Condition Number Shrinkage by Joint Distributionally Robust Covariance-Precision Estimation

Renjie Chen, Viet Anh Nguyen, Huifu Xu Speaker: Renjie Chen

Chinese University of Hong Kong, Department of Systems Engineering and Engineering Management

August, 2025 @ ICSP

Sample Covariance Matrix and Sample precision Matrix

- Let $\xi \in \mathbb{R}^p$ be a random vector with mean zero and **covariance matrix** Σ_0 .
- The **precision matrix** (also called inverse covariance matrix) of ξ is Σ_0^{-1} .
- Sample Covariance Matrix:

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \xi_i \xi_i^{\mathsf{T}}$$

where ξ_1, \ldots, ξ_n are i.i.d. samples of ξ .

- If $\widehat{\Sigma}$ is non-singular, a standard estimator of the precision matrix is $\widehat{\Sigma}^{-1}$.
- However, in high-dimensional and data-deficient case, $\widehat{\Sigma}$ could be ill-conditioned or even singular, which makes the computation of $\widehat{\Sigma}^{-1}$ unstable or not feasible.

Ill-conditioning of the Sample Covariance Matrix: Overestimation and Underestimation of Eigenvalues

• The **condition number** of the sample covariance matrix $\widehat{\Sigma}$ is defined as:

$$\kappa(\widehat{\Sigma}) = rac{\lambda_{\mathsf{max}}(\widehat{\Sigma})}{\lambda_{\mathsf{min}}(\widehat{\Sigma})}$$

where $\lambda_{\max}(\widehat{\Sigma})$ and $\lambda_{\min}(\widehat{\Sigma})$ are the largest and smallest eigenvalues of $\widehat{\Sigma}$.

Ill-conditioning of the Sample Covariance Matrix: Overestimation and Underestimation of Eigenvalues

• It is well-known that $\lambda_{\max}(\cdot)$ is convex, the by Jensen's inequality,

$$\mathbb{E}[\lambda_{\mathsf{max}}(\widehat{\Sigma})] \geq \lambda_{\mathsf{max}}(\mathbb{E}[\widehat{\Sigma}]) = \lambda_{\mathsf{max}}(\Sigma_0).$$

The largest eigenvalue tends to be **overestimated**.

• $\lambda_{\min}(\cdot)$ is concave over \mathbb{S}^p_{++}

$$\mathbb{E}[\lambda_{\mathsf{min}}(\widehat{\Sigma})] \leq \lambda_{\mathsf{min}}(\mathbb{E}[\widehat{\Sigma}]) = \lambda_{\mathsf{min}}(\Sigma_0).$$

The smallest eigenvalue tends to be **underestimated**.

Overestimated Condition Number:

$$\kappa(\widehat{\Sigma})$$
 is often much larger than $\kappa(\Sigma_0)$.

Ledoit Wolf's Linear shrinkage estimator¹

The linear shrinkage estimator

$$S = \rho \nu I + (1 - \rho) \widehat{\Sigma},$$

where ρ is the shrinkage intensity and νI is the shrinkage target.

• The optimal parameter is chosen by minimizing the mean squared error of S:

$$\min_{0 \leq \rho \leq 1, \nu \geq 0} \mathbb{E}\left[\left\|S - \Sigma_0\right\|^2\right], \text{ s.t } S = \rho \nu I + (1 - \rho)\widehat{\Sigma}$$

- The optimal shrinkage target is $\nu^* = \frac{\operatorname{tr}(\Sigma_0)}{p}$, and the optimal intensity is $\rho^* = \frac{\mathbb{E}[\|\widehat{\Sigma} \Sigma_0\|^2]}{\mathbb{E}[\|\widehat{\Sigma} \nu^* I\|^2]}$.
- **Backwards**: Linear structure is not expressive, and shrink too much (too conservative).

¹Ledoit and Wolf 2004, "A well-conditioned estimator for large-dimensional covariance matrices".

