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Motivation: The Core Problem

Stochastic Programming (SP)

The fundamental problem is to minimize an
expected value:

min
x∈X

Eξ∼P[F (x , ξ)]

In practice, the true distribution P is unknown and
replaced by an empirical distribution P̂n from data
{ξ̂1, . . . , ξ̂n}.

The Risk-Neutrality Gap

▶ Minimizing expectation is a risk-neutral
stance.

▶ It is insensitive to the dispersion of outcomes.

▶ An optimal solution in expectation might
exhibit high performance variability and poor
behavior in extreme events.

F (x; 9)

Common mean

PDF of F (xA; 9)

PDF of F (xB ; 9)

Figure: Same mean, different risk profiles.
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Motivation: Two Notions of Robustness

1. Distributional Robustness

▶ Goal: Decisions that perform consistently well
on average when evaluated out-of-sample.

▶ Metric: Low dispersion of out-of-sample
expected performance Eξ∼P[F (x̂ , ξ)].

Non-Robust Method Robust Method

High Dispersion

Low Dispersion

2. Robustness Against Extreme Outcomes

▶ Goal: Mitigate the severity of worst-case
realizations of the cost F (x̂ , ξ).

▶ Metric: Low out-of-sample tail risk, e.g., low
CVaRα(F (x̂ , ξ)).

Cost F (x̂; 9)

Robust Solution
Cost PDF

Non-Robust Solution
Cost PDF

High Tail Risk

Achieving one type of robustness does not necessarily imply the other.
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Motivation: The WDRO Approach

WDRO Formulation
WDRO hedges against misspecification by optimizing for the worst case within a Wasserstein ball
D = Bε(P̂n) of radius ε:

min
x∈X

sup
Q∈Bε(P̂n)

Eξ∼Q[F (x , ξ)]

The Bridge to Regularization: An Asymptotic View (Kuhn et al. 2024; Gao et al. 2022)

Under technical conditions (mainly smoothness of F (x , ·) and some integrability assumptions),
for a small radius ε, the WDRO objective can be approximated by:

sup
Q∈Bε(P̂n)

EQ[F (x , ξ)] = EP̂n [F (x , ξ)] + ε ·
(
EP̂n [∥∇ξF (x , ξ)∥q∗]

)1/q
+ o(ε)

The exponent q in the gradient norm is the Hölder conjugate of the Wasserstein order p.

Implication: The choice of p dictates the penalty.

▶ 1-WDRO (p = 1 =⇒ q = ∞): Penalizes the maximum gradient norm over the sample (a
robust, worst-case penalty).

▶ 2-WDRO (p = 2 =⇒ q = 2): Penalizes the root-mean-square of gradient norms (an
average-type penalty).
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Motivation: The Choice of p Matters
A Motivating Example

We construct a problem to specifically compare 1-WDRO and 2-WDRO.

▶ Question: Does the choice of the Wasserstein order p affect robustness against extreme
outcomes?

▶ Finding: Yes. The choice of p can lead to markedly different tail risk behaviors, even when the
average performance is similar.
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Figure: First, we design a cost function F (x , ξ) whose shape transitions as the decision x varies, allowing
different methods to find solutions with distinct risk profiles.
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Figure: (a) Out-of-sample scatter plot
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Figure: (b) Out-of-sample boxplot

Figure: For a single sample, both methods yield similar average costs. However, the boxplot reveals that the
2-WDRO solution allows for significantly larger extreme outcomes.
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Figure: (a) Out-of-sample Expected Value
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Figure: (b) Out-of-sample (CVaR - Mean)

Figure: This is not an isolated finding. Simulating over 150 samples confirms that, for this problem, 2-WDRO
consistently leads to solutions with a higher tail risk premium.
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Our Approach: From Sample Points to Adverse Scenarios

Where WDRO’s Regularization Focuses

▶ As we saw, WDRO implicitly regularizes by
penalizing the cost function’s sensitivity (the
gradient norm ∥∇ξF∥) at the sample points
ξ̂i .

▶ A critical observation: The most impactful,
high-cost events are often triggered by
adverse scenarios which may be
underrepresented or absent in a finite sample.

Our Core Idea
Let’s design a regularizer that explicitly targets
robustness where it matters most: at a pre-defined
set of known or anticipated adverse scenarios.

