

Value functions in LinearDecisionRules.jl

Bernardo Freitas Paulo da Costa (FGV)

with Joaquim Garcia (PSR)

ICSP 2025, Paris

Value functions in LinearDecisionRules.jl

Bernardo Freitas Paulo da Costa (FGV)
with Joaquim Garcia (PSR)

ICSP 2025, Paris

2-Stage Stochastic Programming

Basic model:

$$\begin{aligned} \min \quad & \mathbb{E} [c(\xi)^\top y(\xi)] \\ \text{s.t.} \quad & Ax = b, \quad Tx + Wy(\xi) = h(\xi) \\ & x \geq 0, \quad y(\xi) \geq 0, \end{aligned}$$

- x is here-and-now, y is wait-and-see;
- c are (possibly random) costs.

2-Stage Stochastic Programming

Basic model:

$$\begin{array}{ll}\min & \mathbb{E} [c(\xi)^\top y(\xi)] \\ \text{s.t.} & Ax = b, \quad Tx + Wy(\xi) = h(\xi) \\ & x \geq 0, \quad y(\xi) \geq 0,\end{array}$$

- x is here-and-now, y is wait-and-see;
- c are (possibly random) costs.

2-Stage Stochastic Programming

Linear Decision Rules

- Fix a parametrization where $c(\xi) = C\xi$ and $h(\xi) = H\xi$ are **linear** in ξ .
- Posit a **linear decision rule**: $y(\xi) = Y \cdot \xi$.

2-Stage Stochastic Programming

Linear Decision Rules

- Fix a parametrization where $c(\xi) = C\xi$ and $h(\xi) = H\xi$ are **linear** in ξ .
- Posit a **linear decision rule**: $y(\xi) = Y \cdot \xi$.

Reduces the flexibility of the “wait-and-see” decision

$$\begin{array}{ll}\min & \mathbb{E} [\xi^\top C^\top Y \xi] \\ \text{s.t.} & Ax = b \quad Tx + WY\xi = H\xi \quad \forall \xi \\ & x \geq 0 \quad Y\xi \geq 0,\end{array}$$

2-Stage Stochastic Programming

Linear Decision Rules

- Fix a parametrization where $c(\xi) = C\xi$ and $h(\xi) = H\xi$ are **linear** in ξ .
- Posit a **linear decision rule**: $y(\xi) = Y \cdot \xi$.

Reduces the flexibility of the “wait-and-see” decision, but allows for a **finite** problem if the support of ξ is simple, say $\Xi = \{\xi \mid G\xi \geq f\}$.

$$\begin{array}{ll}\min & \mathbb{E}[\xi^\top C^\top Y \xi] = \text{Tr}(\mathbb{E}[\xi \xi^\top] C^\top Y) \\ \text{s.t.} & Ax = b \quad Tx + WY = H \\ & x \geq 0 \quad Y = \Lambda G, \quad \Lambda \geq 0, \quad \Lambda f \geq 0,\end{array}$$

2-Stage Stochastic Programming

Linear Decision Rules

- Fix a parametrization where $c(\xi) = C\xi$ and $h(\xi) = H\xi$ are **linear** in ξ .
- Posit a **linear decision rule**: $y(\xi) = Y \cdot \xi$.

Reduces the flexibility of the “wait-and-see” decision, but allows for a **finite** problem if the support of ξ is simple, say $\Xi = \{\xi \mid G\xi \geq f\}$.

$$\begin{array}{ll}\min & \mathbb{E}[\xi^\top C^\top Y \xi] = \text{Tr}(\mathbb{E}[\xi \xi^\top] C^\top Y) \\ \text{s.t.} & Ax = b \quad Tx + WY = H \\ & x \geq 0 \quad Y = \Lambda G, \quad \Lambda \geq 0, \quad \Lambda f \geq 0,\end{array}$$

The distribution of ξ appears only in the objective function, and through the 2nd-moment matrix $\mathbb{E}[\xi \xi^\top]$.

