Value functions in LinearDecisionRules. j1

Bernardo Freitas Paulo da Costa (FGV)

with Joaquim Garcia (PSR)

ICSP 2025, Paris

Bernardo Costa LDR + VF ICSP 2025 1/20



Value functions in LinearDecisionRules. j1

Bernardo Freitas Paulo da Costa (FGV)

with Joaquim Garcia (PSR)

ICSP 2025, Paris

Bernardo Costa

LDR + VF




2-Stage Stochastic Programming

Basic model:
min E [¢(€) Ty(9)]
st. Az =0b, Tz + Wy(&) = h(&)
=0, y() =0,

@ x is here-and-now, y is wait-and-see;

@ c are (possibly random) costs.

Bernardo Costa LDR + VF ICSP 2025 2/20



2-Stage Stochastic Programming

Basic model:

min E [c(§) "y(¢)]

st. Ax=0b, Tx+ Wy(&) = h(&)

=0, y() =0,

@ x is here-and-now, y is wait-and-see;

@ c are (possibly random) costs.
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Linear Decision Rules

2-Stage Stochastic Programming

e Fix a parametrization where ¢(§) = C¢ and h(§) = HE are linear in &.
@ Posit a linear decision rule: y(§) =Y - €.

o & = E A
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2-Stage Stochastic Programming

Linear Decision Rules

e Fix a parametrization where ¢(§) = C¢ and h(§) = HE are linear in &.
@ Posit a linear decision rule: y(§) =Y - €.

Reduces the flexibility of the “wait-and-see” decision

min E [§TCTY§]
st. Ar =0 Tx+WYE=HE¢ V¢
x>0 Y&E=0,
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2-Stage Stochastic Programming

Linear Decision Rules

e Fix a parametrization where ¢(§) = C¢ and h(§) = HE are linear in &.
@ Posit a linear decision rule: y(§) =Y - €.

Reduces the flexibility of the “wait-and-see” decision, but allows for a finite problem if the
support of £ is simple, say = = {{ | GE = [ }.
min E [gTCTYg] =Tr (E[&T]CTY)
st. Ax=b T+ WY =H
x=20 Y=AG A=0, Af >0,
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2-Stage Stochastic Programming

Linear Decision Rules

e Fix a parametrization where ¢(§) = C¢ and h(§) = HE are linear in &.
@ Posit a linear decision rule: y(§) =Y - €.

Reduces the flexibility of the “wait-and-see” decision, but allows for a finite problem if the
support of £ is simple, say = = {{ | GE = [ }.

min E[TCTYE] = Tr (E[e€T]CTY)

st. Ax=b Ta+WY =H
=20 Y=AG, A=0, Af =0,

The distribution of & appears only in the objective function, and through the 2"4-moment
matrix E [¢£T].
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2-Stage Stochastic Programming
Sample Average Approximation: SAA

Kelley's cutting plane / L-shaped method builds approximations to the value function
V(z) = min E[c(§) y(6)]

y(§)
st. Wy() = h(€) — Ta,

y(§) = 0.
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2-Stage Stochastic Programming
Sample Average Approximation: SAA

Kelley's cutting plane / L-shaped method builds approximations to the value function

V(z) = min E [c(&)Ty(8)]
st. Wy(€) = h(&) —Tx,

y(§) = 0.

Key points:
e V(z) is a convex function of z, so V(x) = V(x0) + VV (x0) " (z — x0) for any xo;
@ The gradient VV (xg) is given by the optimal dual solution of the SAA problem at x.
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2-Stage Stochastic Programming
Sample Average Approximation: SAA

Kelley's cutting plane / L-shaped method builds approximations to the value function

V(z)= min E[c(&)y(8)]
y(&)
st. Wy() = h(€) — Ta,

y(§) = 0.

Key points:

e V(z) is a convex function of z, so V(x) = V(x0) + VV (x0) " (z — x0) for any xo;

@ The gradient VV (xg) is given by the optimal dual solution of the SAA problem at x.
Exchanging min and E:

V) <E| min_ o€ y(e.0)

yeY (z,€)

shows that y is a feedback control: depends on the uncertainty & and the 1%'-stage decision z.
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Multistage problems

@ The 2-stage problem can be generalized to multistage problems, where the uncertainty & is
observed at different stages: &1,&a,...,¢&r;

@ The decision y;(§) at stage t can depend on the uncertainty observed at previous stages.

