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Introduction

@00

Background: stochastic multi-stage optimization problems

-

Stochastic multi-stage optimization problem settings ° \\\\.

e
[Zr=
e

Common problems in many operations research ap-
plications

Epoch 1

EBehLED

Examples include: vehicle routing, inventory plan- ° °
ning, machine scheduling, assortment optimization

High importance for real-world decision-making °

.

Challenges of such problems

Epoch 2

Multi-stage problems require online decision-making ry

Contextual stochasticity needs to be accounted for
in decisions

Epoch 3

Combinatorial constraints necessitate use of appro-
priate algorithmic structure ° °

.
]

Instance Solution

customer
new customer
® must-dispatch customer
® new must-dispatch customer
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Previous work: approaches to solve stochastic multi-stage optimization problems

(Smart) predict-then-optimize Structured learning Reinforcement learning

Predict-then-optimize algo- Imitation learning algorithms Neural CO struggles to ensure
rithms separate learning and require  access to  expert feasibility of actions in combina-
optimization’? trajectories®® torial problems®1°

Smart predict-then-optimize Empirical cost minimiza- Hybrid RL considers CO dur-
algorithms require knowing true tion algorithms only consider ing inference, but not during
predictions®* single/two-stage problems’: training!t1?

Knowledge of true prediction Offline expert solutions or Gradient instability or problem-
outcomes required single-stage problems required specific neural networks required

L J

Lack of a stable algorithm to address stochastic multi-stage optimization problems using collected experience only

1 Alonso-Mora et al. 2017, 2Bertsimas and Kallus 2020, 3Elmachtoub and Grigas 2022, 4Mandi et al. 2020, 5 Parmentier 2022, 6Baty et al. 2024,
"Dalle et al. 2022, 8Bouvier et al. 2025, 9Bello et al. 2017, loHottung and Tierney 2022, 11 Enders et al. 2023, 12Hoppe et al. 2024
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Introduction
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Aims and scope

In this talk, we. ..

e ...present CO-augmented ML-pipelines as a novel
architecture for reinforcement learning

e ...motivate the use of Fenchel-Young losses for

Structured Reinforcement Learning A well-performing novel RL algorithm using

structured learning for combinatorial problems
e ...develop a novel RL algorithm to solve combinatorial
problems

e .. .test the performance of Structured RL on several
industrial problem settings
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Problem setting
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Problem setting: Combinatorial Markov Decision Processes

Combinatorial Markov Decision Processes:
e statess € S

e actions a € A(s) C RY®)

e A(s) is the feasible solution space of a combinatorial problem

e rewards r

e transitions P(s’,r | s,a)

e We have the same goal as most RL settings: find a policy m* maximizing the expected discounted return:

-
" € arg m;IX]E.,\- |:Z 'ytrt:|

t=0

We consider Markov Decision Processes where the action space A(s) has combinatorial structure

Structured Reinforcement Learning
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Problem setting
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Exemplary problem setting: dynamic vehicle routing with fixed delivery times

customer
new customer

Dynamic vehicle scheduling problem: ®  must-dispatch customer
o Customers appear dynamically over time O new must-dispatch customer
e Each customer has a location and a service time point
e We can dispatch a vehicle to serve the customer or postpone 0O
serving the customer
e Customers with service time points in the near future have to R, S BB
SBESED EBEED
: SES )
be dispatched =g %5} RNE
e First decision: Dispatch vs. postpone customers
- . . O
e Second decision: Route vehicles to dispatch customers
Epoch 1 Epoch 2 Epoch 3
Structured Reinforcement Learnin
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Exemplary problem setting: dynamic vehicle routing with fixed delivery times

Dynamic vehicle scheduling problem:

Customers appear dynamically over time
Each customer has a location and a service time point

We can dispatch a vehicle to serve the customer or postpone
serving the customer

Customers with service time points in the near future have to
be dispatched

First decision: Dispatch vs. postpone customers

Second decision: Route vehicles to dispatch customers

customer
new customer

® must-dispatch customer
O  new must-dispatch customer
>O
=Y == ==
[=ir=ye Y Bein [ty
%5& Er B S
O \
—
Epoch 1 Epoch 2 Epoch 3
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oe