2-Stage Stochastic Programming

Sample Average Approximation: SAA

Kelley's cutting plane / L-shaped method builds approximations to the **value function**

$$\begin{aligned} V(x) = \min_{y(\xi)} \quad & \mathbb{E} [c(\xi)^\top y(\xi)] \\ \text{s.t.} \quad & Wy(\xi) = h(\xi) - Tx, \\ & y(\xi) \geq 0. \end{aligned}$$

2-Stage Stochastic Programming

Sample Average Approximation: SAA

Kelley's cutting plane / L-shaped method builds approximations to the **value function**

$$\begin{aligned} V(x) = \min_{y(\xi)} \quad & \mathbb{E} [c(\xi)^\top y(\xi)] \\ \text{s.t.} \quad & Wy(\xi) = h(\xi) - Tx, \\ & y(\xi) \geq 0. \end{aligned}$$

Key points:

- $V(x)$ is a **convex function** of x , so $V(x) \geq V(x_0) + \nabla V(x_0)^\top (x - x_0)$ for any x_0 ;
- The gradient $\nabla V(x_0)$ is given by the **optimal dual solution** of the SAA problem at x_0 .

2-Stage Stochastic Programming

Sample Average Approximation: SAA

Kelley's cutting plane / L-shaped method builds approximations to the **value function**

$$\begin{aligned} V(x) = \min_{y(\xi)} \quad & \mathbb{E} [c(\xi)^\top y(\xi)] \\ \text{s.t.} \quad & Wy(\xi) = h(\xi) - Tx, \\ & y(\xi) \geq 0. \end{aligned}$$

Key points:

- $V(x)$ is a **convex function** of x , so $V(x) \geq V(x_0) + \nabla V(x_0)^\top (x - x_0)$ for any x_0 ;
- The gradient $\nabla V(x_0)$ is given by the **optimal dual solution** of the SAA problem at x_0 .

Exchanging min and \mathbb{E} :

$$V(x) = \mathbb{E} \left[\min_{y \in Y(x, \xi)} c(\xi)^\top y(x, \xi) \right]$$

shows that ***y is a feedback control***: depends on the uncertainty ξ and the 1st-stage decision x .

Multistage problems

- The 2-stage problem can be generalized to *multistage* problems, where the uncertainty ξ is observed at different stages: $\xi_1, \xi_2, \dots, \xi_T$;
- The decision $y_t(\xi)$ at stage t can depend on the uncertainty observed at previous stages.

Multistage problems

- The 2-stage problem can be generalized to *multistage* problems, where the uncertainty ξ is observed at different stages: $\xi_1, \xi_2, \dots, \xi_T$;
- The decision $y_t(\xi)$ at stage t can depend on the uncertainty observed at previous stages.
- Typically, there is a *state* $x_t(\xi)$ at each stage, depending on the realization of the uncertainties and the decisions y_t .

Multistage problems

- The 2-stage problem can be generalized to *multistage* problems, where the uncertainty ξ is observed at different stages: $\xi_1, \xi_2, \dots, \xi_T$;
- The decision $y_t(\xi)$ at stage t can depend on the uncertainty observed at previous stages.
- Typically, there is a *state* $x_t(\xi)$ at each stage, depending on the realization of the uncertainties and the decisions y_t .

A multistage problem can be written as:

$$\begin{aligned} \min \quad & \mathbb{E} \left[\sum_{t=1}^T c_t(\xi)^\top y_t(\xi) \right] \\ \text{s.t.} \quad & Ax_t(\xi) + Bx_{t-1}(\xi) + Wy_t(\xi) = h_t(\xi) \quad \forall t \\ & x_t \geq 0, \quad y_t(\xi) \geq 0. \end{aligned}$$

Multistage problems

Linear Decision Rules

- The decision $x_t(\xi)$ can depend on the *history* of the uncertainties ξ_1, \dots, ξ_t ;
- The LDR becomes $x_t(\xi) = X_{t,1} \cdot \xi_1 + X_{t,2} \cdot \xi_2 + \dots + X_{t,t} \cdot \xi_t$.

Linear Decision Rules

- The decision $x_t(\xi)$ can depend on the *history* of the uncertainties ξ_1, \dots, ξ_t ;
- The LDR becomes $x_t(\xi) = X_{t,1} \cdot \xi_1 + X_{t,2} \cdot \xi_2 + \dots + X_{t,t} \cdot \xi_t$.
- **Increases** the number of decision variables for the LDR matrices.

Multistage problems

Linear Decision Rules

- The decision $x_t(\xi)$ can depend on the *history* of the uncertainties ξ_1, \dots, ξ_t ;
- The LDR becomes $x_t(\xi) = X_{t,1} \cdot \xi_1 + X_{t,2} \cdot \xi_2 + \dots + X_{t,t} \cdot \xi_t$.
- **Increases** the number of decision variables for the LDR matrices.

