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Motivation: The Core Problem

Stochastic Programming (SP)

The fundamental problem is to minimize an
expected value:

min Bep[F(x, €)]

In practice, the true distribution P is unknown and
replaced by an empirical distribution [P, from data
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The fundamental problem is to minimize an
expected value:

min Bep[F(x, €)]

In practice, the true distribution P is unknown and
replaced by an empirical distribution [P, from data

{&,....&}
The Risk-Neutrality Gap

» Minimizing expectation is a risk-neutral
stance.

» |t is insensitive to the dispersion of outcomes.

» An optimal solution in expectation might
exhibit high performance variability and poor
behavior in extreme events.

Common mean

PDF of F(x4,¢)

PDF of F(zp,§)

F(x,£)

Figure: Same mean, different risk profiles.
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Motivation: Two Notions of Robustness

1. Distributional Robustness 2. Robustness Against Extreme Outcomes
» Goal: Decisions that perform consistently well > Goal: Mitigate the severity of worst-case
on average when evaluated out-of-sample. realizations of the cost F(X%,€).
> Metric: Low dispersion of out-of-sample » Metric: Low out-of-sample tail risk, e.g., low
expected performance E¢p[F(X,£)]. CVaRa (F(%,€)).

High Dispersion

s . .
Low Dispersion Robust Solution
H . Cost PDF
i !
i ° Non-Robust Solution
i Cost PDF
H
. High Tail Risk
L]
Non-Robust Method Robust Method Cost F(,§)

Achieving one type of robustness does not necessarily imply the other.
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Motivation: The WDRO Approach
WDRO Formulation

WDRO hedges against misspecification by optimizing for the worst case within a Wasserstein ball
D = B.(P,) of radius e:

min  sup Eeog[F(x,&)]
X€X QeB. (Bn)
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D = B.(P,) of radius e:

min  sup Eeog[F(x,&)]
X€X QeB. (Bn)

The Bridge to Regularization: An Asymptotic View (Kuhn et al. 2024; Gao et al. 2022)

Under technical conditions (mainly smoothness of F(x, -) and some integrability assumptions),
for a small radius ¢, the WDRO objective can be approximated by:

o )E@[F(x,é)l =E; [F(x,6)] +¢ - (Ep, [IVeF(x I Y + o(e)

The exponent g in the gradient norm is the Holder conjugate of the Wasserstein order p.

Implication: The choice of p dictates the penalty.
» 1-WDRO (p =1 = g = c0): Penalizes the maximum gradient norm over the sample (a
robust, worst-case penalty).
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The exponent g in the gradient norm is the Holder conjugate of the Wasserstein order p.

Implication: The choice of p dictates the penalty.
» 1-WDRO (p =1 = g = c0): Penalizes the maximum gradient norm over the sample (a
robust, worst-case penalty).
> 2-WDRO (p =2 = q = 2): Penalizes the root-mean-square of gradient norms (an

average-type penalty).
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Motivation: The Choice of p Matters
A Motivating Example
We construct a problem to specifically compare 1-WDRO and 2-WDRO.

» Question: Does the choice of the Wasserstein order p affect robustness against extreme
outcomes?

» Finding: Yes. The choice of p can lead to markedly different tail risk behaviors, even when the
average performance is similar.

. x = 0.500 z = 0.592 z = 0.657 z = 1.236 r =1.289 z =1.394 x = 1.500
2

18 - \ (

1.6

14 \ /

12 \\\\_j///

Figure: First, we design a cost function F(x,&) whose shape transitions as the decision x varies, allowing
different methods to find solutions with distinct risk profiles.
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Figure: (b) Out-of-sample boxplot

[ e

¢
Figure: (a) Out-of-sample scatter plot

Figure: For a single sample, both methods yield similar average costs. However, the boxplot reveals that the
2-WDRO solution allows for significantly larger extreme outcomes.
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Figure: (a) Out-of-sample Expected Value Figure: (b) Out-of-sample (CVaR - Mean)

Figure: This is not an isolated finding. Simulating over 150 samples confirms that, for this problem, 2-WDRO
consistently leads to solutions with a higher tail risk premium.
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Our Approach: From Sample Points to Adverse Scenarios

Where WDRO's Regularization Focuses

> As we saw, WDRO implicitly regularizes by
penalizing the cost function’s sensitivity (the
gradient norm ||[V¢F||) at the sample points

&i.

» A critical observation: The most impactful,
high-cost events are often triggered by
adverse scenarios which may be
underrepresented or absent in a finite sample.
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Where WDRO's Regularization Focuses

> As we saw, WDRO implicitly regularizes by
penalizing the cost function’s sensitivity (the
gradient norm ||[V¢F||) at the sample points

&i.

