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Topic of the talk

We consider zero-sum stochastic games with probabilistic rewards.

We assume that the distribution of the rewards is known to both
players.

The aim of each player is to get the maximum payoff he can
guarantee with a given probability p ∈ (0, 1), against the worst
possible move from his opponent.

The problem is formulated as a pair of chance-constrained
optimization programs.
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The model

Finite stochastic games

A two-players zero-sum stochastic game is defined by a tuple
⟨X , (A1(x))x∈X , (A

2(x))x∈X , r , p⟩,

X is a finite state space, and A1, A2, are finite action spaces.
r is a reward function: when the game is in state x , and actions a1

and a2 are chosen, player 1 earns r(x , a1, a2) while player 2 earns
−r(x , a1, a2).

p(y |x , a1, a2) denotes a probability that game moves to state y from
x when player 1 and player 2 choose actions a1 and a2, respectively.
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The model

Controlled Markov chains

The game starts at time t = 0 from an initial state x0 which is selected
according to an initial distribution m, i.e., x0 is selected with probability
m(x0). Player 1 and player 2 choose actions a10 and a20, respectively, and
player 1 receives r(x0, a

1
0, a

2
0) and player 2 receives −r(x0, a10, a20). The

game moves to state x1 at time t = 1 with probability p(x1|x0, a10, a20), and
the same process repeats infinitely.
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The model

Strategies

The strategy of a player represents a sequence of decision rules according
to which actions are taken during the entire play:

General strategies are history-dependent (they depend on the previous
states and actions)
A stationary strategy of player 1 is defined by a vector f = (f (x))x∈X
where f (x) ∈ ℘(A1(x)): whenever game is at state x , player 1
chooses action a1 with probability f (x , a1).
A stationary strategy g of player 2 is similarly defined.
We denote the set of stationary strategies of player 1 and player 2 by
FS and GS
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The model

The discounted overall reward

Let Xt , A
1
t and A2

t denote state and actions of player 1 and player 2 at
time t, respectively. Future stage rewards are discounted by a factor
α ∈ [0, 1). The objective of the game is:

V (m, f , g) =
∞∑
t=0

αtEm
f ,g

(
r(Xt ,A

1
t ,A

2
t )
)
. (1)

Player 1 wants to maximize V , and player 2 wants to minimize V .
When rewards are deterministic, there exists a saddle point of V in
FS × GS , as proved by L.S. Shapley (1953).
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The probabilistic reward

We consider a random reward function
r̃(ω) = (r̃(x , a1, a2, ω))x∈X ,a1∈A1(x),a2∈A2(x) defined in a probability space
(Ω,A,P)

The random overall reward

Ṽ (m, f , g , ω) =
∞∑
t=0

αtEm
f ,g

(
r̃(Xt ,A

1
t ,A

2
t , ω)

)
. (2)

The aim of each player is to get the maximum payoff, that can be
guaranteed with at least a given probability p ∈ (0, 1), against the worst
possible move from the opponent.
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Chance-constrained formulation

Objective for player 1

δ∗(p1) := max
f ∈FS ,δ∈R

δ

s.t. min
g∈GS

P(Ṽ (m, f , g) ≥ δ) ≥ p1. (P1)

Objective for player 2

η∗(p2) := min
g∈GS ,η∈R

η

s.t. min
f ∈FS

P(Ṽ (m, f , g) ≤ η) ≥ p2. (P2)
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Reward distribution

We assume that the random reward vector r̃ follows an elliptical
distribution. Let n =

∑
x∈X |A1(x)||A2(x)|.

Elliptical rewards

r̃ ∼ Ellipn(µ,Θ, ψ) where µ is a mean vector, Θ is a positive definite
covariance matrix, and ψ is a characteristic generator, such that r̃ admits
a strictly positive density.

Let F−1(·) be a quantile function of r̃ .
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Occupation measures

The state-actions occupation measures

γf ,gm (x , a1, a2) =
∞∑
t=0

αtPm
f ,g (Xt = x ,A1

t = a1,A2
t = a2)

The value function has the following representation:

Ṽ (m, f , g , ω) =
∑

x∈X ,a1∈A1(x),a2∈A2(x)

r̃(x , a1, a2, ω)γf ,gm (x , a1, a2) (3)
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Deterministic equivalent reformulation

Problems (P1) and (P2) are reformulated, respectively as (4) and (5)

Theorem

δ∗(p1) = max
f ∈FS

min
g∈GS

(
µ⊤γf ,gm + F−1(1− p1)∥Θ

1
2γf ,gm ∥2

)
, (4)

η∗(p2) = min
g∈GS

max
f ∈FS

(
µ⊤γf ,gm + F−1(p2)∥Θ

1
2γf ,gm ∥2

)
, (5)
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Where γf ,gm is the state-actions occupation measure.
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Deterministic equivalent reformulation

Proof.