SAA

- We discretize the uncertainty process into a finite number of scenarios, organized into a scenario tree.
- There is a value function V_n for each *node* of the tree.

Multistage problems

Stagewise independence

If the realization ξ_t at stage t is independent of the previous realizations ξ_1, \dots, ξ_{t-1} , then the value functions depend *only on the stage t* .

- Efficient *dynamic programming* recursion, calculating $V_t(x_{t-1})$ from $V_{t+1}(x_t)$:

$$V_t(x_{t-1}) = \min_{\text{feasible } x_t, y_t} \mathbb{E}_{\xi_t} \left[c_t(\xi_t)^\top y_t(\xi_t) + V_{t+1}(x_t(\xi_t)) \right].$$

- One standard algorithm is *SDDP*, exploring the state space using Monte Carlo sampling of scenarios (and building cuts).

Our goals

- Build *time decompositions* suitable for linear decision rules;
- Recover *value functions* from such decompositions;
- Obtain a *reasonable policy* with moderate computational effort.

Back to the 2-stage problem

Notation: x is the incoming state, y the decision, and z the outgoing state:

$$\begin{aligned} V(x) = \min \quad & \mathbb{E} [c(\xi)^\top y(x, \xi) + f(z(x, \xi))] \\ \text{s.t.} \quad & Tx + W_y y(x, \xi) + W_z z(x, \xi) = h(\xi) \\ & y(x, \xi), z(x, \xi) \geq 0. \end{aligned}$$

Back to the 2-stage problem

Notation: x is the incoming state, y the decision, and z the outgoing state:

$$\begin{aligned} V(x) = \min \quad & \mathbb{E} [c(\xi)^\top y(x, \xi) + f(z(x, \xi))] \\ \text{s.t.} \quad & Tx + W_y y(x, \xi) + W_z z(x, \xi) = h(\xi) \\ & y(x, \xi), z(x, \xi) \geq 0. \end{aligned}$$

- Decisions y (and z) depend on the previous state x and the uncertainty ξ ;

Back to the 2-stage problem

Notation: x is the incoming state, y the decision, and z the outgoing state:

$$\begin{aligned} V(x) = \min \quad & \mathbb{E} [c(\xi)^\top y(x, \xi) + f(z(x, \xi))] \\ \text{s.t.} \quad & Tx + W_y y(x, \xi) + W_z z(x, \xi) = h(\xi) \\ & y(x, \xi), z(x, \xi) \geq 0. \end{aligned}$$

- Decisions y (and z) depend on the previous state x and the uncertainty ξ ;
- The LDR for this problem sets $y(x, \xi) = Y_\xi(x) \cdot \xi$ and $z(x, \xi) = Z_\xi(x) \cdot \xi$;

Back to the 2-stage problem

Notation: x is the incoming state, y the decision, and z the outgoing state:

$$\begin{aligned} V(x) = \min \quad & \mathbb{E} [c(\xi)^\top y(x, \xi) + f(z(x, \xi))] \\ \text{s.t.} \quad & Tx + W_y y(x, \xi) + W_z z(x, \xi) = h(\xi) \\ & y(x, \xi), z(x, \xi) \geq 0. \end{aligned}$$

- Decisions y (and z) depend on the previous state x and the uncertainty ξ ;
- The LDR for this problem sets $y(x, \xi) = Y_\xi(x) \cdot \xi$ and $z(x, \xi) = Z_\xi(x) \cdot \xi$;
- The Linear Feedback Decision Rule (LFDR) sets $\begin{cases} y(x, \xi) = Y_\xi \cdot \xi + Y_x \cdot x & \text{and} \\ z(x, \xi) = Z_\xi \cdot \xi + Z_x \cdot x. \end{cases}$

Some observations

1. Several “value function recursions”:

$$V(x) = \mathbb{E}_\xi \left[c(\xi)^\top y^*(\xi) + f(z^*(\xi)) \right]$$

$$V_{LDR}(x) = \mathbb{E}_\xi \left[c(\xi)^\top Y^*(x) \cdot \xi + f(Z^*(x) \cdot \xi) \right]$$

$$V_{LFDR}(x) = \mathbb{E}_\xi \left[c(\xi)^\top (Y_\xi \cdot \xi + Y_x \cdot x) + f(Z_\xi \cdot \xi + Z_x \cdot x) \right].$$