Exemplary problem setting: dynamic vehicle routing with fixed delivery times

customer
new customer

Dynamic vehicle scheduling problem: ®  must-dispatch customer

Customers appear dynamically over time O new must-dispatch customer
Each customer has a location and a service time point

\ O/’
We can dispatch a vehicle to serve the customer or postpone 0 /
serving the customer /

¥
Customers with service time points in the near future have to Epasa N enen B B
. s EBESED EBESED
be dispatched %ggg %Q@?‘¢ %E;
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- . . O
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CO-augmented ML-pipelines

CO-augmented ML-pipelines

Model architectures for Combinatorial MDPs

e Combinatorial MDPs require special model architec- e Stat. model estimates scores 8 = ¢, (s), CO-layer

tures generates actions a = f(6, 5) € argmaxse a(q) : 0 3

e Neural networks can handle stochasticity, but strug-
gle with combinatorial constraints

e Statistical model ¢, allows generalization over
states and anticipation of C-MDP dynamics
e CO can address combinatorial actions, but struggles

9 e CO-layer f enforces combinatorial feasibility and im-
to handle contextual stochasticity

proves scalability

Actor 7(s)

State Stat. model Scores CO-layer Action
— —
s Puw 0 f(8,s) a € A(s)

f18 Structured Reinforcement Learning
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Methodology
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Training COAML-pipelines

Imitation learning

Requires access to expert policy 7 with actions 3

Reinforcement learning

Only requires access to reward signal r given action a

Common problem: gradient instability

CO-layer f maps continuous score vectors 0 to discrete actions a € A(s)

Gradients are either zero if 6 does not cross a cone boundary

Or the CO-layer causes jumps between actions if 6 crosses a cone boundary

asg a2
ay ay
as ag
Action polytope Normal cone

Action space A(s) is discrete and combinatorial, its convex hull C(s) := conv(.A(s)) forms a polytope

Differentiating the actor is challenging: the CO-layer is piecewise constant with respect to the action space

Cone in dual space

Structured Reinforcement Learning
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Methodology
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Deficiencies of ordinary RL gradients for COAML-pipelines

e In the reinforcement learning setting, we can treat 6 as an action and the CO-layer f as part of the environment
e This enables applying ordinary RL gradients to the statistical model ¢,
e Since the CO-layer is piecewise constant, these gradients exhibit high variance
e This hinders or prevents convergence
i Environment
1
Stat. model Scores . CO-layer
Puw 0 : f(07 5)
|
! Action
! a € A(s)
State s . ]
Environment
: P(s',7 | s,a)
Reward r .
1
1
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Fenchel-Young losses as a suitable alternative in structured settings

e Fenchel-Young losses offer a solution to non-smooth and non-convex gradient estimates
Proposed by Blondel et al. 2020, they have been used successfully by Parmentier 2022, Baty et al. 2024, Jungel et al. 2024

e Given target action 3, they address the supervised learning problem of empirical risk minimization

mml)(@a 7m|nz mjx 07505
— se

e By introducing a regularized CO-layer using a Gaussian perturbation Z ~ N(0, €), we receive

. S T Ts] _pTs
mgm,CQ(Q,a) _m(;nzj:E[sgwjéj)(G-ﬁ—Z) a] 0 3

e The resulting gradient is smooth and convex and enables stable backpropagation

pel turb and
opmnue

10 is based on a definition of Fenchel-Young losses using a regularization function Q : R 5 RU {+o0}

minimize
La(0;a)
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Algorithm training using online updates and Fenchel-Young losses

e Fenchel-Young losses require a target action &, which is not given in an RL setting
e We need to estimate a target action online: we perturb € and sample several n

e We solve f(n, s) for each 1 to generate candidate actions a’, which we evaluate using a critic as Qug (s,a")

e \We estimate the target action 3 using a softmax:

~ 1 exp (£ Qu;ﬁ(sv a'))
= soﬂ;r/nax (; Qw;;) Z Y exp (3 Quyls a))

and update the actor by minimizing the Fenchel-Young loss between 6 and 3

as as
a R ay
pe1tu1b and minimize a4 "
_ mummize
soltmax FY-loss
as ag
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Background: primal-dual RL update step