Bernardo Costa LDR + VF ICSP 2025 5/20



Multistage problems

@ The 2-stage problem can be generalized to multistage problems, where the uncertainty & is
observed at different stages: &1,&a,...,¢&r;

@ The decision y;(§) at stage t can depend on the uncertainty observed at previous stages.

e Typically, there is a state x4(£) at each stage, depending on the realization of the
uncertainties and the decisions ;.
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Multistage problems

@ The 2-stage problem can be generalized to multistage problems, where the uncertainty & is
observed at different stages: &1,&a,...,¢&r;

@ The decision y;(§) at stage t can depend on the uncertainty observed at previous stages.

e Typically, there is a state x4(£) at each stage, depending on the realization of the
uncertainties and the decisions ;.

A multistage problem can be written as:

min E [Zt 1ee(€) ye(6) ]
st Axe(8) + th 1(&) +
ze =0, y(§) = 0.

Wy(§) = he(§) vt
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Multistage problems

Linear Decision Rules
@ The decision x4(£) can depend on the history of the uncertainties &1, ..., &;
@ The LDR becomes z4(§) = X¢1- &1+ Xp2- &+ ...+ Xpp - &b
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Multistage problems

Linear Decision Rules
@ The decision x4(£) can depend on the history of the uncertainties &1, ..., &;
@ The LDR becomes z4(§) = X¢1- &1+ Xp2- &+ ...+ Xpp - &b

@ Increases the number of decision variables for the LDR matrices.

SAA

@ We discretize the uncertainty process into a finite number of scenarios, organized into a
scenario tree.

@ There is a value function V,, for each node of the tree.
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Multistage problems

Stagewise independence

If the realization &; at stage t is independent of the previous realizations &1,...,&_1, then the
value functions depend only on the stage t.

e Efficient dynamic programming recursion, calculating Vi(z,—1) from Vii(zy):

Vi(wi1) = min B, [er(&) T wi(&) + Vigr (ze(&)] -

feasible z¢,y:

@ One standard algorithm is SDDP, exploring the state space using Monte Carlo sampling of
scenarios (and building cuts).
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Our goals

@ Build time decompositions suitable for linear decision rules;
@ Recover value functions from such decompositions;

@ Obtain a reasonable policy with moderate computational effort.
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Back to the 2-stage problem

Notation: x is the incoming state, y the decision, and z the outgoing state:

V(z) = min E[c(§) y(z,&) + f(2(2,6))]
st. To+ Wyy(z,§) + Wez(x,§) = h(§)
y(x, ), 2(z,§) = 0.
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Notation: x is the incoming state, y the decision, and z the outgoing state:

V(z) = min E[c(§) y(z,&) + f(2(2,6))]
st. To+ Wyy(z,§) + Wez(x,§) = h(§)
y(x, ), 2(z,§) = 0.

@ Decisions y (and z) depend on the previous state = and the uncertainty &;
@ The LDR for this problem sets y(z,§) = Ye(z) - € and 2(x, &) = Z¢(x) - &;
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Back to the 2-stage problem

Notation: x is the incoming state, y the decision, and z the outgoing state:

V(z) = min E[c(&) y(z,&) + f(2(2,9))]
st. Tax+ Wyy(z, &) + Woz(x,§) = h(§)
y(z,€),2(z,§) = 0.