Some observations

1. Several “value function recursions”:

$$V(x) = \mathbb{E}_\xi [c(\xi)^\top y^*(\xi) + f(z^*(\xi))]$$

$$V_{LDR}(x) = \mathbb{E}_\xi [c(\xi)^\top Y^*(x) \cdot \xi + f(Z^*(x) \cdot \xi)]$$

$$V_{LFDR}(x) = \mathbb{E}_\xi [c(\xi)^\top (Y_\xi \cdot \xi + Y_x \cdot x) + f(Z_\xi \cdot \xi + Z_x \cdot x)].$$

2. For fixed x , the LFDR is a feasible LDR for both y and z , so

$$V_{LFDR}(x) \geq V_{LDR}(x) \geq V(x).$$

Some observations

1. Several “value function recursions”:

$$V(x) = \mathbb{E}_\xi \left[c(\xi)^\top y^*(\xi) + f(z^*(\xi)) \right]$$

$$V_{LDR}(x) = \mathbb{E}_\xi \left[c(\xi)^\top Y^*(x) \cdot \xi + \mathbf{F}^*(x) \cdot \xi \right]$$

$$V_{LFDR}(x) = \mathbb{E}_\xi \left[c(\xi)^\top (Y_\xi \cdot \xi + Y_x \cdot x) + \mathbf{F}_\xi \cdot \xi + \mathbf{F}_x \cdot x \right].$$

2. For fixed x , the LFDR is a feasible LDR for both y and z , so

$$V_{LFDR}(x) \geq V_{LDR}(x) \geq V(x).$$

3. We also need to represent $f(z)$ as linear functions...

Some observations

1. Several “value function recursions”:

$$V(x) = \mathbb{E}_\xi [c(\xi)^\top y^*(\xi) + f(z^*(\xi))]$$

$$V_{LDR}(x) = \mathbb{E}_\xi [c(\xi)^\top Y^*(x) \cdot \xi + \mathbf{F}^*(x) \cdot \xi]$$

$$V_{LFDR}(x) = \mathbb{E}_\xi [c(\xi)^\top (Y_\xi \cdot \xi + Y_x \cdot x) + \mathbf{F}_\xi \cdot \xi + \mathbf{F}_x \cdot x].$$

2. For fixed x , the LFDR is a feasible LDR for both y and z , so

$$V_{LFDR}(x) \geq V_{LDR}(x) \geq V(x).$$

3. We also need to represent $f(z)$ as linear functions...

4. So $\frac{\partial V_{LFDR}(x)}{\partial x}$ is constant!

More general decision rules

- We *lift* x to a higher-dimensional space and only require that the decision rule is linear in the *lifted* variables;
- If $x = \sum_{i=1}^J x_i$, this leads to a piecewise-linear decision rule.

More general decision rules

- We *lift* x to a higher-dimensional space and only require that the decision rule is linear in the *lifted* variables;
- If $x = \sum_{i=1}^J x_i$, this leads to a piecewise-linear decision rule.
- We have $V_{PWLF}(x) = \mathbb{E} \left[c(\xi)^\top (\hat{Y}_\xi \cdot \xi + \hat{Y}_x \cdot \mathbf{L}(x)) + \dots \right]$.

More general decision rules

- We *lift* x to a higher-dimensional space and only require that the decision rule is linear in the *lifted* variables;
- If $x = \sum_{i=1}^J x_i$, this leads to a piecewise-linear decision rule.
- We have $V_{PWLF}(x) = \mathbb{E} \left[c(\xi)^\top (\hat{Y}_\xi \cdot \xi + \hat{Y}_x \cdot \mathbf{L}(x)) + \dots \right]$.
- $L(x)$ is a *piecewise-linear* function, so we might need to *convexify* V_{PWLF} .

More general decision rules

- We *lift* x to a higher-dimensional space and only require that the decision rule is linear in the *lifted* variables;
- If $x = \sum_{i=1}^J x_i$, this leads to a piecewise-linear decision rule.
- We have $V_{PWLF}(x) = \mathbb{E} \left[c(\xi)^\top (\hat{Y}_\xi \cdot \xi + \hat{Y}_x \cdot \mathbf{L}(x)) + \dots \right]$.
- $\mathbf{L}(x)$ is a *piecewise-linear* function, so we might need to *convexify* V_{PWLF} .