Methodology
00000e0

We use a bijection between 6 in the dual and a in the primal space

The dual space is the space of scores 0, the primal space is the action space .A(s)

We search for a target action 3 in the primal space via perturbation, sampling, and the softmax

e The dual update is minimizing a Fenchel-Young loss between 6 and 3
e This is a sampling-based extension of Mirror Descend algorithms (Bouvier et al. 2025)
Bijection
91. to primal o
FYL- Perturb,
update oL softmax
at
Or+1
Dual space Primal space
12 of 18 Structured Reinforcement Learning
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Overview over the Structured

Actor 7(s)

Methodology
000000

Reinforcement Learning algorithm

Stat. model
Pw

Q-value

State Action
s a € A(s)

Environment

Reward

Qws (a7 S)

P(s',7 | s,a)

r

Critic
s
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Overview over the Structured Reinforcement Learning algorithm

Actor 7(s)

Stat. model Scores CO-layer Q-value
Pu 0 f(0,s) Qu,(a,5)

State Action
s a € A(s)

Environment Reward Critic
P(s',7 | s,a) T s
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Overview over the Structured Reinforcement Learning algorithm

Actor 7(s)

Stat. model Scores CO-layer Fenchel-Young loss Target

Pu 9 f(6,s) La(0;3) a

A

1

State Action QQ-vEﬂue) |

s a € A(s) vp ™S
Environment Reward Critic

P(s',7 | s,a) T s
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Overview over the Structured Reinforcement Learning algorithm

Actor 7(s)
Stat. model Scores CO-layer Fenchel-Young loss Target
Puw 0 f(0,s) Lo(0;3) a
Gaussian
State Action N(@b,0) = n
s a € A(s)
CO-layer .
£(n, 5) Actions
Environment R J ’ ; Critic Q-values Softmax of
P(s',r | s,a) [ TOWC T Tt Vs Quya,s) | 7 Qusla’s)
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Experimental setup

Studied environments

e Six industrial problem settings derived from related literature

e Single-stage problems: Warcraft Shortest Paths Problem, Single Machine Scheduling Problem, Stochastic Vehicle
Scheduling Problem

e Multi-stage problems: Dynamic Vehicle Scheduling Problem, Dynamic Assortment Problem, Gridworld Shortest
Paths Problem

,
\

Experimental setup

e We compare SRL to Structured Imitation Learning (SIL), and the unstructured RL algorithm Proximal Policy Opti-
mization (PPO)

o All algorithms share identical COAML-pipelines

e We also estimate an expert and a greedy solution

,
\
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Results: single-stage Stochastic Vehicle Scheduling Problem

train test
10 10 = f
— % ? E%. % -9
O\o ? * 9
- 0 0 T2
g 3
(3] - - —_ -
5 10 10 25 I — pSFI,LO
© —
-100 e -100 — > -18 —-SRL
vy O o & ¢ O o 0 50 100 150 200
e & & & & £ & training episode

Stability metric ~ Structured IL  Unstructured RL  Structured RL

Stdev. training 0.2 10.0

0.1
Stdev. testing 0.0 10.0

0.0

SRL outperforms Unstructured RL, it performs as good as Structured IL and the expert policy

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
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Agreedy (%)

10
3
0

Results

[e]e] o]
Results: multi-stage Dynamic Vehicle Scheduling Problem
train test
B =T == 7
3 =-30
o
0 32
3 ] - SiL
-34
== -1 E -PPO
0 56 - SRL
vy O o & Sy O o 0 100 200 300 400
S & & & K & training episode

Stability metric ~ Structured IL  Unstructured RL

Structured RL

0.3
0.4

5.8
5.6

Stdev. training
Stdev. testing

0.3
0.3

SRL outperforms Unstructured RL, it performs as good as Structured IL

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
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Results:

Agreedy (°/o)

multi-stage Gridworld Shortest Paths Problem

train test
100 —— 100 —_
10 10
0 0
-10 -10
-100 % -100 %
o> QO Q’Qy ?qu,{\ & <2<2O gy Qﬁge(\

val. rew. (102)

