani and Kuhn 2018)

With dataset {𝜉𝑖}
𝐼

𝑖=1
, we can write the strong duality reformulation as follows

𝜓(𝑥, 𝑧) ≔

min
𝜃,𝑠𝑖,𝛾𝑖𝜔

𝜃𝜀 + 1
𝐼

∑
𝐼

𝑖=1
𝑠𝑖

𝑎𝑇
𝜔𝜉𝑖 + 𝑏𝜔 + 𝛾𝑇

𝑖𝜔(𝑑 − 𝐶𝜉𝑖) ≤ 𝑠𝑖 ∀𝑖 ∈ ⟦1, 𝐼⟧, ∀𝜔 ∈ 𝒱(𝑧)

‖𝐶𝑇 𝛾𝑖𝜔 − 𝑎𝜔‖
∗

≤ 𝜃 ∀𝑖 ∈ ⟦1, 𝐼⟧, ∀𝜔 ∈ 𝒱(𝑧)

𝛾𝑖𝜔 ≥ 0 ∀𝑖 ∈ ⟦1, 𝐼⟧, ∀𝜔 ∈ 𝒱(𝑧)

(3.1)

where 𝒱(𝑧) is the set of all extreme points of the dual feasible space of 𝑄(𝑥, 𝑧, 𝜉),
(𝑎𝜔, 𝑏𝜔) are the coefficients of the linear function 𝑄(𝑥, 𝑧, 𝜉) : 𝜉 ↦ 𝑎𝑇

𝜔𝜉 + 𝑏𝜔 for
the vertex 𝜔.
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3.2 Outer DRO - 𝜐(𝑥)

Formulation of 𝜐(𝑥) (Ben-Tal et al. 2013)

The Lagrange dual function of 𝜐(𝑥) is given by

𝑔(𝛼, 𝛽) ≔ 𝛽 + 𝜅𝛼 + 𝛼 ∑
𝐽

𝑗=1
𝑝𝑗𝜙∗(𝜓(𝑥, 𝑧) − 𝛽

𝛼
), 𝛼 ≥ 0 (3.2)

Given the variation distance 𝜙(𝑡) = |𝑡 − 1|, the Lagrange dual problem of 𝜐(𝑥) is

𝜐(𝑥) ≔ inf
𝛼,𝛽

𝛽 + 𝜅𝛼 + ∑
𝐿

𝑗=1
𝑝𝑗𝑢𝑗

s.t. 𝑢𝑗 ≥ −𝛼 ∀𝑗 ∈ ⟦1, 𝐽⟧

𝑢𝑗 ≥ 𝜓(𝑥, 𝑧𝑗) − 𝛽 ∀𝑗 ∈ ⟦1, 𝐽⟧

𝜓(𝑥, 𝑧𝑗) − 𝛽 ≤ 𝛼 ∀𝑗 ∈ ⟦1, 𝐽⟧

𝛼 ≥ 0, 𝛽 free

(3.3)
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3.3 Full problem

Robust recourse problem

Developping 𝜐(𝑥) with the dual formulation of 𝜓(𝑥, 𝑧𝑗), ∀𝑗 ∈ ⟦1, 𝐽⟧, we have

𝜐(𝑥) ≔ inf
𝛼,𝛽

𝛽 + 𝜅𝛼 + ∑
𝐿

𝑗=1
𝑝𝑗𝑢𝑗

s.t. 𝑢𝑗 ≥ −𝛼 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧

𝑢𝑗 ≥ 𝑟𝑗 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧

𝑟𝑗 ≤ 𝛼 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧

𝛼 ≥ 0, 𝛽 free

𝑟𝑗 ≔ 𝜃𝑗𝜀 + 1
𝐼

∑
𝐼

𝑖=1
𝑠𝑗𝑖 − 𝛽

𝑎𝑇
𝜔𝜉𝑖 + 𝑏𝜔 + ��𝛾𝑗𝑖𝜔 ���𝑇 (𝑑 − 𝐶𝜉𝑖) ≤ 𝑠𝑗𝑖 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧, ��∀𝜔 ∈ 𝒱(𝑧)���

‖𝐶𝑇 ��𝛾𝑗𝑖𝜔 ��� − 𝑎𝜔‖
∗

≤ 𝜃 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧, ��∀𝜔 ∈ 𝒱(𝑧)���

��𝛾𝑗𝑖𝜔 ��� ≥ 0 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧, ��∀𝜔 ∈ 𝒱(𝑧)����

finite but combinatorial

��
one variable for each 𝜔

�

(3.4)

12 / 18



3.5 Some remarks on the decomposition

Decompose with respect to ... what?