Theorem

The natural polyhedral representation, including the simplicial constraints

$$0 \leq x_J \leq \dots \leq x_2 \leq x_1 \leq (\max x)/J$$

More general decision rules

- We *lift* x to a higher-dimensional space and only require that the decision rule is linear in the *lifted* variables;
- If $x = \sum_{i=1}^J x_i$, this leads to a piecewise-linear decision rule.
- We have $V_{PWLF}(x) = \mathbb{E} \left[c(\xi)^\top (\hat{Y}_\xi \cdot \xi + \hat{Y}_x \cdot \mathbf{L}(x)) + \dots \right]$.
- $\mathbf{L}(x)$ is a *piecewise-linear* function, so we might need to *convexify* V_{PWLF} .

Theorem

The natural polyhedral representation, including the simplicial constraints

$$0 \leq x_J \leq \dots \leq x_2 \leq x_1 \leq (\max x)/J$$

yields $\left\{ \begin{array}{l} \text{a convexification of } V_{PWLF}; \end{array} \right.$

More general decision rules

- We *lift* x to a higher-dimensional space and only require that the decision rule is linear in the *lifted* variables;
- If $x = \sum_{i=1}^J x_i$, this leads to a piecewise-linear decision rule.
- We have $V_{PWLF}(x) = \mathbb{E} \left[c(\xi)^\top (\hat{Y}_\xi \cdot \xi + \hat{Y}_x \cdot \mathbf{L}(x)) + \dots \right]$.
- $\mathbf{L}(x)$ is a *piecewise-linear* function, so we might need to *convexify* V_{PWLF} .

Theorem

The natural polyhedral representation, including the simplicial constraints

$$0 \leq x_J \leq \dots \leq x_2 \leq x_1 \leq (\max x)/J$$

yields $\begin{cases} \text{a convexification of } V_{PWLF}; \\ \text{which remains a valid upper bound for } V_{LDR}(x), \text{ so for } V(x). \end{cases}$

A toy example

```
using JuMP, LinearDecisionRules
using Ipopt, Distributions

demand = 0.3

m = LDRModel(Ipopt.Optimizer)
@variable(m, vi in Uncertainty(distribution=Uniform(0,1)))
@variable(m, inflow in Uncertainty(distribution=Uniform(0,0.2)))
@variable(m, 0 <= vf <= 1)
@variable(m, gh >= 0.0)
@variable(m, gt >= 0.0)

@constraint(m, balance, vf == vi - gh + inflow)
@constraint(m, gt + gh == demand)

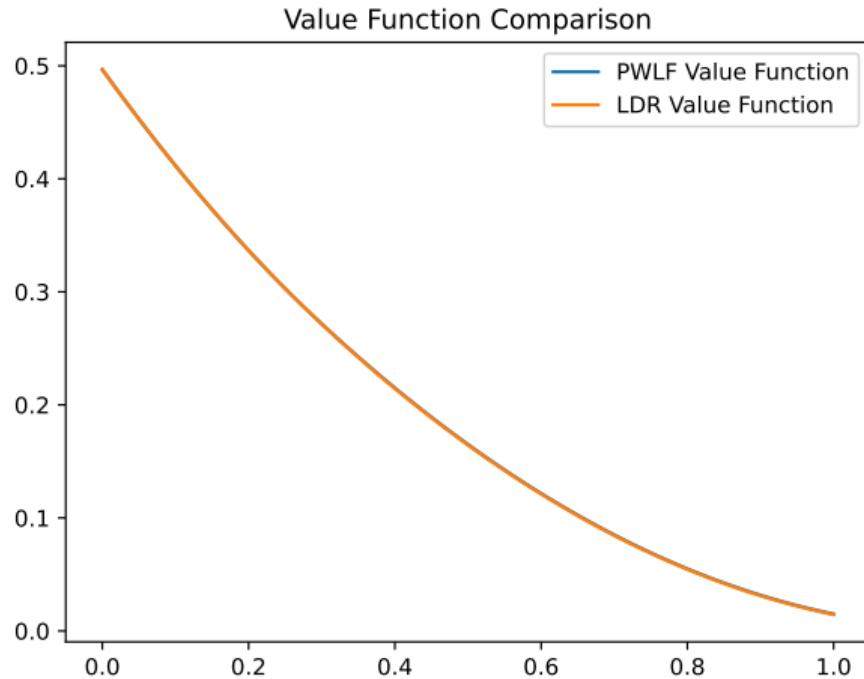
@objective(m, Min, gt^2 + vf^2/2 - vf + 0.5)
```