Results
oooe

- SiL

-PPO

-SRL
0 50 100 150 200

training episode

Stability metric  Structured IL

Unstructured RL

Structured RL

Stdev. training
Stdev. testing

39.3
1.1

105.8
47.0

72.1
0.6

SRL outperforms Unstructured RL and Structured IL in this highly complicated problem setting

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning

17 of 18

Structured Reinforcement Learning
Heiko Hoppe | heiko.hoppe@tum.de



Conclusion

Conclusion & future research

Summary of the presented work

We show. ..
e ...that CO-augmented ML-pipelines can generalize across states and ensure combinatorial feasibility well
e ...how to update the actor model of a COAML-pipeline using Fenchel-Young losses

e ...how to find target actions for the update by perturbation, sampling, and a Q-based softmax

e ...that the proposed Structured RL algorithm outperforms previous algorithms on six industrial benchmarks

Possible directions for future research

e Test SRL on real-world industrial problem settings
e Enhance computational efficiency of the SRL algorithm
o Extend structured learning paradigms to classical reinforcement learning algorithms

\

-

-
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Methodology: definition of Fenchel-Young losses via regularization

Given a regularization function Q : RY — R U {+00} and its Fenchel conjugate Q*, the Fenchel-Young loss Lq(0; 3) generated
by Q is defined over dom(22*) x dom(f2) as

La(0:3) == Q7(0) + Q(3) — (013) = sup_({6]a) — Q(a)) — ((013) — 2A3))-
a€dom(R)

For a given ¢ € dom(Q2"), we introduce the regularized prediction as sup,cgom(g)(€]2) — 2(a).
The Fenchel-Young loss measures the non-optimality of 3 € dom(2) as a solution of the regularized prediction problem.
It is nonnegative and convex in 6.

If in addition € is proper, convex, and lower semi-continuous, Lq reaches zero if and only if 3 is a solution of the regularized
prediction problem.

Over the last years, Fenchel-Young losses have become the main approach for supervised training of structured policies.



Results: single-stage Warcraft Shortest Paths Problem

train test
100 -33
> -39
E —
5 0 g-42 - SIL
-45 -PPO
-10 -1 - SRL
v O o v O & 0 50 100 150 200
e K& £ @& %\ & & &8 training episode

Stability metric ~ Structured IL  Unstructured RL  Structured RL

Stdev. training 0.2 3.8 0.5
Stdev. testing 0.6 5.6 1.0

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
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Results: single-stage Single Machine Scheduling Problem

train test
1000 1000
— 100 100
X
= 10 %I 10 ? %I
)
8 0 0
5
T 10 -10
-100 100
NS O A\ v (o) g '
R SR MR -

-15
N
S 20
2 -25
© -SIL
: -PPO
30} | - SRL
0 500 1000 1500 2000

training episode

Stability metric ~ Structured IL

Unstructured RL Structured RL

Stdev. training
Stdev. testing

0.0
0.0

1.9
0.3

0.1
0.0

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
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Results:

Agreedy (°/o)

multi-stage Dynamic Assortment Problem
train test

1000 1000

100 100 o

10 T 40

0 3
=30 = SIL

-10 -10 - 3 -PPO

100 100 ® 0 50 100 150 -SRlz_oo
Vv O v QO v L
Y & K e.& & K & training episode

Stability metric ~ Structured IL  Unstructured RL  Structured RL

Stdev. training 0.8 5.4

1.8
Stdev. testing 11.9 135

1.9

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
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Results: training time of algorithms in all environments

Training time  Structured IL Unstructured RL  Structured RL

WSPP 7m 9m 9m
SMSP 10m 15m 12m
SVSP 11m 3m 23m
DVSP 12m 3m 31m

DAP 3m 5m 31m
GSPP 11m 10m 34m

SIL: Structured Imitation Learning, PPO: Proximal Policy Optimization (Unstructured RL), SRL: Structured Reinforcement Learning
WSPP: Warcraft Shortest Paths Problem, SMSP: Single Machine Scheduling Problem, SVSP: Stochastic Vehicle Scheduling Problem, DVSP: Dynamic Vehicle Scheduling
Problem, DAP: Dynamic Assortment Problem, GSPP: Gridworld Shortest Paths Problem
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