@ Decisions y (and z) depend on the previous state = and the uncertainty &;
@ The LDR for this problem sets y(z,§) = Ye(z) - € and 2(x, &) = Z¢(x) - &;
y(@, &) =Ye- £+ Y, -2 and

@ The Linear Feedback Decision Rule (LFDR) sets
2(x,8) = Ze - E+ Zy - .
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Some observations

1. Several “value function recursions’™

V(x) = Ee [c(©)Ty* (&) + f(*(€))]
Vipr(z) = Be [c(€)TY*(2) - £ + f(Z*(x) - ©)]
Virpr(z) = Ee [c(&)T(Ye - €+ Ve 2) + f(Ze - €+ Zy - 2)] -
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Some observations

1. Several “value function recursions’™

V(z) = Ee [c(€) Ty* (&) + F(z*(9))]
Vipr(x) = Ee [c(§)TY*(2) - £+ f(Z%(x) - €)]
Virpr(z) = Ee[e(€)T (Ye - €+ Yy 2) + f(Ze - €+ Zp - 2)].

2. For fixed x, the LFDR is a feasible LDR for both y and z, so
Virpr(®) = Vipr(z) = V(z).
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Some observations

1. Several “value function recursions’™

V(z) = Ee [e(€)Ty™(&) + F(z*(€))]
Vipr(r) = E¢[e() 'Y (2) - € + F*(2) - £]
VLFDR(fL') = Eg [C(f)—r(Y{ £+ Y, - :L') + Fg &+ Fy - ac] .

2. For fixed x, the LFDR is a feasible LDR for both y and z, so
Virpr(®) = Vipr(z) = V(z).

3. We also need to represent f(z) as linear functions. ..
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Some observations

1. Several “value function recursions’™

V(z) = Ee [e(€)Ty™(&) + F(z*(€))]
Vipr(@) = Be [c(€) Y ¥ (2) - € + F*(x) - ]
VLFDR(m) = Eg [C(f)—r(Y{ £+ Y, - :L') + Fg &+ Fy - ac] .

2. For fixed x, the LFDR is a feasible LDR for both y and z, so
Virpr(®) = Vipr(z) = V(z).

3. We also need to represent f(z) as linear functions. ..

4. So W%ZR(@ is constant!
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More general decision rules

e We [ift x to a higher-dimensional space and only require that the decision rule is linear in
the lifted variables;

o If z = 3/ | 2, this leads to a piecewise-linear decision rule.
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More general decision rules

e We [ift x to a higher-dimensional space and only require that the decision rule is linear in
the lifted variables;

o If z = 3/ | 2, this leads to a piecewise-linear decision rule.
e We have Vpyrr(z) =E [C(S)T(Yg £+ Y, L(z) + .. ]

e L(x) is a piecewise-linear function, so we might need to convexify Vpwrr.

Bernardo Costa LDR + VF ICSP 2025 11/20



More general decision rules

e We [ift x to a higher-dimensional space and only require that the decision rule is linear in
the lifted variables;

o If z = 3/ | 2, this leads to a piecewise-linear decision rule.
e We have Vpyrr(z) =E [c(f)T(Yg £+ Y, L(z) + .. ]

e L(x) is a piecewise-linear function, so we might need to convexify Vpwrr.

Theorem

The natural polyhedral representation, including the simplicial constraints

0<zy<- - <9 <wy < (maxz)/J
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More general decision rules

e We [ift x to a higher-dimensional space and only require that the decision rule is linear in
the lifted variables;

o If z = 3/ | 2, this leads to a piecewise-linear decision rule.
e We have Vpyrr(z) =E [c(f)T(Yg £+ Y, L(z) + .. ]

e L(x) is a piecewise-linear function, so we might need to convexify Vpwrr.

Theorem

The natural polyhedral representation, including the simplicial constraints

0<zy<- - <9 <wy < (maxz)/J

yields

{a convexification of VpwLr;
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More general decision rules

e We [ift x to a higher-dimensional space and only require that the decision rule is linear in
the lifted variables;

o If z = 3/ | 2, this leads to a piecewise-linear decision rule.
e We have Vpyrr(z) =E [c(f)T(Yg £+ Y, L(z) + .. ]

e L(x) is a piecewise-linear function, so we might need to convexify Vpwrr.

