

XVIIth conference on stochastic programming

Discounted zero-sum stochastic games with random rewards

Lucas Osmani¹, Abdel Lisser², and Vikas Vikram Singh³

Laboratoire des signaux et systèmes^{1,2} and Department of Mathematics IIT Delhi ³

July 2025

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

Topic of the talk

- We consider zero-sum stochastic games with probabilistic rewards.
- We assume that the distribution of the rewards is known to both players.
- The aim of each player is to get the maximum payoff he can guarantee with a given probability $p \in (0, 1)$, against the worst possible move from his opponent.
- The problem is formulated as a pair of chance-constrained optimization programs.

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

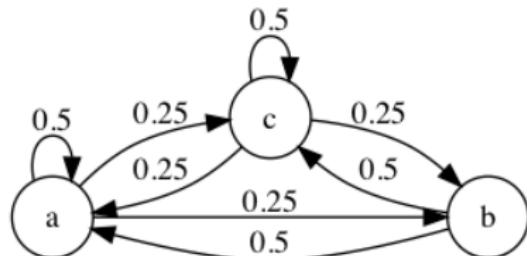
The model

Finite stochastic games

A two-players zero-sum stochastic game is defined by a tuple $\langle X, (A^1(x))_{x \in X}, (A^2(x))_{x \in X}, r, p \rangle$,

- X is a finite state space, and A^1 , A^2 , are finite action spaces.
- r is a reward function: when the game is in state x , and actions a^1 and a^2 are chosen, player 1 earns $r(x, a^1, a^2)$ while player 2 earns $-r(x, a^1, a^2)$.
- $p(y|x, a^1, a^2)$ denotes a probability that game moves to state y from x when player 1 and player 2 choose actions a^1 and a^2 , respectively.

The model



Controlled Markov chains

The game starts at time $t = 0$ from an initial state x_0 which is selected according to an initial distribution m , i.e., x_0 is selected with probability $m(x_0)$. Player 1 and player 2 choose actions a_0^1 and a_0^2 , respectively, and player 1 receives $r(x_0, a_0^1, a_0^2)$ and player 2 receives $-r(x_0, a_0^1, a_0^2)$. The game moves to state x_1 at time $t = 1$ with probability $p(x_1|x_0, a_0^1, a_0^2)$, and the same process repeats infinitely.

The model

Strategies

The strategy of a player represents a sequence of decision rules according to which actions are taken during the entire play:

- General strategies are history-dependent (they depend on the previous states and actions)
- A stationary strategy of player 1 is defined by a vector $f = (f(x))_{x \in X}$ where $f(x) \in \wp(A^1(x))$: whenever game is at state x , player 1 chooses action a^1 with probability $f(x, a^1)$.
- A stationary strategy g of player 2 is similarly defined.
- We denote the set of stationary strategies of player 1 and player 2 by F_S and G_S

The model

The discounted overall reward

Let X_t , A_t^1 and A_t^2 denote state and actions of player 1 and player 2 at time t , respectively. Future stage rewards are discounted by a factor $\alpha \in [0, 1)$. The objective of the game is:

$$V(m, f, g) = \sum_{t=0}^{\infty} \alpha^t \mathbb{E}_{f, g}^m (r(X_t, A_t^1, A_t^2)). \quad (1)$$

- Player 1 wants to maximize V , and player 2 wants to minimize V .
- When rewards are deterministic, there exists a saddle point of V in $F_S \times G_S$, as proved by L.S. Shapley (1953).

The probabilistic reward

We consider a random reward function

$\tilde{r}(\omega) = (\tilde{r}(x, a^1, a^2, \omega))_{x \in X, a^1 \in A^1(x), a^2 \in A^2(x)}$ defined in a probability space $(\Omega, \mathcal{A}, \mathbb{P})$

The random overall reward

$$\tilde{V}(m, f, g, \omega) = \sum_{t=0}^{\infty} \alpha^t \mathbb{E}_{f,g}^m (\tilde{r}(X_t, A_t^1, A_t^2, \omega)). \quad (2)$$

The aim of each player is to get the maximum payoff, that can be guaranteed with at least a given probability $p \in (0, 1)$, against the worst possible move from the opponent.

Chance-constrained formulation

Objective for player 1

$$\begin{aligned}\delta^*(p_1) := \max_{f \in F_S, \delta \in \mathbb{R}} \quad & \delta \\ \text{s.t.} \quad \min_{g \in G_S} \mathbb{P}(\tilde{V}(m, f, g) \geq \delta) \geq p_1. & \end{aligned}\tag{P1}$$

Objective for player 2

$$\begin{aligned}\eta^*(p_2) := \min_{g \in G_S, \eta \in \mathbb{R}} \quad & \eta \\ \text{s.t.} \quad \min_{f \in F_S} \mathbb{P}(\tilde{V}(m, f, g) \leq \eta) \geq p_2. & \end{aligned}\tag{P2}$$

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

Reward distribution

We assume that the random reward vector \tilde{r} follows an elliptical distribution. Let $n = \sum_{x \in X} |A^1(x)| |A^2(x)|$.

