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Background: stochastic multi-stage optimization problems

Stochastic multi-stage optimization problem settings

• Common problems in many operations research ap-
plications

• Examples include: vehicle routing, inventory plan-
ning, machine scheduling, assortment optimization

• High importance for real-world decision-making

Challenges of such problems

• Multi-stage problems require online decision-making

• Contextual stochasticity needs to be accounted for
in decisions

• Combinatorial constraints necessitate use of appro-
priate algorithmic structure
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Previous work: approaches to solve stochastic multi-stage optimization problems

(Smart) predict-then-optimize

Predict-then-optimize algo-
rithms separate learning and
optimization1,2

Smart predict-then-optimize
algorithms require knowing true
predictions3,4

Knowledge of true prediction
outcomes required

Structured learning

Imitation learning algorithms
require access to expert
trajectories5,6

Empirical cost minimiza-
tion algorithms only consider
single/two-stage problems7,8

Offline expert solutions or
single-stage problems required

Reinforcement learning

Neural CO struggles to ensure
feasibility of actions in combina-
torial problems9,10

Hybrid RL considers CO dur-
ing inference, but not during
training11,12

Gradient instability or problem-
specific neural networks required

Lack of a stable algorithm to address stochastic multi-stage optimization problems using collected experience only

1Alonso-Mora et al. 2017, 2Bertsimas and Kallus 2020, 3Elmachtoub and Grigas 2022, 4Mandi et al. 2020, 5Parmentier 2022, 6Baty et al. 2024,
7Dalle et al. 2022, 8Bouvier et al. 2025, 9Bello et al. 2017, 10Hottung and Tierney 2022, 11Enders et al. 2023, 12Hoppe et al. 2024
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Aims and scope

In this talk, we. . .

• . . .present CO-augmented ML-pipelines as a novel
architecture for reinforcement learning

• . . .motivate the use of Fenchel-Young losses for
Structured Reinforcement Learning

• . . .develop a novel RL algorithm to solve combinatorial
problems

• . . .test the performance of Structured RL on several
industrial problem settings

A well-performing novel RL algorithm using
structured learning for combinatorial problems
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Problem setting: Combinatorial Markov Decision Processes

Combinatorial Markov Decision Processes:

• states s ∈ S

• actions a ∈ A(s) ⊂ Rd(s)

• A(s) is the feasible solution space of a combinatorial problem

• rewards r

• transitions P(s′, r | s, a)

• We have the same goal as most RL settings: find a policy π∗ maximizing the expected discounted return:

π
∗ ∈ arg max

π
Eπ

[
T∑
t=0

γ
t rt

]

We consider Markov Decision Processes where the action space A(s) has combinatorial structure
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Exemplary problem setting: dynamic vehicle routing with fixed delivery times

Dynamic vehicle scheduling problem:

• Customers appear dynamically over time

• Each customer has a location and a service time point

• We can dispatch a vehicle to serve the customer or postpone
serving the customer

• Customers with service time points in the near future have to
be dispatched

• First decision: Dispatch vs. postpone customers

• Second decision: Route vehicles to dispatch customers

Epoch 1 Epoch 2 Epoch 3

customer

must-dispatch customer
new customer

new must-dispatch customer
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CO-augmented ML-pipelines

Model architectures for Combinatorial MDPs

• Combinatorial MDPs require special model architec-
tures

• Neural networks can handle stochasticity, but strug-
gle with combinatorial constraints

• CO can address combinatorial actions, but struggles
to handle contextual stochasticity

CO-augmented ML-pipelines

• Stat. model estimates scores θ = φw (s), CO-layer

generates actions a = f (θ, s) ∈ argmaxã∈A(s) : θ
⊤ã

• Statistical model φw allows generalization over
states and anticipation of C-MDP dynamics

• CO-layer f enforces combinatorial feasibility and im-
proves scalability

Stat. model
φω

CO-layer
f(θ, s)

Actor π(s)

Action
a ∈ A(s)

State
s

Scores

θ
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Training COAML-pipelines

Imitation learning

Requires access to expert policy π̄ with actions ā

Reinforcement learning

Only requires access to reward signal r given action a

Common problem: gradient instability

• Action space A(s) is discrete and combinatorial, its convex hull C(s) := conv(A(s)) forms a polytope