We have Ṽ (m, f , g) = r̃⊤γf ,gm . Define a standard normal random variable

Z = r̃⊤γf ,g
m −µ⊤γf ,g

m

∥Θ
1
2 γf ,g

m ∥2
. Then, the chance constraint of (P1) can be

reformulated as follows

P(Ṽ (m, f , g) ≥ δ) ≥ p1, ∀ g ∈ GS ,

⇐⇒ P

(
Z ≥ δ − µ⊤γf ,gm

∥Θ
1
2γf ,gm ∥2

)
≥ p1, ∀ g ∈ GS ,

⇐⇒ δ ≤ min
g∈GS

µ⊤γf ,gm + F−1(1− p1)∥Θ
1
2γf ,gm ∥2.

This implies that the optimal value δ∗(p1) of player 1 satisfies (4).
Similarly, the optimal cost η∗(p2) satisfies (5).
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Results when p2 ≤ 0.5

We focus on player 2, when p2 ≤ 0.5,

Parameterized stochastic games

H(λ) = min
g∈GS

max
f ∈FS

∞∑
t=0

αtEm
f ,g (ũλ(Xt ,A

1
t ,A

2
t ))

= max
f ∈FS

min
g∈GS

∞∑
t=0

αtEm
f ,g (ũλ(Xt ,A

1
t ,A

2
t )),

ũ is given by ũλ(x , a
1, a2) = µ(x , a1, a2) + F−1(p2)(Θ

1
2λ)x ,a1,a2 , and

λ ∈ Rn
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Results when p2 ≤ 0.5

We prove that the optimum in (P2) can be computed as the minimum of
parameterized stochastic games.

Theorem

η∗(p2) = min
∥λ∥2≤1

H(λ).

We prove the following two results:

1 H(·) is continuously differentiable almost everywhere.

2 the minimum of H(·) lies on the sphere
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Algorithm for p2 ≤ 0.5

We use a Riemannian gradient sampling algorithm proposed by S.Hosseini
and A.Uschmajew (2017), to find the minimum of H(.) on the unit sphere.

Algorithm 1

1 Compute spherical gradients of H at random points
(λin) ∈ B(λn, ϵn) ∩ S(0, 1), where λn ∈ S(0, 1) is the current iterate.

2 Transport the gradients to the tangent space at λn.
3 Compute the least norm vector in the convex hull of the transported

gradients, denoted by gn.
4 Perform a line search, and then the update λn ← λn−tgn

∥λn−tgn∥2
5 Set ϵn ← ϵn × θ where θ ∈ (0, 1)
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Algorithm for p2 ≤ 0.5

We prove that Algorithm 1 converges to a stationary point of H(.).
Given an optimal λ∗, the optimal strategy of player 2 is obtained by
solving a linear program.
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Results when p1 ≥ 0.5

We focus on player 1, when p1 ≥ 0.5.
When for every x ∈ X , there exists an action a1 ∈ A1(x) such that
f (x , a1) = 1 and f (x , b) = 0 for all b ∈ A1(x) such that b ̸= a1, we call f
a pure stationary strategy.
Similarly we can define a pure stationary strategy of player 2.
We denote the set of pure stationary strategies of player 1 and player 2 by
FPS and GPS , respectively

Theorem

δ∗(p1) = max
f ∈FS

min
g∈GPS

{
⟨µ, γf ,gm ⟩+ F−1(1− p1)∥Θ

1
2γf ,gm ∥2

}
(6)

Since GPS is finite, we obtain a discrete minimax formulation.
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Nonlinear programming formulation

Let I be the index set for stationary deterministic strategies of player 2 and
(gi )i∈I denote their complete enumeration. For each i ∈ I , define a
function

ϕi (f ) = ⟨µ, γf ,gim ⟩+ F−1(1− p1)∥Θ
1
2γf ,gim ∥2.

Then problem (6) is equivalently written as:

Nonlinear program

δ∗(p1) := max y (7)

s.t. (i) ϕi (f ) ≥ y , ∀ i ∈ I ,

(ii)
∑

a1∈A1(x)

f (x , a1) = 1, ∀ x ∈ X ,

(iii) f (x , a1) ≥ 0, ∀ x ∈ X , a1 ∈ A1(x).
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Ascent directions

An ascent direction d ∈ RN at a stationary policy f ∈ FS can be obtained
from an optimal solution of the following quadratic program:

Quadratic program

max
y ,d

y − 1

2
∥d∥2 (8)

s.t. y ≤ ϕi (f ) +∇ϕi (f )⊤d , ∀ i ∈ Iϵ(f ),

f (x , a1) + d(x , a1) ≥ 0, ∀ x ∈ X , a1 ∈ A1(x),∑
a∈A1(x)

d(x , a) = 0, ∀ x ∈ X .