Distributionally Robust Covariance Estimation²

- Let $\widehat{\mathbb{P}}_n$ be the empirical distribution of i.i.d. samples ξ_1, \dots, ξ_n .
- The sample covariance matrix is $\widehat{\Sigma} = \mathbb{E}_{\widehat{\mathbb{p}}_{\omega}}[\xi \xi^{\mathsf{T}}].$
- Yue et al. proposed to view $\widehat{\Sigma}$ as the unique solution to the minimization problem

$$\widehat{\Sigma} = \arg \min_{\Sigma \in \mathbb{S}_+^p} \ \|\Sigma\|_F^2 - 2\langle \Sigma, \widehat{\Sigma} \rangle \ = \ \arg \min_{\Sigma \in \mathbb{S}_+^p} \ \underbrace{\|\Sigma\|_F^2 - 2\mathbb{E}_{\widehat{\mathbb{P}}_n}[\langle \Sigma, \xi \xi^\mathsf{T} \rangle]}_{\triangleq \mathrm{FrobeniusLoss}(\Sigma, \widehat{\mathbb{P}}_n)}.$$

²Yue et al. 2024, "A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set".

Distributionally Robust Covariance Estimation

• A moment-based ambiguity set centered at the nominal distribution $\widehat{\mathbb{P}}_n$ with radius $\varepsilon > 0$:

$$\mathcal{P}_{\varepsilon}(\widehat{\mathbb{P}}_{n}) \triangleq \left\{ \mathbb{Q} : \mathbb{E}_{\mathbb{Q}}[\xi] = 0, \mathbb{E}_{\mathbb{Q}}[\xi\xi^{\mathsf{T}}] = S, D\left(S, \mathbb{E}_{\widehat{\mathbb{P}}_{n}}[\xi\xi^{\mathsf{T}}]\right) \leq \varepsilon \right\},$$

where D is a divergence in the space of positive semidefinite matrices to measure the discrepancy between two matrices.

• The distributionally robust covariance estimation model:

$$\min_{\Sigma \in \mathbb{S}_{++}^p} \max_{\mathbb{Q} \in \mathcal{P}_\varepsilon(\widehat{\mathbb{P}}_n)} \ \|\Sigma\|_F^2 - 2\mathbb{E}_{\widehat{\mathbb{P}}_n}[\langle \Sigma, \xi \xi^\mathsf{T} \rangle]$$

Distributionally Robust Covariance Estimation

• Under certain assumption on choice of divergence *D*, the distributionally robust covariance estimation model reduces to

$$\min_{D(S,\widehat{\Sigma})\leq\varepsilon} \|S\|_F^2.$$

- It shrinks all the eigenvalues towards 0, i.e., the shrinkage target of covariance matrix is zero matrix.
- The shrinkage intensity is decided by ε . The larger ε , the more shrinkage.
- Backwards: (1) shrinkage target 0 is not well-conditioned; (2) it underestimates λ_{\min} even worse.

Distributionally Robust Precision Estimation³

• If $\widehat{\Sigma}$ is non-singular, the sample precision matrix estimator can be viewed as the optimal solution of:

$$\widehat{X} = \arg\min_{X \in \mathbb{S}_{++}^p} - \log \det X + \langle X, \widehat{\Sigma} \rangle \ = \ \arg\min_{X \in \mathbb{S}_{++}^p} \ \underbrace{- \log \det X + \mathbb{E}_{\widehat{\mathbb{P}}_n}[\langle X, \xi \xi^\mathsf{T} \rangle]}_{\triangleq \operatorname{SteinLoss}(X, \mathbb{P}_n)}.$$

• The optimal solution is $\widehat{X} = \widehat{\Sigma}^{-1}$.

³Nguyen, Kuhn, and Mohajerin Esfahani 2022, "Distributionally robust inverse covariance estimation: The Wasserstein shrinkage estimator".