• CO-layer f maps continuous score vectors θ to discrete actions a ∈ A(s)

• Differentiating the actor is challenging: the CO-layer is piecewise constant with respect to the action space

• Gradients are either zero if θ does not cross a cone boundary

• Or the CO-layer causes jumps between actions if θ crosses a cone boundary

Action polytope Normal cone Cone in dual space

a5 a6

a1

a2a3

a4

a5 a6

a1

a2a3

a4 θ

Fa1

Fa2
Fa3

Fa4

Fa5

Fa6

θ
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Deficiencies of ordinary RL gradients for COAML-pipelines

• In the reinforcement learning setting, we can treat θ as an action and the CO-layer f as part of the environment

• This enables applying ordinary RL gradients to the statistical model φw

• Since the CO-layer is piecewise constant, these gradients exhibit high variance

• This hinders or prevents convergence

Stat. model
φω

CO-layer
f(θ, s)

Environment
P(s′, r | s, a)

Environment

Scores

θ

Action
a ∈ A(s)

State s

Reward r
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Fenchel-Young losses as a suitable alternative in structured settings

• Fenchel-Young losses offer a solution to non-smooth and non-convex gradient estimates
• Proposed by Blondel et al. 2020, they have been used successfully by Parmentier 2022, Baty et al. 2024, Jungel et al. 2024
• Given target action ā, they address the supervised learning problem of empirical risk minimization

min
θ

L(θ; ā) = min
θ

∑
j

max
ã∈A(sj )

θ
⊤ã − θ

⊤āj

• By introducing a regularized CO-layer using a Gaussian perturbation Z ∼ N(0, ϵ), we receive

min
θ

LΩ(θ; ā)
1 = min

θ

∑
j

E
[

max
ã∈A(sj )

(θ + Z)⊤ã
]
− θ

⊤āj

• The resulting gradient is smooth and convex and enables stable backpropagation

a5 a6

a1

a2a3 ā

a4
a

a5 a6

a1

a2a3 ā

a4
E[a] a

a5 a6

a1

a2a3 ā

a4
E[a] a

LΩ(θ; ā)perturb and

optimize

minimize

LΩ(θ; ā)

1Ω is based on a definition of Fenchel-Young losses using a regularization function Ω : Rd → R ∪ {+∞}
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Algorithm training using online updates and Fenchel-Young losses

• Fenchel-Young losses require a target action ā, which is not given in an RL setting

• We need to estimate a target action online: we perturb θ and sample several η

• We solve f (η, s) for each η to generate candidate actions a′, which we evaluate using a critic as Qψβ (s, a
′)

• We estimate the target action â using a softmax:

â = softmax
a′

(
1

τ
Qψβ

)
=

∑
a′

a′
exp ( 1

τ · Qψβ (s, a
′))∑

a′ exp (
1
τ · Qψβ (s, a

′))

and update the actor by minimizing the Fenchel-Young loss between θ and â

a5 a6

a1

a2a3

a4
a

a5 a6

a1

a2a3

a4 â
a

a5 a6

a1

a2a3

a4 â
aFYL

perturb and

softmax

minimize

FY-loss
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Background: primal-dual RL update step

• The dual space is the space of scores θ, the primal space is the action space A(s)

• We use a bijection between θ in the dual and a in the primal space

• We search for a target action â in the primal space via perturbation, sampling, and the softmax

• The dual update is minimizing a Fenchel-Young loss between θ and â

• This is a sampling-based extension of Mirror Descend algorithms (Bouvier et al. 2025)

θt

θt+1

at

ât

Bijection
to primal

Perturb,
softmax

FYL-
update

Dual space Primal space
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Overview over the Structured Reinforcement Learning algorithm

Stat. model
φω

CO-layer
f(θ, s)

Actor π(s)

Environment
P(s′, r | s, a)

Critic
ψβ

State
s

Action
a ∈ A(s)

Scores

θ

Reward

r

Q-value

Qψβ (a, s)
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Overview over the Structured Reinforcement Learning algorithm