Elliptical rewards

$\tilde{r} \sim Ellip_n(\mu, \Theta, \psi)$ where μ is a mean vector, Θ is a positive definite covariance matrix, and ψ is a characteristic generator, such that \tilde{r} admits a strictly positive density.

Let $F^{-1}(\cdot)$ be a quantile function of \tilde{r} .

Occupation measures

The state-actions occupation measures

$$\gamma_m^{f,g}(x, a^1, a^2) = \sum_{t=0}^{\infty} \alpha^t \mathbb{P}_{f,g}^m(X_t = x, A_t^1 = a^1, A_t^2 = a^2)$$

The value function has the following representation:

$$\tilde{V}(m, f, g, \omega) = \sum_{x \in X, a^1 \in A^1(x), a^2 \in A^2(x)} \tilde{r}(x, a^1, a^2, \omega) \gamma_m^{f,g}(x, a^1, a^2) \quad (3)$$

Deterministic equivalent reformulation

Problems (P1) and (P2) are reformulated, respectively as (4) and (5)

Theorem

$$\delta^*(p_1) = \max_{f \in F_S} \min_{g \in G_S} \left(\mu^\top \gamma_m^{f,g} + F^{-1}(1 - p_1) \|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2 \right), \quad (4)$$

$$\eta^*(p_2) = \min_{g \in G_S} \max_{f \in F_S} \left(\mu^\top \gamma_m^{f,g} + F^{-1}(p_2) \|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2 \right), \quad (5)$$

Where $\gamma_m^{f,g}$ is the state-actions occupation measure.

Deterministic equivalent reformulation

Proof.

We have $\tilde{V}(m, f, g) = \tilde{r}^\top \gamma_m^{f,g}$. Define a standard normal random variable $Z = \frac{\tilde{r}^\top \gamma_m^{f,g} - \mu^\top \gamma_m^{f,g}}{\|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2}$. Then, the chance constraint of (P1) can be reformulated as follows

$$\begin{aligned} & \mathbb{P}(\tilde{V}(m, f, g) \geq \delta) \geq p_1, \quad \forall g \in G_S, \\ \iff & \mathbb{P}\left(Z \geq \frac{\delta - \mu^\top \gamma_m^{f,g}}{\|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2}\right) \geq p_1, \quad \forall g \in G_S, \\ \iff & \delta \leq \min_{g \in G_S} \mu^\top \gamma_m^{f,g} + F^{-1}(1 - p_1) \|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2. \end{aligned}$$

This implies that the optimal value $\delta^*(p_1)$ of player 1 satisfies (4). Similarly, the optimal cost $\eta^*(p_2)$ satisfies (5). □

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

Results when $p_2 \leq 0.5$

We focus on player 2, when $p_2 \leq 0.5$,

Parameterized stochastic games

$$\begin{aligned} H(\lambda) &= \min_{g \in G_S} \max_{f \in F_S} \sum_{t=0}^{\infty} \alpha^t \mathbb{E}_{f,g}^m (\tilde{u}_\lambda(X_t, A_t^1, A_t^2)) \\ &= \max_{f \in F_S} \min_{g \in G_S} \sum_{t=0}^{\infty} \alpha^t \mathbb{E}_{f,g}^m (\tilde{u}_\lambda(X_t, A_t^1, A_t^2)), \end{aligned}$$

\tilde{u} is given by $\tilde{u}_\lambda(x, a^1, a^2) = \mu(x, a^1, a^2) + F^{-1}(p_2)(\Theta^{\frac{1}{2}}\lambda)_{x, a^1, a^2}$, and $\lambda \in \mathbb{R}^n$

Results when $p_2 \leq 0.5$

We prove that the optimum in (P2) can be computed as the minimum of parameterized stochastic games.

Theorem

$$\eta^*(p_2) = \min_{\|\lambda\|_2 \leq 1} H(\lambda).$$

We prove the following two results:

- ① $H(\cdot)$ is continuously differentiable almost everywhere.
- ② the minimum of $H(\cdot)$ lies on the sphere

Algorithm for $p_2 \leq 0.5$

We use a Riemannian gradient sampling algorithm proposed by S.Hosseini and A.Uschmajew (2017), to find the minimum of $H(\cdot)$ on the unit sphere.