Standard WDRO Our Proposal (ASR-SAA)

Figure: Shifting the regularization’s focus.
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Our Approach: The ASR-SAA Framework

Adverse Scenario Regularized SAA (ASR-SAA)

We propose to solve the following regularized optimization problem:

min
x∈X

1

n

n∑
i=1

F (x , ξ̂i )︸ ︷︷ ︸
Empirical Performance

+ εR(x)︸ ︷︷ ︸
Adverse Regularization

The parameter ε ≥ 0 controls the trade-off between average performance and robustness.

The Adverse Regularizer R(x)

The regularizer directly penalizes the cost function’s sensitivity at adverse points:

R(x) =
m∑
j=1

rj
∥∥∥∇ξF (x , ζj)

∥∥∥
➢ ζj ∈ Ξadv: An adverse scenario (e.g., from historical crises, expert knowledge).

➢ rj : A weight representing the relative importance of scenario ζj .

➢ ∥∇ξF (x , ζj)∥: Measures how sensitive the cost is to small perturbations around that adverse
scenario. A smaller norm implies a ”flatter”, more robust response.
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Theory: A Bridge to Decision-Dependent DRO

A General Theoretical Connection

A key insight of our work is that this approach is not an ad-hoc heuristic. The theoretical results
apply to a broad class of regularized SAA problems, with our ASR-SAA being a practical
instance.

Theorem (Equivalence to Decision-Dependent WDRO)

Under mild technical conditions, any regularized problem of the form

min
x∈X

(
EP̂n [F (x , ξ)] + εR(x)

)
is equivalent to a novel decision-dependent WDRO problem:

min
x∈X

sup
Q∈BεR(x)(F (x,·)#P̂n)

Eς∼Q[ς]

Here, the ambiguity set is defined on the space of outcomes, and its center and radius both change
with the decision x.
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Theory: Reliability Guarantees

Main Assumptions (Informal)

Our theoretical guarantees hold under standard assumptions in the field:

▶ Lipschitz Continuity: The cost function F (x , ·) is Lipschitz continuous.

▶ Regularizer Control: There exists α ≥ 0 such that R(x) + α upper bounds the Lipschitz constant
of F (x , ·) for all x ∈ X .

▶ Light Tails: The true distribution P has sufficiently light tails (e.g., finite exponential moments).

Finite-Sample Guarantee

For any confidence level 1− β, we define a radiusa

εn(β) that vanishes as n increases.
With probability at least 1− β, the true
out-of-sample cost is bounded:

EP[F (x̂n, ξ)] ≤ Ĵn + εn(β)α

a
The rate of convergence for εn(β) is derived from the celebrated bounds on the

empirical measure’s Wasserstein distance by Fournier & Guillin (2015).

Asymptotic Consistency

As the sample size n → ∞ (and thus εn → 0):

▶ Value Convergence: The optimal value of our
problem converges to the true optimal value.

▶ Solution Convergence: The solutions {x̂n}
converge to true optimal solutions.

Implication: Our method is statistically sound and
reliable.
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a
The rate of convergence for εn(β) is derived from the celebrated bounds on the

empirical measure’s Wasserstein distance by Fournier & Guillin (2015).

Asymptotic Consistency

As the sample size n → ∞ (and thus εn → 0):

▶ Value Convergence: The optimal value of our
problem converges to the true optimal value.

▶ Solution Convergence: The solutions {x̂n}
converge to true optimal solutions.

Implication: Our method is statistically sound and
reliable.

10/18



Application: Mean-CVaR Portfolio Optimization

Problem: The Mean-CVaR Portfolio
A cornerstone of modern risk management. Find a portfolio weight vector w to solve:

min
w∈W

Eξ[−w⊤ξ]︸ ︷︷ ︸
Minimize Expected Loss

+ρ · CVaRα(−w⊤ξ)︸ ︷︷ ︸
Control Tail Risk

This can be cast into our general framework minE[F (x , ξ)] where x = (w , τ) and ξ are the asset
returns.

Applying the ASR-SAA Framework

▶ The cost function F (w , τ, ξ) becomes:

F (w , τ, ξ) = −w⊤ξ + ρ

(
τ +

1

α

(
− w⊤ξ − τ

)
+

)
▶ We can compute its subgradient ∇ξF (w , τ, ξ) to build our

regularizer R(w , τ).

▶ Adverse scenarios ζj are naturally defined, e.g., vectors of
asset returns during historical market crashes.

Computational Tractability

Our ASR-SAA problem for
this application can be re-
formulated and solved effi-
ciently as a Mixed-Integer
Second-Order Cone Pro-
gram (MISOCP).
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Numerical Study: Case Study 1 - Setup

Objective

To test the performance of ASR-SAA when relevant historical crisis data is available to inform the choice
of adverse scenarios.