Benders:
• 𝑄(𝑥, 𝑧, 𝜉) is a LP given 𝑥 ∈ 𝒳, otherwise it is bilinear. Then:

1. Start with 𝑥 ≔ 𝑥0
2. Solve for a feasible solution 𝑥̃
3. Solve 𝜐(𝑥̃)
4. Create an optimality cut

C&CG:
• Given 𝑥 ∈ 𝒳, 𝑧 ∈ 𝒵, 𝜓(𝑥, 𝑧) is combinatorial in the due to enumerating all the

BFS of 𝑄(𝑥, 𝑧, 𝜉). For every 𝜓(𝑥, 𝑧𝑗, 𝜉𝑖):
1. Start with one vertex in a set 𝑉 (𝑙, 𝑖) ≔ {𝜔0 ∈ 𝒱(𝑧)}
2. Solve the current problem and get feasible solutions
3. Find “the best” new vertex 𝜔𝑘 and add it to 𝑉 (𝑙, 𝑖) = 𝑉 (𝑙, 𝑖) ∪ {𝑤𝑘}
4. Add the new variables and constraints associated with 𝜔𝑘
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3.5 Some remarks on the decomposition

(Generalized) Benders decomposition (Geoffrion 1972)

The master problem (MP𝑄) with 𝑄 cuts is defined by

min
𝑥∈𝒳

𝑐𝑇 𝑥 + 𝜈

s.t. 𝜈 ≥ SP(𝑥0)

𝜈 ≥ 𝜋𝑇
𝑞 (𝑥 − 𝑥𝑞) + SP(𝑥𝑞) ∀𝑞 ∈ ⟦𝑄⟧

(MP𝑄)

where (SP) is the subproblem 𝜐(𝑥) given by

𝜐(𝑥) ≔ max
ℙ𝑍∈𝒫𝑍

𝔼ℙ𝑍
𝜓(𝑥, 𝑍) (SP)

and 𝜋𝑄 are the reduced costs of fixing 𝑥 = 𝑥𝑞 in (SP).

We can initialize (MP𝑄) with an initial feasible solution 𝑥0.

Dual values

We need the reduced costs 𝜋 of 𝑥, so 𝜐(𝑥) must be a convex, continuous
problem. This is why we separate the Benders and C&CG procedures.
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3.6 Column & Constraint Generation

C&CG

The reduced master problem is

inf
𝛼,𝛽

𝛽 + 𝜅𝛼 + ∑
𝐿

𝑗=1
𝑝𝑗𝑢𝑗

s.t. 𝑢𝑗 ≥ −𝛼, 𝑢𝑗 ≥ 𝑟𝑗, 𝑟𝑗 ≤ 𝛼 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧

𝛼 ≥ 0, 𝛽 free

𝑎𝑇
𝜔𝜉𝑖 + 𝑏𝜔 + 𝛾𝑇

𝑗𝑖𝜔(𝑑 − 𝐶𝜉𝑖) ≤ 𝑠𝑗𝑖 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧, ∀𝜔 ∈ 𝑉 (𝑗, 𝑖)

‖𝐶𝑇 𝛾𝑗𝑖𝜔 − 𝑎𝜔‖
∗

≤ 𝜃 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧, ∀𝜔 ∈ 𝑉 (𝑗, 𝑖)

𝛾𝑗𝑖𝜔 ≥ 0 ∀𝑗 ∈ ⟦1, 𝐽⟧, ∀𝑖 ∈ ⟦1, 𝐼⟧, ∀𝜔 ∈ 𝑉 (𝑗, 𝑖)

(RMP)

where 𝑉 (𝑗, 𝑖) is the set of vertices for a given scenario (𝑧𝑗, 𝜉𝑖) and represent a
“worst-case realization”.
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3.7 C&CG pricing (WIP)

Pricing

In order to populate 𝑉 (𝑗, 𝑖), we need a new 𝜔 ∈ 𝒱(𝑧𝑗) from which we can derive
a new constraint