A toy example (cont.)

```
# Solve the primal LDR
set_attribute(m, SolvePrimal(), true)
set_attribute(m, SolveDual(), false)
set_attribute(vi, BreakPoints(), 5)
optimize!(m)

# Get the value function
VF = JuMP.Model()
@variable(VF, x)
@objective(VF, Min, 0.0)
set_parametric_objective!(VF, m, Dict(vi => x))
```

A toy example

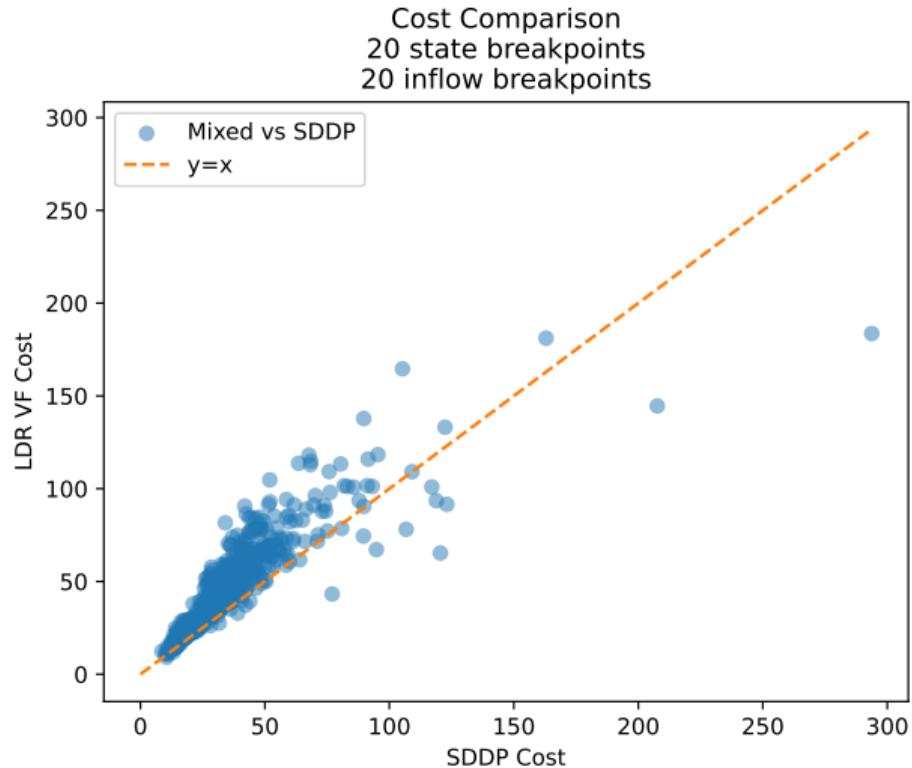


Slightly more complex example

- Still one-dimensional;
- 24 stages, several thermal plants;
- Triangular uncertainty distribution;
- 20 breakpoints for the decision rules.