Experimental Design

▶ Asset Universe: A portfolio of 23 top S&P 500
companies by market capitalization as of 2022.

▶ Adverse Scenarios: Daily returns from 2020
(COVID-19 crisis).

▶ Training Data: Daily returns from 2021 (market
recovery).

▶ Out-of-Sample Test: Daily returns from 2022
(geopolitical/economic stress).

Methodology

▶ We define adverse scenarios as the asset returns on
days where the S&P 500 index dropped by more than
a certain threshold (e.g., -2%, -3.5%, -5%).

▶ We compare our ASR-SAA variants against SAA, 1-
WDRO, and 2-WDRO.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2020   

-0.15

-0.1

-0.05

0

0.05

0.1

Figure: S&P 500 daily returns in 2020, showing
thresholds for adverse scenario selection.
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Numerical Study: Case Study 1 - Results
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Figure: Out-of-sample performance-risk trade-off. Lower on the y-axis (Expected Cost) is better. Left on the
x-axis (Cost Risk Premium) is better.

Key Finding

When informed by relevant crisis data, the -2% ASR-SAA variant achieves a superior trade-off
frontier, outperforming all benchmarks, including 2-WDRO.
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Numerical Study: Case Study 2 - A Critical Test
Objective

To investigate the method’s sensitivity to the quality of adverse scenarios. What happens if the scenarios
are not representative of the future crisis?

Experimental Design

▶ Asset Universe: A portfolio of 23 major com-
panies reflecting the market composition at the
start of 2008.

▶ Adverse Scenarios: Daily returns from 2006
(a stable, pre-crisis period).

▶ Training Data: Daily returns from 2007 (pre-
crisis).

▶ Out-of-Sample Test: Daily returns from 2008
(Global Financial Crisis).

The Challenge

The “adverse” days from 2006 are mild and not re-
flective of the extreme events of 2008. This is a
deliberate stress test of our framework’s main as-
sumption.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2006   

-0.15

-0.1

-0.05

0

0.05

0.1

Figure: S&P 500 daily returns in 2006. Note the much
lower volatility compared to 2020.
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▶ Training Data: Daily returns from 2007 (pre-
crisis).

▶ Out-of-Sample Test: Daily returns from 2008
(Global Financial Crisis).

The Challenge

The “adverse” days from 2006 are mild and not re-
flective of the extreme events of 2008. This is a
deliberate stress test of our framework’s main as-
sumption.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2006   
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-0.1
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0
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Figure: S&P 500 daily returns in 2006. Note the much
lower volatility compared to 2020.
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Numerical Study: Case Study 2 - Results & Lesson Learned
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Figure: Out-of-sample performance during the 2008 crisis.

Key Finding & Lesson Learned

In this case, 2-WDRO provides the best performance.
This highlights a crucial feature of our ASR-SAA framework: its effectiveness is contingent on the

availability of relevant adverse scenarios.
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Numerical Study: Synthesis of Findings

Case 1: Relevant Scenarios (2020-2022)

ASR-SAA > 2-WDRO

When provided with relevant crisis data, ASR-SAA
can achieve a better risk-return profile than

benchmark WDRO.

Case 2: Unrepresentative Scenarios
(2006-2008)

2-WDRO > ASR-SAA

If scenarios are not ”adverse enough,” data-driven
methods like 2-WDRO can be more robust.

Overall Implication

ASR-SAA is not a universal replacement for WDRO, but a tractable tool for decision-makers
to directly incorporate expert knowledge or historical stress-event data into the optimization
process. Even with weak scenarios, it still improved upon SAA and 1-WDRO.
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Conclusions

Summary of Contributions

1. We proposed ASR-SAA, a regularized framework that directly targets robustness against
pre-defined adverse scenarios, bridging a gap in standard WDRO.

2. We established a novel theoretical connection, showing that a general class of regularized SAA
methods are equivalent to a decision-dependent WDRO problem.

3. We provided rigorous finite-sample guarantees and proofs of asymptotic consistency, ensuring
the statistical reliability of the framework.

4. Through numerical experiments, we demonstrated that ASR-SAA can offer a practical advantage
over state-of-the-art methods when relevant adverse information is available, providing a valuable
tool for risk-aware decision-making.
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Thank You

Questions?

Diego Fonseca
diegofonseca@eafit.edu.co
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