» A critical observation: The most impactful,
high-cost events are often triggered by
adverse scenarios which may be

underrepresented or absent in a finite sample.

Our Core Idea

Let's design a regularizer that explicitly targets
robustness where it matters most: at a pre-defined
set of known or anticipated adverse scenarios.

Standard WDRO Our Proposal (ASR-SAA)
° °
o %o e %
o < o ¢
o © ° e ©
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Figure: Shifting the regularization’s focus.
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Our Approach: The ASR-SAA Framework
Adverse Scenario Regularized SAA (ASR-SAA)

We propose to solve the following regularized optimization problem:

1w ~
in =S F(x,& R
min n; (x,&) +  =R(x)

Adverse Regularization

Empirical Performance

The parameter € > 0 controls the trade-off between average performance and robustness.
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Our Approach: The ASR-SAA Framework
Adverse Scenario Regularized SAA (ASR-SAA)

We propose to solve the following regularized optimization problem:

1w ~
in — > F(x& R
min - Flx&) +  eR(x)
=1 Adverse Regularization

Empirical Performance

The parameter € > 0 controls the trade-off between average performance and robustness.

The Adverse Regularizer R(x)
The regularizer directly penalizes the cost function's sensitivity at adverse points:

> (j € Za4v: An adverse scenario (e.g., from historical crises, expert knowledge).

m

R(x)=> 1

Jj=1

VeF(x,¢)

> r;: A weight representing the relative importance of scenario ;.

> ||VeF(x,¢)||: Measures how sensitive the cost is to small perturbations around that adverse
scenario. A smaller norm implies a "flatter”, more robust response.
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Theory: A Bridge to Decision-Dependent DRO

A General Theoretical Connection

A key insight of our work is that this approach is not an ad-hoc heuristic. The theoretical results

apply to a broad class of regularized SAA problems, with our ASR-SAA being a practical
instance.
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Theory: A Bridge to Decision-Dependent DRO

A General Theoretical Connection

A key insight of our work is that this approach is not an ad-hoc heuristic. The theoretical results

apply to a broad class of regularized SAA problems, with our ASR-SAA being a practical
instance.

Theorem (Equivalence to Decision-Dependent WDRO)
Under mild technical conditions, any regularized problem of the form

min (Es, [F(x, )] + eR(x))
is equivalent to a novel decision-dependent WDRO problem:

min sup Ec~ols]
XX QEB_ p (Flx.)4F0)

Here, the ambiguity set is defined on the space of outcomes, and its center and radius both change
with the decision x.
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Theory: Reliability Guarantees

Main Assumptions (Informal)
Our theoretical guarantees hold under standard assumptions in the field:
» Lipschitz Continuity: The cost function F(x,-) is Lipschitz continuous.

> Regularizer Control: There exists a > 0 such that R(x) + « upper bounds the Lipschitz constant
of F(x,-) for all x € X.

» Light Tails: The true distribution IP has sufficiently light tails (e.g., finite exponential moments).
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Main Assumptions (Informal)
Our theoretical guarantees hold under standard assumptions in the field:
» Lipschitz Continuity: The cost function F(x,-) is Lipschitz continuous.
> Regularizer Control: There exists a > 0 such that R(x) + « upper bounds the Lipschitz constant
of F(x,-) for all x € X.
» Light Tails: The true distribution IP has sufficiently light tails (e.g., finite exponential moments).

Finite-Sample Guarantee Asymptotic Consistency
For any confidence level 1 — 3, we define a radius’ As the sample size n — oo (and thus £, — 0):
5"(5) that ve.ar)ishes as n increases. » Value Convergence: The optimal value of our
With probability at_least 1 —p, the true problem converges to the true optimal value.
out-of-sample cost is bounded: . . o
> Solution Convergence: The solutions {&,}
E[F (&, €)] < I+ en(B)a converge to true optimal solutions.
Implication: Our method is statistically sound and
reliable.

?The rate of convergence for (/3) is derived from the celebrated bounds on the
empirical measure’s Wasserstein distance by Fournier & Guillin (2015).
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Application: Mean-CVaR Portfolio Optimization

Problem: The Mean-CVaR Portfolio

A cornerstone of modern risk management. Find a portfolio weight vector w to solve:
. T T
min  E¢-w & +p-CVaRa(—w &)
wew N—— N———
Minimize Expected Loss Control Tail Risk

This can be cast into our general framework min E[F(x,£)] where x = (w, 7) and & are the asset
returns.
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» The cost function F(w, T, &) becomes:

1
F(w, 7€) = —wT£+p<T+;(— WT5—7)+)

» We can compute its subgradient V¢F(w, 7, &) to build our
regularizer R(w, 7).