Distributionally Robust Precision Estimation

• Nguyen et al. consider the distributionally robust precision estimation model:

$$\min_{X \in \mathbb{S}_{++}^{p}} - \log \det X + \max_{\mathbb{Q} \in \mathcal{P}_{\varepsilon}(\widehat{\mathbb{P}}_{n})} \mathbb{E}_{\mathbb{Q}}[\langle X, \xi \xi^{\mathsf{T}} \rangle].$$

- The resulting distributionally robust precision matrix estimator is also a shrinkage estiamtor.
- It shrinks all the eigenvalues of precision matrix towards 0, i.e., the shinkage target of precision matrix is zero matrix.
- It is equivalent to shrink the eigenvalues of covariance matrix towards $+\infty$.
- The shrinkage intensity is also control by radius ε .
- **Backwards**: It overestimates λ_{max} even worse.

Distributionally Robust Covariance-precision Estimation

• Consider the joint covariance-precision matrix estimation model:

$$\begin{aligned} & \underset{\Sigma,X}{\min} & \operatorname{SteinLoss}(X,\widehat{\mathbb{P}}_n) + \frac{\tau}{2} \operatorname{FrobeniusLoss}(\Sigma,\widehat{\mathbb{P}}_n) \\ & \text{s.t.} & \Sigma \in \mathbb{S}_+^p, \ X \in \mathbb{S}_{++}^p, \ X\Sigma = I. \end{aligned}$$

When $\widehat{\Sigma}$ is non-singular, the optimal solution is $\left(\Sigma^\star = \widehat{\Sigma}, X^\star = \widehat{\Sigma}^{-1}\right)$.

Distributionally Robust Covariance-precision Estimation

• Consider the moment-based ambiguity set centered at the nominal distribution $\widehat{\mathbb{P}}_n$ with radius $\varepsilon > 0$ again:

$$\mathcal{P}_{\varepsilon}(\widehat{\mathbb{P}}_n) \triangleq \left\{ \mathbb{Q} : \mathbb{E}_{\mathbb{Q}}[\xi] = 0, \mathbb{E}_{\mathbb{Q}}[\xi\xi^{\mathsf{T}}] = S, D\left(S, \mathbb{E}_{\widehat{\mathbb{P}}_n}[\xi\xi^{\mathsf{T}}]\right) \leq \varepsilon \right\}.$$

• Define the pair of distributionally robust covariance-precision matrix estimator (Σ^*, X^*) by

Distributionally Robust Covariance-precision Estimation

- Note that the objective function depends on \mathbb{Q} only through term $\mathbb{E}_{\mathbb{Q}}[\xi\xi^{\mathsf{T}}]$.
- The DRO model reduces to the following robust optimization (RO) problem:

$$\begin{split} (\Sigma^{\star}, X^{\star}) &= \arg \min_{\substack{\Sigma, X \in \mathbb{S}_{++}^{\rho} \\ X \Sigma = I}} \max_{S \in \mathbb{S}_{+}^{\rho} : D(S, \widehat{\Sigma}) \leq \varepsilon} \left\{ -\log \det X + \langle X, S \rangle + \frac{1}{2} \tau \left(\|\Sigma\|_F^2 - 2 \langle \Sigma, S \rangle \right) \right\}. \end{split}$$
 (RO)

- Question:
- The constraint of (RO) is not convex. How can we solve it?
- Do we get a condition-number-shrunk optimal solution pair?
- If yes, what is the shrinkage target and intensity?
- How to choose parameter τ and ε ?

Solvable max-min problem

• Interchange the order of min-max of (RO) gives

$$\max_{D(S,\widehat{\Sigma}) \leq \varepsilon} \begin{pmatrix} \min_{X,\Sigma} & \langle \widehat{\Sigma}, X \rangle - \log \det X + \frac{1}{2}\tau \left(\|\Sigma\|_F^2 - 2\langle \Sigma, S \rangle \right) \\ \text{s.t.} & X \in \mathbb{S}_{++}^p, \ \Sigma \in \mathbb{S}_+^p, \ X\Sigma = I \end{pmatrix}.$$

• The inner min problem is solved by $\Sigma^* = (X^*)^{-1} = S$, when S is non-singular. Then it becomes

$$\max_{S \in \mathbb{S}_{+}^{p}: D(S, \widehat{\Sigma}) \leq \varepsilon} \log \det S - \frac{1}{2} \tau \|S\|_{F}^{2}. \tag{P-Mat}$$

• The following saddle-point theorem shows that the interchanging of min-max keeps the problem nature, i.e., optimal solution of (P-Mat) solves (RO).