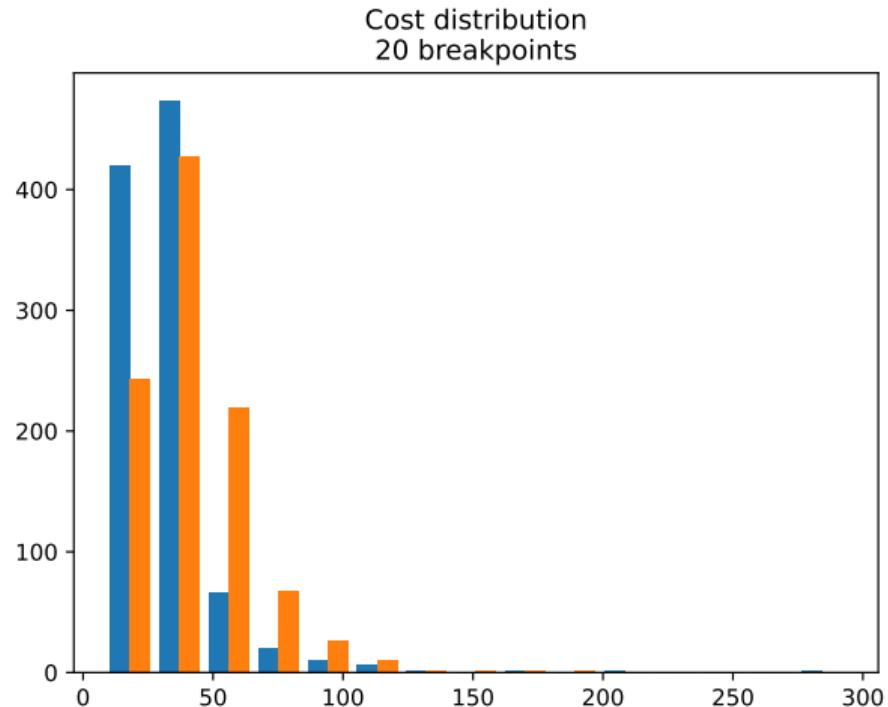
Slightly more complex example

- Still one-dimensional;
- 24 stages, several thermal plants;
- Triangular uncertainty distribution;
- 20 breakpoints for the decision rules.

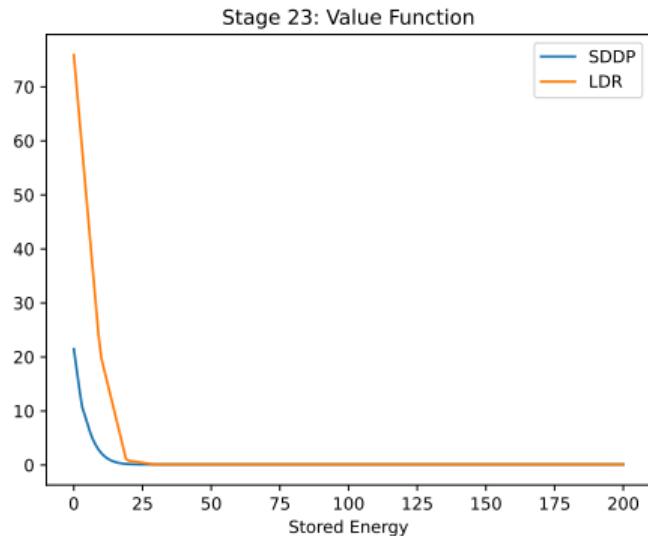
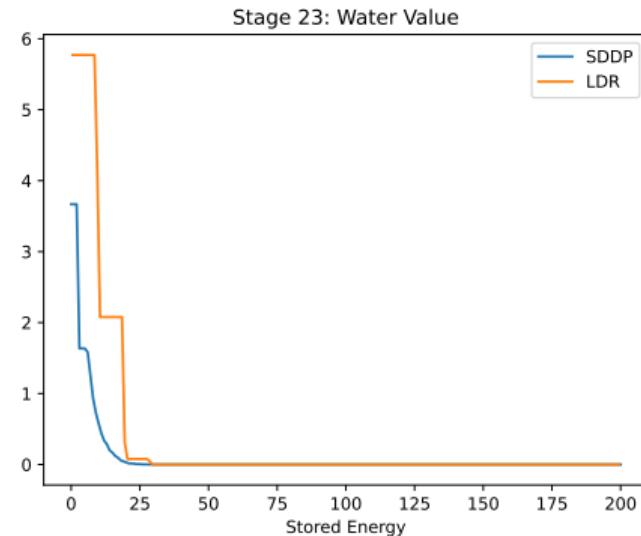