Theorem

The natural polyhedral representation, including the simplicial constraints

0<zy<- - <9 <wy < (maxz)/J

olds a convexification of VpwLr;
i
Y which remains a valid upper bound for Vi,pr(x), so for V(x).
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A toy example

using JuMP, LinearDecisionRules
using Ipopt, Distributions

demand = 0.3

m = LDRModel (Ipopt.Optimizer)

@variable(m, vi in Uncertainty(distribution=Uniform(0,1)))
Qvariable(m, inflow in Uncertainty(distribution=Uniform(0,0.2)))
@variable(m, 0 <= vf <= 1)

@variable(m, gh >= 0.0)

@variable(m, gt >= 0.0)

Qconstraint (m, balance, vf == vi - gh + inflow)
@constraint (m, gt + gh == demand)

@objective(m, Min, gt~2 + vf~2/2 - vf + 0.5)

Bernardo Costa LDR + VF ICSP 2025 12 /20



A toy example (cont.)

# Solve the primal LDR
set_attribute(m, SolvePrimal(), true)
set_attribute(m, SolveDual(), false)
set_attribute(vi, BreakPoints (), 5)
optimize! (m)

# Get the value function

VF = JuMP.Model ()

@variable (VF, x)

Qobjective (VF, Min, 0.0)
set_parametric_objective!(VF, m, Dict(vi => x))
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A toy example

Value Function Comparison
0.5 1 —— PWLF Value Function
—— LDR Value Function
0.4 1
0.3 1

0.1+

0.0

0.0

0.2 0.4 0.6 0.8 1.0
o & = E A
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Slightly more complex example

@ Still one-dimensional;
@ 24 stages, several thermal plants;

@ Triangular uncertainty
distribution;

@ 20 breakpoints for the decision
rules.
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Slightly more complex example

Cost Comparison
20 state breakpoints
20 inflow breakpoints

3009 & Mixed vs SDDP -
—== y=X s
250 A ad
@ Still one-dimensional; 200 - e
e
. e .~ )
@ 24 stages, several thermal plants; 8 o e
. . & 150 1 e ®
@ Triangular uncertainty z
a
A g
distribution; 100 -
@ 20 breakpoints for the decision
50 A
rules.
0.
(’) 5’0 1(')0 15’)0 2(')0 ZéO 3(')0
SDDP Cost
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Slightly more complex example

Cost distribution
20 breakpoints

400 A
@ Still one-dimensional;
@ 24 stages, several thermal plants; 3007
@ Triangular uncertainty
distribution; 2001
@ 20 breakpoints for the decision
00 -
rules. !
0- = T T T T
0 50 100 150 200 250 300

[m] = =
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Slightly more complex example

Stage 23: Value Function

704

60

501

40

304

204

104

—— SDDP
~—— LDR

T T T
75 100 125
Stored Energy

T
150

T T
175 200

Stage 23: Water Value

—— SDDP
~—— LDR

T T T
75 100 125
Stored Energy

T
150

T T
175 200
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Slightly more complex example

Stage 22: Value Function

160 4

140

1204

100

80 1

60

40

20

—— SDDP
~—— LDR

T T T
75 100 125
Stored Energy

T
150

T T
175 200

Stage 22: Water Value

—— SDDP
~—— LDR

T T T
75 100 125
Stored Energy

T
150

T T
175 200
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Slightly more complex example

Stage 2: Value Function

200 — spop

00 — LR

3004

2001

1001

| \
: : : : r r : : r
0 25 50 75 100 125 150 175 200

Stored Energy

Stage 2: Water Value

51 — sopp
—— LDR
5]
44
3
24
1]
04
0 25 50 75 100 125 150 175 200

Stored Energy
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Next steps

Multistage decision rules:

o Generalize FirstStage to accommodate decisions x; which can only depend on observed
uncertainties £1,...,&;

o Will benefit from correlated uncertainties to model more complex processes.
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Next steps

Multistage decision rules:

o Generalize FirstStage to accommodate decisions x; which can only depend on observed
uncertainties £1,...,&;

o Will benefit from correlated uncertainties to model more complex processes.

Performance:
@ Speed-up model building for larger problems (ongoing);
e Auto-tune breakpoints (number and position);

o Adaptive state distribution.

Bernardo Costa LDR + VF ICSP 2025 19 /20



GitHub Package Documentation




	Introduction
	Setting