» Adverse scenarios (; are naturally defined, e.g., vectors of
asset returns during historical market crashes.
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min  E¢-w & +p-CVaRa(—w &)
wew N—— N———
Minimize Expected Loss Control Tail Risk

This can be cast into our general framework min E[F(x,£)] where x = (w, 7) and & are the asset
returns.

Applying the ASR-SAA Framework : -
Computational Tractability

» The cost function F(w, T, &) becomes:
Our ASR-SAA problem for

F(w,T,&) = —w'E+p (T + 1(— wie— T) ) this application can be re-

@ + formulated and solved effi-
ciently as a Mixed-Integer
Second-Order Cone Pro-
gram (MISOCP).

» We can compute its subgradient V¢F(w, 7, &) to build our
regularizer R(w, 7).

» Adverse scenarios (; are naturally defined, e.g., vectors of
asset returns during historical market crashes.
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Numerical Study: Case Study 1 - Setup

Objective
To test the performance of ASR-SAA when relevant historical crisis data is available to inform the choice
of adverse scenarios.

Experimental Design

» Asset Universe: A portfolio of 23 top S&P 500
companies by market capitalization as of 2022.
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Figure: S&P 500 daily returns in 2020, showing
thresholds for adverse scenario selection.
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Numerical Study: Case Study 1 - Results

Performance-Robustness Trade-off

0.7 F —e—-2% ASR-SAA
—o—-3.5% ASR-SAA
—o—-5% ASR-SAA
0.6 —o—1-WDRO
—e—2-WDRO

0.65 [

055 ,!

Out-of-sample Average Objective Value

05 1 15 2 25 3
Out-of-sample Objective Tail Risk (CVaR - Mean)

Figure: Out-of-sample performance-risk trade-off. Lower on the y-axis (Expected Cost) is better. Left on the
x-axis (Cost Risk Premium) is better.
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Figure: Out-of-sample performance-risk trade-off. Lower on the y-axis (Expected Cost) is better. Left on the
x-axis (Cost Risk Premium) is better.

Key Finding
When informed by relevant crisis data, the -2% ASR-SAA variant achieves a superior trade-off
frontier, outperforming all benchmarks, including 2-WDRO.

13/18



Numerical Study: Case Study 2 - A Critical Test
Objective

To investigate the method's sensitivity to the quality of adverse scenarios. What happens if the scenarios
are not representative of the future crisis?

Experimental Design

» Asset Universe: A portfolio of 23 major com-
panies reflecting the market composition at the
start of 2008.
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Figure: S&P 500 daily returns in 2006. Note the much

The Challenge lower volatility compared to 2020.
The “adverse” days from 2006 are mild and not re-

flective of the extreme events of 2008. This is a

deliberate stress test of our framework's main as-

sumption.
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Numerical Study: Case Study 2 - Results & Lesson Learned

Out-of-sample Average Objective Value
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Figure: Out-of-sample performance during the 2008 crisis.
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Performance-Robustness Trade-off
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Figure: Out-of-sample performance during the 2008 crisis.

Key Finding & Lesson Learned

In this case, 2-WDRO provides the best performance.
This highlights a crucial feature of our ASR-SAA framework: its effectiveness is contingent on the
availability of relevant adverse scenarios.
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Numerical Study: Synthesis of Findings

Case 1: Relevant Scenarios (2020-2022)

ASR-SAA > 2-WDRO

When provided with relevant crisis data, ASR-SAA
can achieve a better risk-return profile than
benchmark WDRO.
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Numerical Study: Synthesis of Findings

Case 1: Relevant Scenarios (2020-2022) Case 2: Unrepresentative Scenarios

ASR-SAA > 2-WDRO (2006-2008)
2-WDRO > ASR-SAA

When provided with relevant crisis data, ASR-SAA
can achieve a better risk-return profile than If scenarios are not "adverse enough,” data-driven
benchmark WDRO. methods like 2-WDRO can be more robust.

Overall Implication

ASR-SAA is not a universal replacement for WDRO, but a tractable tool for decision-makers
to directly incorporate expert knowledge or historical stress-event data into the optimization
process. Even with weak scenarios, it still improved upon SAA and 1-WDRO.
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Conclusions

Summary of Contributions

1.

We proposed ASR-SAA, a regularized framework that directly targets robustness against
pre-defined adverse scenarios, bridging a gap in standard WDRO.

. We established a novel theoretical connection, showing that a general class of regularized SAA

methods are equivalent to a decision-dependent WDRO problem.

We provided rigorous finite-sample guarantees and proofs of asymptotic consistency, ensuring

the statistical reliability of the framework.

Through numerical experiments, we demonstrated that ASR-SAA can offer a practical advantage
over state-of-the-art methods when relevant adverse information is available, providing a valuable

tool for risk-aware decision-making.
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Thank You

Questions?

Diego Fonseca
diegofonseca@eafit.edu.co
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