Algorithm 1

- ① Compute spherical gradients of H at random points $(\lambda_n^i) \in B(\lambda_n, \epsilon_n) \cap S(0, 1)$, where $\lambda_n \in S(0, 1)$ is the current iterate.
- ② Transport the gradients to the tangent space at λ_n .
- ③ Compute the least norm vector in the convex hull of the transported gradients, denoted by g_n .
- ④ Perform a line search, and then the update $\lambda_n \leftarrow \frac{\lambda_n - tg_n}{\|\lambda_n - tg_n\|_2}$
- ⑤ Set $\epsilon_n \leftarrow \epsilon_n \times \theta$ where $\theta \in (0, 1)$

Algorithm for $p_2 \leq 0.5$

We prove that Algorithm 1 converges to a stationary point of $H(\cdot)$. Given an optimal λ^* , the optimal strategy of player 2 is obtained by solving a linear program.

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

Results when $p_1 \geq 0.5$

We focus on player 1, when $p_1 \geq 0.5$.

When for every $x \in X$, there exists an action $a^1 \in A^1(x)$ such that $f(x, a^1) = 1$ and $f(x, b) = 0$ for all $b \in A^1(x)$ such that $b \neq a^1$, we call f a pure stationary strategy.

Similarly we can define a pure stationary strategy of player 2.

We denote the set of pure stationary strategies of player 1 and player 2 by F_{PS} and G_{PS} , respectively

Theorem

$$\delta^*(p_1) = \max_{f \in F_S} \min_{g \in G_{PS}} \left\{ \langle \mu, \gamma_m^{f,g} \rangle + F^{-1}(1 - p_1) \|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2 \right\} \quad (6)$$

Since G_{PS} is finite, we obtain a discrete minimax formulation.

Nonlinear programming formulation

Let I be the index set for stationary deterministic strategies of player 2 and $(g_i)_{i \in I}$ denote their complete enumeration. For each $i \in I$, define a function

$$\phi_i(f) = \langle \mu, \gamma_m^{f,g_i} \rangle + F^{-1}(1 - p_1) \|\Theta^{\frac{1}{2}} \gamma_m^{f,g_i}\|_2.$$

Then problem (6) is equivalently written as:

Nonlinear program

$$\delta^*(p_1) := \max y \tag{7}$$

$$\text{s.t. } (i) \phi_i(f) \geq y, \forall i \in I,$$

$$(ii) \sum_{a^1 \in A^1(x)} f(x, a^1) = 1, \forall x \in X,$$

$$(iii) f(x, a^1) \geq 0, \forall x \in X, a^1 \in A^1(x).$$

Ascent directions

An ascent direction $d \in \mathbb{R}^N$ at a stationary policy $f \in F_S$ can be obtained from an optimal solution of the following quadratic program:

Quadratic program

$$\begin{aligned} \max_{y,d} \quad & y - \frac{1}{2} \|d\|^2 \\ \text{s.t.} \quad & y \leq \phi_i(f) + \nabla \phi_i(f)^\top d, \quad \forall i \in I_\epsilon(f), \\ & f(x, a^1) + d(x, a^1) \geq 0, \quad \forall x \in X, a^1 \in A^1(x), \\ & \sum_{a \in A^1(x)} d(x, a) = 0, \quad \forall x \in X. \end{aligned} \tag{8}$$

Where $I_\epsilon(f) = \{j \in I \mid \phi_j(f) \leq \min_{i \in I} \phi_i(f) + \epsilon\}$

Algorithm for risk averse player

Algorithm 2

- ① Find an ascent direction d_n for the function to maximize, this is the result of the quadratic program (8).
- ② Perform a line search.
- ③ Update the current strategy, $f_n \leftarrow f_n + \nu d_n$

This algorithm converges to a KKT point of the nonlinear program (7).

Bilinear reformulation for risk averse player

- Alternatively, the problem can be formulated using a standard optimization program, including linear, bilinear, and SOCP constraints.
- This approach relies on several change of variables, into the space of discounted occupation measures.
- In practice, this problem is solved using a Gurobi solver.

Bilinear reformulation for risk averse player

$$\max_{y, \rho_i} y \quad (9)$$

$$\text{s.t. } (i) \quad y \leq \tilde{\mu}_i^\top \rho_i + F^{-1}(1 - p_1) \|\tilde{\Sigma}_i \rho_i\|_2, \quad i \in I$$

$$(ii) \quad \rho_i \in K^{g_i}, \quad i \in I,$$

$$(iii) \quad \rho_i(x, a^1) \sum_{a \in A^1(x)} \rho_1(x, a) = \rho_1(x, a^1) \sum_{a \in A^1(x)} \rho_i(x, a), \quad \forall i \in I \setminus \{1\}$$

Where K^{g_i} is the occupation measure polytope, when g_i a fixed pure strategy, and $(\tilde{\mu}_i, \tilde{\Sigma}_i)$ are obtained by removing the entries of $(\mu, \Theta^{\frac{1}{2}})$ corresponding to an action which is not chosen by g_i .