Slightly more complex example

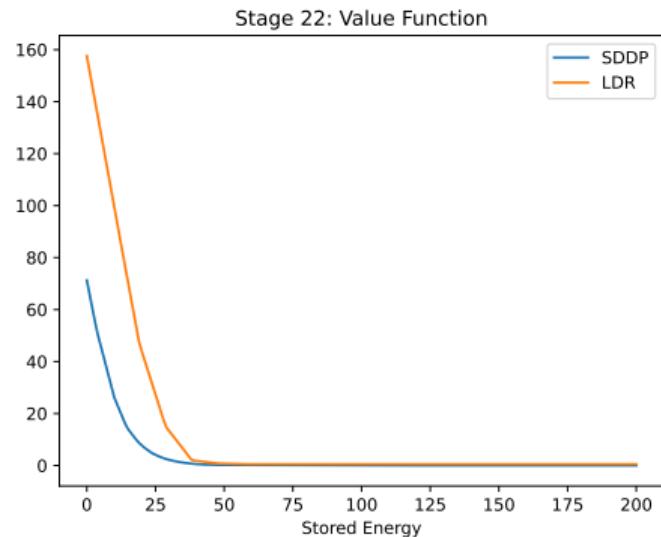
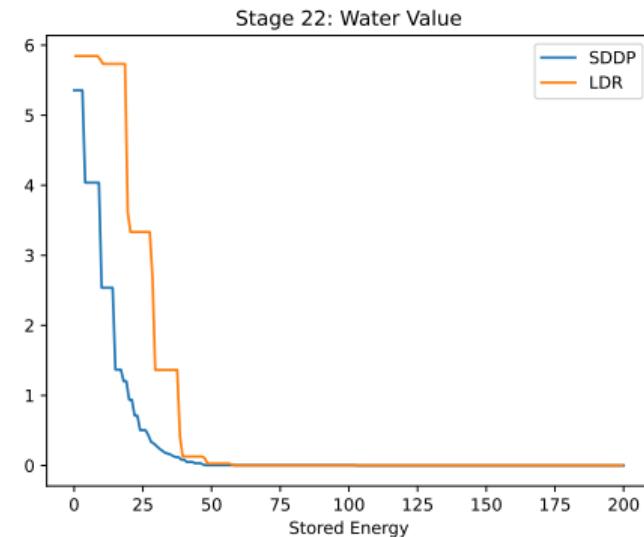
- Still one-dimensional;
- 24 stages, several thermal plants;
- Triangular uncertainty distribution;
- 20 breakpoints for the decision rules.



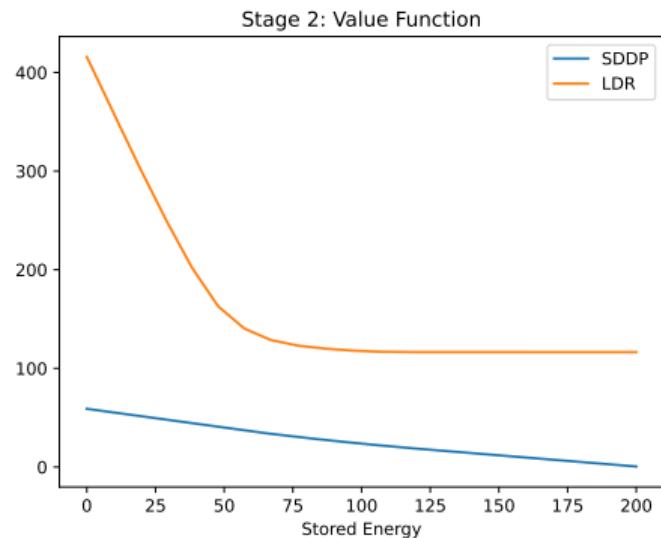
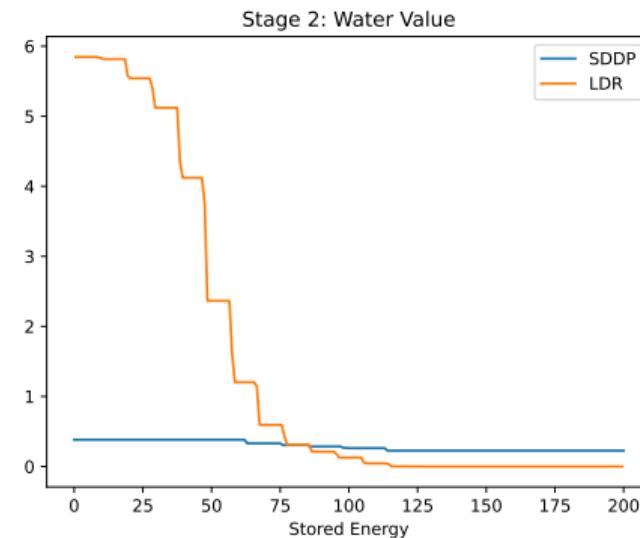
Slightly more complex example



Slightly more complex example



Slightly more complex example



Next steps

Multistage decision rules:

- Generalize **FirstStage** to accommodate decisions x_t which can only depend on *observed* uncertainties ξ_1, \dots, ξ_t ;
- Will benefit from **correlated uncertainties** to model more complex processes.

Next steps

Multistage decision rules:

- Generalize **FirstStage** to accommodate decisions x_t which can only depend on *observed* uncertainties ξ_1, \dots, ξ_t ;
- Will benefit from **correlated uncertainties** to model more complex processes.

Performance:

- Speed-up *model building* for larger problems (ongoing);
- *Auto-tune breakpoints* (number and position);
- Adaptive *state* distribution.

GitHub Package

Documentation

Questions?