Stat. model
φω

CO-layer
f(θ, s)

Actor π(s)

Environment
P(s′, r | s, a)

CO-layer
f(η, s)

Critic
ψβ

Softmax of
1
τ
Qψβ (a

′, s)

Target
â

State
s

Action
a ∈ A(s)

Scores

θ

Reward r

Gaussian
N (θ, σ) → η

Actions

a′
Q-values

Qψβ (a
′, s)

Fenchel-Young loss

LΩ(θ; â)
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Experimental setup

Studied environments

• Six industrial problem settings derived from related literature

• Single-stage problems: Warcraft Shortest Paths Problem, Single Machine Scheduling Problem, Stochastic Vehicle
Scheduling Problem

• Multi-stage problems: Dynamic Vehicle Scheduling Problem, Dynamic Assortment Problem, Gridworld Shortest
Paths Problem

Experimental setup

• We compare SRL to Structured Imitation Learning (SIL), and the unstructured RL algorithm Proximal Policy Opti-
mization (PPO)

• All algorithms share identical COAML-pipelines

• We also estimate an expert and a greedy solution
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Results: single-stage Stochastic Vehicle Scheduling Problem
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SIL
PPO
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Stability metric Structured IL Unstructured RL Structured RL

Stdev. training 0.2 10.0 0.1
Stdev. testing 0.0 10.0 0.0

SRL outperforms Unstructured RL, it performs as good as Structured IL and the expert policy

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
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Results: multi-stage Dynamic Vehicle Scheduling Problem
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SRL outperforms Unstructured RL, it performs as good as Structured IL

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
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Results: multi-stage Gridworld Shortest Paths Problem
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SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
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Conclusion & future research

Summary of the presented work

We show. . .

• . . .that CO-augmented ML-pipelines can generalize across states and ensure combinatorial feasibility well

• . . .how to update the actor model of a COAML-pipeline using Fenchel-Young losses

• . . .how to find target actions for the update by perturbation, sampling, and a Q-based softmax

• . . .that the proposed Structured RL algorithm outperforms previous algorithms on six industrial benchmarks

Possible directions for future research

• Test SRL on real-world industrial problem settings

• Enhance computational efficiency of the SRL algorithm

• Extend structured learning paradigms to classical reinforcement learning algorithms
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Methodology: definition of Fenchel-Young losses via regularization

Given a regularization function Ω : Rd → R ∪ {+∞} and its Fenchel conjugate Ω∗, the Fenchel-Young loss LΩ(θ; ā) generated
by Ω is defined over dom(Ω∗) × dom(Ω) as

LΩ(θ; ā) := Ω∗(θ) + Ω(ā) − ⟨θ|ā⟩ = sup
a∈dom(Ω)

(⟨θ|a⟩ − Ω(a)) − (⟨θ|ā⟩ − Ω(ā)).

For a given θ ∈ dom(Ω∗), we introduce the regularized prediction as supa∈dom(Ω)⟨θ|a⟩ − Ω(a).

The Fenchel-Young loss measures the non-optimality of ā ∈ dom(Ω) as a solution of the regularized prediction problem.

It is nonnegative and convex in θ.

If in addition Ω is proper, convex, and lower semi-continuous, LΩ reaches zero if and only if ā is a solution of the regularized
prediction problem.

Over the last years, Fenchel-Young losses have become the main approach for supervised training of structured policies.
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Results: single-stage Single Machine Scheduling Problem
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Results: multi-stage Dynamic Assortment Problem
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Results: training time of algorithms in all environments

Training time Structured IL Unstructured RL Structured RL

WSPP 7m 9m 9m
SMSP 10m 15m 12m
SVSP 11m 3m 23m
DVSP 12m 3m 31m
DAP 3m 5m 31m

GSPP 11m 10m 34m

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning

WSPP: Warcraft Shortest Paths Problem, SMSP: Single Machine Scheduling Problem, SVSP: Stochastic Vehicle Scheduling Problem, DVSP: Dynamic Vehicle Scheduling

Problem, DAP: Dynamic Assortment Problem, GSPP: Gridworld Shortest Paths Problem
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