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

Restriction to stationary strategies

We assume that strong duality holds for (P1),

$$\begin{aligned}\delta^*(p_1) &= \max_{f \in F_S} \min_{g \in G_S} \left(\mu^\top \gamma_m^{f,g} + F^{-1}(1 - p_1) \|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2 \right) \\ &= \min_{g \in G_S} \max_{f \in F_S} \left(\mu^\top \gamma_m^{f,g} + F^{-1}(1 - p_1) \|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2 \right)\end{aligned}$$

Then,

$$\delta^*(p_1) = \max_{f \in F} \min_{g \in G} \left(\mu^\top \gamma_m^{f,g} + F^{-1}(1 - p_1) \|\Theta^{\frac{1}{2}} \gamma_m^{f,g}\|_2 \right) \quad (10)$$

Where F and G are the sets of history-dependent strategies.

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

Numerical results

We assume the reward vector is normally distributed. We consider a simple example where $|X| = 3$ and for every $x \in X$, $|A^1(x)| = |A^2(x)| = 3$. Let $X = \{x_1, x_2, x_3\}$

Numerical results

Table: Optimal solutions of risk-averse and risk-seeking problems

p	Risk-averse problem			Risk-seeking problem		
	$\delta^*(p)$	Algorithm 2 Optimal strategy	Gurobi Objective	$\eta^*(1-p)$	Algorithm 1 Optimal strategy	
0.55	-0.748	$f^*(x_1) = \begin{pmatrix} 0.03 \\ 0.97 \\ 0 \end{pmatrix}$			$g^*(x_1) = \begin{pmatrix} 0.26 \\ 0 \\ 0.74 \end{pmatrix}$	
		$f^*(x_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$	-0.925	-0.043	$g^*(x_2) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	
		$f^*(x_3) = \begin{pmatrix} 0.27 \\ 0.72 \\ 0 \end{pmatrix}$			$g^*(x_3) = \begin{pmatrix} 0.65 \\ 0 \\ 0.35 \end{pmatrix}$	
0.6	-3.106	$f^*(x_1) = \begin{pmatrix} 0.17 \\ 0.83 \\ 0 \end{pmatrix}$			$g^*(x_1) = \begin{pmatrix} 0 \\ 0.15 \\ 0.85 \end{pmatrix}$	
		$f^*(x_2) = \begin{pmatrix} 0.06 \\ 0.94 \\ 0 \end{pmatrix}$	-3.632	-2.031	$g^*(x_2) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	
		$f^*(x_3) = \begin{pmatrix} 0.34 \\ 0.66 \\ 0 \end{pmatrix}$			$g^*(x_3) = \begin{pmatrix} 0.69 \\ 0 \\ 0.31 \end{pmatrix}$	
0.7	-7.878	$f^*(x_1) = \begin{pmatrix} 0.20 \\ 0.74 \\ 0.05 \end{pmatrix}$			$g^*(x_1) = \begin{pmatrix} 0 \\ 0.22 \\ 0.78 \end{pmatrix}$	
		$f^*(x_2) = \begin{pmatrix} 0.24 \\ 0.72 \\ 0.04 \end{pmatrix}$	-9.046	-7.553	$g^*(x_2) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	
		$f^*(x_3) = \begin{pmatrix} 0.36 \\ 0.58 \\ 0.06 \end{pmatrix}$			$g^*(x_3) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	

Table of Contents

- 1 Introduction
- 2 The model
- 3 Deterministic equivalent reformulation
- 4 The case of risk-seeking players
- 5 The case of risk-averse players
- 6 Restriction to stationary strategies
- 7 Numerical results
- 8 Conclusion and remarks

Conclusion and remarks

We considered a stochastic game with random rewards, and formulated a chance-constrained optimization program for each player. Under the assumption of elliptical rewards, we proved equivalence of the chance-constrained programs to a minimax.

We studied risk-averse and risk-seeking players separately, and proposed algorithms for each case.

Some references

- Discounted zero-sum stochastic games with random rewards (2025)
- Stochastic games were first studied by L.S. Shapley (1953).
- E. Delage and S. Mannor (2010) studied Markov decision processes with random rewards.
- R. Blau (1974) studied zero-sum games with a random payoff matrix, using a chance-constrained formulation that we draw inspiration from.
- V.V. Singh and A. Lisser (2018) studied existence of Nash equilibria in a class of games with random payoffs.
- S. Hosseini and A. Uschmajew (2017) propose a Riemannian gradient sampling algorithm for nonsmooth optimization on manifolds

Thank you for your attention.