Saddle Point Theorem

Theorem 1

Suppose that

- 1. $D(\cdot, \widehat{\Sigma})$ is convex, differentiable and $\{S \in \mathbb{S}_{++}^p : D(S, \widehat{\Sigma}) \leq \varepsilon\}$ is compact,
- 2. $(\widehat{\Sigma}, \widehat{\Sigma}) \in \text{dom}(D)$, and
- 3. Slater's condition holds, i.e., there exists $S \in \mathbb{S}^p_+$ such that $D(S, \widehat{\Sigma}) < \varepsilon$.

Let $\tau > 0$ and S^* be an optimal solution defined as

$$S^{\star} = \arg\max_{S \in \mathbb{S}_{+}^{p}: D(S, \widehat{\Sigma}) \leq \varepsilon} \log \det S - \frac{1}{2}\tau \|S\|_{F}^{2}. \tag{P-Mat}$$

Then the tuple $(\Sigma = S^*, X = (S^*)^{-1}, S = S^*)$ is an optimal solution of (RO).

Unbinding Constraint Case

Now we deal with the solvability of (P-Mat).

$$S^{\star} = \arg\max_{S \in \mathbb{S}_{+}^{p}: D(S, \widehat{\Sigma}) \leq \varepsilon} \log \det S - \frac{1}{2}\tau \|S\|_{F}^{2}. \tag{P-Mat}$$

We first consider a relatively straightforward case where the constraint is unbinding.

Proposition 1

If
$$\varepsilon \geq \varepsilon_{\mathsf{max}} \triangleq D\left(\sqrt{\frac{1}{\tau}}I,\widehat{\Sigma}\right)$$
, then $S^{\star} = \sqrt{\frac{1}{\tau}}I$ is the optimal solution to (P-Mat).

In the following discussion, we assume that $0 < \varepsilon < \varepsilon_{\text{max}}$, and show that under some assumption on choice of divergence D, (P-Mat) can be solved in quasi-closed form.

Assumption 1: Convex Spectral Divergence D I

The divergence function $D: \mathbb{S}_+^p \times \mathbb{S}_+^p \to \mathbb{R}_+$ is non-negative, continuous, and satisfies the identity of indiscernibles, that is, for any $X,Y \in \mathrm{dom}(D)$ we have D(X,Y)=0 if and only if X=Y. For any $Y\in \mathrm{dom}(D)$, $D(\cdot,Y)$ is convex, differentiable and for any $Y\in \mathrm{dom}(D)$, $\varepsilon>0$ the set $\{S\in \mathbb{S}_{++}^p: D(S,Y)\leq \varepsilon\}$ is compact. In addition, D satisfies the following structural conditions.

- (i) (Orthogonal equivariance) For any $X, Y \in \mathbb{S}_+^p$ and orthogonal matrix V, we have $D(X, Y) = D(VXV^T, VYV^T)$.
- (ii) (Spectrality) There exists a function $d: \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$D(\operatorname{diag}(x),\operatorname{diag}(y)) = \sum_{i=1}^{p} d(x_i,y_i), \forall x,y \in \mathbb{R}_+^p$$

and d(a, b) is twice continuously differentiable in a for every $b \ge 0$. In the following, we refer to d as the generator of D.

Assumption 1: Convex Spectral Divergence D II

(iii) (Rearrangement property) For any $x,y\in\mathbb{R}^p_+$ and $V\in\mathcal{O}(p)$ we have

$$D(V \mathrm{diag}(x^\uparrow) V^\mathsf{T}, \mathrm{diag}(y^\uparrow)) \geq D(\mathrm{diag}(x^\uparrow), \mathrm{diag}(y^\uparrow)).$$

If its left side is finite, this inequality becomes an equality if and only if $V \operatorname{diag}(x^{\uparrow}) V^{\mathsf{T}} = \operatorname{diag}(x^{\uparrow})$.