Where Iϵ(f ) = {j ∈ I | ϕj(f ) ≤ mini∈I ϕi (f ) + ϵ}
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Algorithm for risk averse player

Algorithm 2

1 Find an ascent direction dn for the function to maximize, this is the
result of the quadratic program (8).

2 Perform a line search.
3 Update the current strategy, fn ← fn + νdn

This algorithm converges to a KKT point of the nonlinear program (7).
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Bilinear reformulation for risk averse player

Alternatively, the problem can be formulated using a standard
optimization program, including linear, bilinear, and SOCP
constraints.

This approach relies on several change of variables, into the space of
discounted occupation measures.

In practice, this problem is solved using a Gurobi solver.
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Bilinear reformulation for risk averse player

max
y ,ρi

y (9)

s.t. (i) y ≤ µ̃⊤i ρi + F−1(1− p1)∥Σ̃iρi∥2, i ∈ I

(ii) ρi ∈ K gi , i ∈ I ,

(iii) ρi (x , a
1)

∑
a∈A1(x)

ρ1(x , a) = ρ1(x , a
1)

∑
a∈A1(x)

ρi (x , a), ∀ i ∈ I \ {1}

Where K gi is the occupation measure polytope, when gi a fixed pure

strategy, and (µ̃i , Σ̃i ) are obtained by removing the entries of (µ,Θ
1
2 )

corresponding to an action which is not chosen by gi .
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Restriction to stationary strategies

We assume that strong duality holds for (P1),

δ∗(p1) = max
f ∈FS

min
g∈GS

(
µ⊤γf ,gm + F−1(1− p1)∥Θ

1
2γf ,gm ∥2

)
= min

g∈GS

max
f ∈FS

(
µ⊤γf ,gm + F−1(1− p1)∥Θ

1
2γf ,gm ∥2

)
Then,

δ∗(p1) = max
f ∈F

min
g∈G

(
µ⊤γf ,gm + F−1(1− p1)∥Θ

1
2γf ,gm ∥2

)
(10)

Where F and G are the sets of history-dependent strategies.
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Numerical results

We assume the reward vector is normally distributed We consider a simple
example where |X | = 3 and for every x ∈ X , |A1(x)| = |A2(x)| = 3. Let
X = {x1, x2, x3}
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Numerical results
Table: Optimal solutions of risk-averse and risk-seeking problems

p
Risk-averse problem Risk-seeking problem

Algorithm 2 Gurobi Algorithm 1
δ∗(p) Optimal strategy Objective η∗(1− p) Optimal strategy

0.55 -0.748

f ∗(x1) =

0.03
0.97
0


f ∗(x2) =

0
1
0


f ∗(x3) =

0.27
0.72
0


-0.925 -0.043

g∗(x1) =

0.26
0

0.74


g∗(x2) =

1
0
0


g∗(x3) =

0.65
0

0.35



0.6 -3.106

f ∗(x1) =

0.17
0.83
0


f ∗(x2) =

0.06
0.94
0


f ∗(x3) =

0.34
0.66
0


-3.632 -2.031

g∗(x1) =

 0
0.15
0.85


g∗(x2) =

1
0
0


g∗(x3) =

0.69
0

0.31



0.7 -7.878

f ∗(x1) =

0.20
0.74
0.05


f ∗(x2) =

0.24
0.72
0.04


f ∗(x3) =

0.36
0.58
0.06


-9.046 -7.553

g∗(x1) =

 0
0.22
0.78


g∗(x2) =

1
0
0


g∗(x3) =

1
0
0


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Conclusion and remarks

We considered a stochastic game with random rewards, and formulated a
chance-constrained optimization program for each player. Under the
assumption of elliptical rewards, we proved equivalence of the
chance-constrained progams to a minimax.
We studied risk-averse and risk-seeking players separately, and proposed
algorithms for each case.
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Some references

Discounted zero-sum stochastic games with random rewards (2025)

Stochastic games were first studied by L.S. Shapley (1953).

E. Delage and S. Mannor (2010) studied Markov decision processes
with random rewards.

R. Blau (1974) studied zero-sum games with a random payoff matrix,
using a chance-constrained formulation that we draw inspiration from.

V.V. Singh and A. Lisser (2018) studied existence of Nash equilibria
in a class of games with random payoffs.

S.Hosseini and A.Uschmajew (2017) propose a Riemannian gradient
sampling algorithm for nonsmooth optimization on manifolds
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Thank you for your attention.
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