𝑎𝑇
𝜔𝜉𝑖 + 𝑏𝜔 + 𝛾𝑇

𝑗𝑖𝜔(𝑑 − 𝐶𝜉𝑖) ≤ 𝑠𝑗𝑖. (3.8)

𝒱(𝑧𝑗) is the dual feasible set of 𝑄(𝑥, 𝑧𝑗, 𝜉𝑖), therefore we can simply solve the
dual problem.
min𝑦∈𝒴(𝑥,𝑍,𝜉) 𝑞𝑇 𝑦

s.t. 𝑊𝑦 ≤ ℎ − 𝑇𝑥
𝑉𝑍𝑦 = 𝑔𝜉 − 𝑆𝜉𝑥

𝑥 ∈ 𝒳

⇒

max𝜆,𝜈 𝜆𝑇 (𝑇𝑥 − ℎ) + 𝜈𝑇 (𝑆𝜉𝑥 − 𝑔𝜉)

s.t. 𝑊𝑇 𝜆 + 𝑉 𝑇
𝑧 𝜈 + 𝑞 = 0

𝜆 ≥ 0
𝜈 free

Then,

𝒱(𝑧𝑗) ≔ {𝜔 ≔ (𝜆, 𝜈) : 𝑊𝑇 𝜆 + 𝑉 𝑇
𝑧 𝜈 + 𝑞 = 0, 𝜆 ≥ 0, 𝜈 free} (3.9)
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3.7 C&CG pricing (WIP)

Pricing

The pricing problem must be derived to “find 𝜔 that has the most violation” with
respect to

𝑎𝑇
𝜔𝜉𝑖 + 𝑏𝜔 + 𝛾𝑇

𝑗𝑖𝜔(𝑑 − 𝐶𝜉𝑖) ≤ 𝑠𝑗𝑖. (3.10)

By construction, the LHS of (3.10) is the objective of the dual problem for a given
𝜔. Then, we also write

ℎ(𝜆, 𝜈; 𝜉) ≔ max
𝜔∈𝒱(𝑧𝑙)

𝑎(𝜔)𝑇 𝜉 + 𝑏(𝜔) + 𝛾∗𝑇
𝑗𝑖 (𝑑 − 𝐶𝜉) − 𝑠∗(𝑗𝑖) (3.11)

given optimal dual values 𝛾∗
𝑗𝑖 and 𝑠∗

𝑗𝑖 of the (RMP).

However, unless we found a new scenario ̃𝜉, ℎ(𝜆, 𝜈) will always return an
identical 𝜔.
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But, can’t you just enumerate them all??



But, can’t you just enumerate them all??

No, not really.

Figure 2: (Non)convergence of C&CG



3.7 C&CG pricing (WIP)

Solving the nonconvex nonlinear problem maxℙ𝜉
𝔼ℙ𝜉

𝑄(𝑥, 𝑧, 𝜉)

Given 𝑥 ∈ 𝒳, 𝑧 ∈ 𝒵, and samples {𝜉𝑖}
𝐼

𝑖=1
, can we directly solve 𝜈(𝑥)?

min
𝜉𝑖

∑
𝑀

𝑖
𝜏𝑖𝑄(𝑥, 𝑧, 𝜉)

s.t.∑
𝑗

Π𝑖𝑗 = 𝜏𝑖 ∀𝑗 ∈ ⟦1, 𝑀⟧

∑
𝑖

Π𝑖𝑗 = 1
𝐼

∀𝑖 ∈ ⟦1, 𝐼⟧

∑
𝑖

𝜏𝑖 = 1

∑
𝑖𝑗

‖𝜉𝑖 − 𝜉𝑗‖Π𝑖𝑗 ≤ 𝜀

0 ≤ Π𝑖𝑗 ≤ 1
0 ≤ 𝜏𝑖 ≤ 1
𝜉𝑖 ∈ Ξ

(3.12)
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Summary

1. Unlocking the modelling power of mixed-
integer models is primordial for industrial
applications.

2. We approximate a discrete-continuous “2-
DRO” problem leveraging existing strong
duality formulations to derive a finite, convex
reformulation.

3. WIP: We propose an nested Benders and
C&CG decomposition algorithm to solve the
problem. (pricing to be refined!)



Thank you!
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