Remark: Consider $(al, bl) \in dom(D)$. Then by (ii), the domain of d is

$$\operatorname{dom}(d) = \{(a,b) \in \mathbb{R}^2_+ : (aI,bI) \in \operatorname{dom}(D)\},\$$

and

$$D(al, bl) = p \times d(a, b).$$

It implies that d inherits non-negativity, continuity, identity of indiscernibles, and convexity from D. Then we conclude that d(b,b)=0, $\frac{\partial d}{\partial a}(b,b)=0$ and thus b is the unique minimizer of the function $d(\cdot,b)$ for any b>0.

Reduction of (P-Mat) to a Vector Space Problem

- Let $\widehat{\Sigma} = \widehat{V} \operatorname{diag}(\widehat{\lambda}_1, \dots, \widehat{\lambda}_p) \widehat{V}^\mathsf{T}$ be the spectral decomposition of $\widehat{\Sigma}$.
- Under Assumption 1, we are able to show that (P-Mat) can be reduced to a problem that optimizes over all vectors in the non-negative orthant \mathbb{R}^p_+ :

$$\max_{s_i \ge 0} \sum_{i=1}^{p} \log s_i - \frac{1}{2}\tau \sum_{i=1}^{p} s_i^2$$
s.t.
$$\sum_{i=1}^{p} d(s_i, \widehat{\lambda}_i) \le \varepsilon.$$
 (P-Vec)

Proposition 2 (Equivalence of (P-Mat) and (P-Vec))

If Assumption 1 holds, then problem (P-Mat) is equivalent to (P-Vec) in the following sense.

- (i) If s^* solves (P-Vec), then $\widehat{V} \operatorname{diag}(s^*) \widehat{V}^{\mathsf{T}}$ solves (P-Mat).
- (ii) If S^* solves (P-Mat), then the vector of its eigenvalues $\lambda(S^*)$ solves (P-Vec).

Quasi-closed Form of Solution of (P-Vec)

• By the standard Lagrange dual approach, the dual of (P-Vec) is equivalent to

$$\min_{\gamma \geq 0} \max_{s_i \geq 0} \sum_{i=1}^{p} \log s_i - \frac{1}{2} \tau \sum_{i=1}^{p} s_i^2 - \gamma \left(\sum_{i=1}^{p} d(s_i, \widehat{\lambda}_i) - \varepsilon \right).$$

• Define a solution mapping $\varphi: \mathbb{R}^3_+ \to \mathbb{R}$ via

$$\varphi(\tau, \gamma, b) = \text{the unique solution } a^* > 0 \text{ of the equation } 0 = \frac{1}{a^*} - \tau a^* - \gamma \frac{\partial d}{\partial a}(a^*, b).$$

• For fixed γ , the inner maximization problem is solved by

$$s_i^{\star} = \varphi(\tau, \gamma, \widehat{\lambda}_i).$$

• By complementary slackness condition, the optimal Lagrange multipler γ^\star must satisfies

$$\sum_{i=1}^{p} d(\varphi(\tau, \gamma^{\star}, \widehat{\lambda}_{i}), \widehat{\lambda}_{i}) - \varepsilon = 0.$$

Quasi-closed Form of Solution of (P-Vec)

Proposition 3 (Solution of (P-Vec))

If $\sum_{i=1}^p d\left(\sqrt{\frac{1}{\tau}}, \widehat{\lambda}_i\right) > \varepsilon$, then (P-Vec) admits a unique optimal solution s^* and

$$s_i^{\star} = \varphi(\tau, \gamma^{\star}, \widehat{\lambda}_i),$$

where γ^{\star} is the unique solution of the nonlinear equation

$$\sum_{i=1}^{p} d(\varphi(\tau, \gamma^*, \widehat{\lambda}_i), \widehat{\lambda}_i) - \varepsilon = 0.$$

Uniqueness of γ^*

• Define $F: \mathbb{R}_+ \to \mathbb{R}$ through $F(\gamma) = \sum_{i=1}^p d(\varphi(\tau, \gamma, \widehat{\lambda}_i), \widehat{\lambda}_i)$.

