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2-Stage Stochastic Programming

Basic model:
min E

“

cpξqJypξq
‰

s.t. Ax “ b, Tx ` Wypξq “ hpξq

x ě 0, ypξq ě 0,

x is here-and-now, y is wait-and-see;

c are (possibly random) costs.
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2-Stage Stochastic Programming
Linear Decision Rules

Fix a parametrization where cpξq “ Cξ and hpξq “ Hξ are linear in ξ.

Posit a linear decision rule: ypξq “ Y ¨ ξ.

Reduces the �exibility of the �wait-and-see� decision

, but allows for a �nite problem if the
support of ξ is simple, say Ξ “ t ξ | Gξ ě f u.

min E
“

ξJCJY ξ
‰

“ Tr
`

E
“

ξξJ
‰

CJY
˘

s.t. Ax “ b Tx ` WY ξ “ Hξ @ξ
x ě 0 Y ξ ě 0,

The distribution of ξ appears only in the objective function, and through the 2nd-moment
matrix E

“

ξξJ
‰

.
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2-Stage Stochastic Programming
Sample Average Approximation: SAA

Kelley's cutting plane / L-shaped method builds approximations to the value function

V pxq “ min
ypξq

E
“

cpξqJypξq
‰

s.t. Wypξq “ hpξq ´ Tx,
ypξq ě 0.

Key points:

V pxq is a convex function of x, so V pxq ě V px0q ` ∇V px0qJpx ´ x0q for any x0;

The gradient ∇V px0q is given by the optimal dual solution of the SAA problem at x0.

Exchanging min and E:

V pxq “ E
„

min
yPY px,ξq

cpξqJypx, ξq

ȷ

shows that y is a feedback control: depends on the uncertainty ξ and the 1st-stage decision x.
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Multistage problems

The 2-stage problem can be generalized to multistage problems, where the uncertainty ξ is
observed at di�erent stages: ξ1, ξ2, . . . , ξT ;

The decision ytpξq at stage t can depend on the uncertainty observed at previous stages.

Typically, there is a state xtpξq at each stage, depending on the realization of the
uncertainties and the decisions yt.

A multistage problem can be written as:

min E
”

řT
t“1 ctpξqJytpξq

ı

s.t. Axtpξq ` Bxt´1pξq ` Wytpξq “ htpξq @t
xt ě 0, ytpξq ě 0.
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Multistage problems

Linear Decision Rules

The decision xtpξq can depend on the history of the uncertainties ξ1, . . . , ξt;

The LDR becomes xtpξq “ Xt,1 ¨ ξ1 ` Xt,2 ¨ ξ2 ` . . . ` Xt,t ¨ ξt.

Increases the number of decision variables for the LDR matrices.

SAA

We discretize the uncertainty process into a �nite number of scenarios, organized into a
scenario tree.

There is a value function Vn for each node of the tree.
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Multistage problems
Stagewise independence

If the realization ξt at stage t is independent of the previous realizations ξ1, . . . , ξt´1, then the
value functions depend only on the stage t.

E�cient dynamic programming recursion, calculating Vtpxt´1q from Vt`1pxtq:

Vtpxt´1q “ min
feasible xt,yt

Eξt

“

ctpξtq
Jytpξtq ` Vt`1pxtpξtqq

‰

.

One standard algorithm is SDDP, exploring the state space using Monte Carlo sampling of
scenarios (and building cuts).
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Our goals

Build time decompositions suitable for linear decision rules;

Recover value functions from such decompositions;

Obtain a reasonable policy with moderate computational e�ort.
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Back to the 2-stage problem

Notation: x is the incoming state, y the decision, and z the outgoing state:

V pxq “ min E
“

cpξqJypx, ξq ` fpzpx, ξqq
‰

s.t. Tx ` Wyypx, ξq ` Wzzpx, ξq “ hpξq

ypx, ξq, zpx, ξq ě 0.

Decisions y (and z) depend on the previous state x and the uncertainty ξ;

The LDR for this problem sets ypx, ξq “ Yξpxq ¨ ξ and zpx, ξq “ Zξpxq ¨ ξ;

The Linear Feedback Decision Rule (LFDR) sets

#

ypx, ξq “ Yξ ¨ ξ ` Yx ¨ x and

zpx, ξq “ Zξ ¨ ξ ` Zx ¨ x.
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Some observations

1. Several �value function recursions�:

V pxq “ Eξ

“

cpξqJy˚pξq ` fpz˚pξqq
‰

VLDRpxq “ Eξ

“

cpξqJY ˚pxq ¨ ξ ` fpZ˚pxq ¨ ξq
‰

VLFDRpxq “ Eξ

“

cpξqJpYξ ¨ ξ ` Yx ¨ xq ` fpZξ ¨ ξ ` Zx ¨ xq
‰

.

2. For �xed x, the LFDR is a feasible LDR for both y and z, so
VLFDRpxq ě VLDRpxq ě V pxq.

3. We also need to represent fpzq as linear functions. . .

4. So BVLFDRpxq

Bx is constant!
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More general decision rules

We lift x to a higher-dimensional space and only require that the decision rule is linear in
the lifted variables;

If x “
řJ

i“1 xi, this leads to a piecewise-linear decision rule.

We have VPWLF pxq “ E
”

cpξqJpŶξ ¨ ξ ` Ŷx ¨ Lpxqq ` . . .
ı

.

Lpxq is a piecewise-linear function, so we might need to convexify VPWLF .

Theorem

The natural polyhedral representation, including the simplicial constraints

0 ď xJ ď ¨ ¨ ¨ ď x2 ď x1 ď pmaxxq{J

yields

#

a convexi�cation of VPWLF ;

which remains a valid upper bound for VLDRpxq, so for V pxq.
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A toy example

using JuMP , LinearDecisionRules

using Ipopt , Distributions

demand = 0.3

m = LDRModel(Ipopt.Optimizer)

@variable(m, vi in Uncertainty(distribution=Uniform (0,1)))

@variable(m, inflow in Uncertainty(distribution=Uniform (0 ,0.2)))

@variable(m, 0 <= vf <= 1)

@variable(m, gh >= 0.0)

@variable(m, gt >= 0.0)

@constraint(m, balance , vf == vi - gh + inflow)

@constraint(m, gt + gh == demand)

@objective(m, Min , gt^2 + vf^2/2 - vf + 0.5)
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A toy example (cont.)

# Solve the primal LDR

set_attribute(m, SolvePrimal (), true)

set_attribute(m, SolveDual (), false)

set_attribute(vi , BreakPoints (), 5)

optimize !(m)

# Get the value function

VF = JuMP.Model()

@variable(VF, x)

@objective(VF, Min , 0.0)

set_parametric_objective !(VF , m, Dict(vi => x))
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A toy example
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PWLF Value Function
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Slightly more complex example

Still one-dimensional;

24 stages, several thermal plants;

Triangular uncertainty
distribution;

20 breakpoints for the decision
rules.
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Cost Comparison
20 state breakpoints
20 inflow breakpoints

Mixed vs SDDP
y=x
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Slightly more complex example
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Slightly more complex example
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Next steps

Multistage decision rules:

Generalize FirstStage to accommodate decisions xt which can only depend on observed

uncertainties ξ1, . . . , ξt;

Will bene�t from correlated uncertainties to model more complex processes.

Performance:

Speed-up model building for larger problems (ongoing);

Auto-tune breakpoints (number and position);

Adaptive state distribution.
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GitHub Package Documentation

Questions?
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