Proposition 4 (Differentiable and strictly decreasing F)

The function F is differentiable and strictly decreasing over \mathbb{R}_+ . If

$$\varepsilon < \varepsilon_{\mathsf{max}} \triangleq \sum_{i=1}^p d\left(\sqrt{\frac{1}{\tau}}, \widehat{\lambda}_i\right)$$
, then $\lim_{\gamma \downarrow 0} F(\gamma) > \varepsilon$ and $\lim_{\gamma \to \infty} F(\gamma) < \varepsilon$.

The proposition reveals that

- $F(\gamma) = \varepsilon$ admits a unique positive root,
- the equation can be solved efficiently by bisection or Newton's method.

Construction of Distributionally Robust Covariance-precision Estimators

Taking all steps so far:

$$(\mathsf{DRO}) \Leftrightarrow (\mathsf{RO}) \Leftrightarrow (\mathsf{P}\text{-}\mathsf{Mat}) \Leftrightarrow (\mathsf{P}\text{-}\mathsf{Vec}) \Rightarrow \mathsf{quasi-closed}$$
 form solution.

- Recall that $\widehat{\Sigma} = \widehat{V} \operatorname{diag}(\widehat{\lambda}_1, \dots, \widehat{\lambda}_p) \widehat{V}^\mathsf{T}$ is the spectral decomposition of $\widehat{\Sigma}$.
- The theorem reveals how to construct the distributionally robust covariance-precision estimator.

Theorem 2 (Construction of covariance estimator)

Under certain assumptions, the optimal solution of (RO) is given by $(\Sigma^* = \widehat{V}\Phi(\tau, \gamma^*, \widehat{\lambda})\widehat{V}^\mathsf{T}, X = \Sigma^{*-1})$, where

$$\Phi(\tau, \gamma^{\star}, \widehat{\lambda}) \triangleq \operatorname{diag}(\varphi(\tau, \gamma^{\star}, \widehat{\lambda}_{1}), \dots, \varphi(\tau, \gamma^{\star}, \widehat{\lambda}_{p})),$$

where γ^* is the unique positive root of the equation $\sum_{i=1}^p d(\varphi(\tau, \gamma^*, \widehat{\lambda}_i), \widehat{\lambda}_i) - \varepsilon = 0$.

Proof Structure of Theorem 2

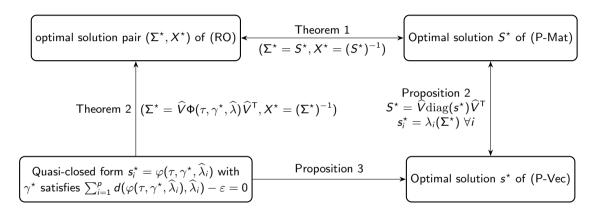


Figure 1: Structure of the proof of Theorem 2.

Nonlinear Shrinkage Estimator

• Define the covariance matrix estimator by

$$\Sigma^{\star}(\tau,\varepsilon) \triangleq \widehat{V}\operatorname{diag}(\varphi(\tau,\gamma_{\widehat{\lambda}}(\varepsilon),\widehat{\lambda}_{1}),\ldots,\varphi(\tau,\gamma_{\widehat{\lambda}}(\varepsilon),\widehat{\lambda}_{p}))\widehat{V}^{\mathsf{T}},\varepsilon \in (0,\varepsilon_{\mathsf{max}}], \quad (1)$$

where
$$\gamma_{\widehat{\lambda}}(\varepsilon)$$
 denote the unique root of $\sum_{i=1}^{p} d(\varphi(\tau, \gamma^{\star}, \widehat{\lambda}_{i}), \widehat{\lambda}_{i}) - \varepsilon = 0$.

Nonlinear Shrinkage and Improved Condition Number

Theorem 3

If Assumptions hold, then for any $\tau>0$, $\Sigma^{\star}(\tau,\varepsilon)$ is continuous over $\varepsilon\in(0,\varepsilon_{\text{max}}]$ and $\lim_{\varepsilon\to0}\Sigma^{\star}(\tau,\varepsilon)=\widehat{\Sigma}$, $\Sigma^{\star}(\tau,\varepsilon_{\text{max}})=\sqrt{\frac{1}{\tau}}I$. Moreover, if $\lambda_{\text{min}}(\widehat{\Sigma})<\sqrt{\frac{1}{\tau}}<\lambda_{\text{max}}(\widehat{\Sigma})$, then we have

- $\text{(i)} \ \ \lambda_{\mathsf{min}}(\widehat{\Sigma}) < \lambda_{\mathsf{min}}(\Sigma^{\star}(\varepsilon)) < \sqrt{\tfrac{1}{\tau}} < \lambda_{\mathsf{max}}(\Sigma^{\star}(\varepsilon)) < \lambda_{\mathsf{max}}(\widehat{\Sigma}) \ \ \textit{for any } \varepsilon \in (0,\varepsilon_{\mathsf{max}}],$
- (ii) $\kappa(\Sigma^*(\varepsilon))$ is strictly decreasing on ε , and thus $\kappa(\Sigma^*(\varepsilon)) < \kappa(\widehat{\Sigma})$ for any $\varepsilon \in (0, \varepsilon_{\mathsf{max}}]$.
 - The proposed covariance-precision matrix estimator can be interpreted as a nonlinear shrinkage estimator with
 - $\sqrt{\frac{1}{\tau}}I$ is the shrinkage target,
 - ε controls the shrinkage intensity.
 - The nonlinear shrinkage improves the condition number strictly.

Convex Spectral Divergences

Theorem 4

All divergences in Table 1 satisfy the Convex Spectral Divergence Assumption.

Divergence function	$D(\Sigma,\widehat{\Sigma})$	d(a,b)	Domain of D
Kullback-Leibler	$rac{1}{2} \left(\operatorname{tr}(\widehat{\Sigma}^{-1}\Sigma) - p + \log \operatorname{det}(\widehat{\Sigma}\Sigma^{-1}) ight)$	$\frac{1}{2}\left(\frac{a}{b}-1-\log\frac{a}{b}\right)$	$\mathbb{S}^{p}_{++} \times \mathbb{S}^{p}_{++}$
Wasserstein	$\operatorname{tr}\left(\Sigma+\widehat{\Sigma}-2(\Sigma^{\frac{1}{2}}\widehat{\Sigma}\Sigma^{\frac{1}{2}})^{\frac{1}{2}}\right)$	$a+b-2\sqrt{ab}$	$\mathbb{S}^p_+ \times \mathbb{S}^p_+$
Symmetrized Stein	$rac{1}{2}\left(\mathrm{tr}(\widehat{\Sigma}^{-1}\Sigma)+\mathrm{tr}(\Sigma^{-1}\widehat{\Sigma})-2 ho ight)$	$\frac{1}{2}\left(\frac{b}{a}+\frac{a}{b}-2\right)$	$\mathbb{S}^{p}_{++} \times \mathbb{S}^{p}_{++}$
Squared Frobenius	$\operatorname{tr}\left((\Sigma-\widehat{\Sigma})^2\right)$	$(a - b)^2$	$\mathbb{S}^p_+ \times \mathbb{S}^p_+$
Weighted Frobenius	$\operatorname{tr}\left((\Sigma-\widehat{\Sigma})\widehat{\Sigma}^{-1}\right)$	$\frac{(a-b)^2}{b}$	$\mathbb{S}^{p}_{+} \times \mathbb{S}^{p}_{++}$

Table 1: Divergence functions and their generators.

Solution Mapping and Upper Bound of Dual Variable

Taking D as any divergence in Table 1, we can construct the optimal solution of (RO) using Theorem 2. The key steps are

- to find out the solution mapping φ as function of τ , γ and b,
- to solve the equation $\sum_{i=1}^{p} d(\varphi(\tau, \gamma^{\star}, \widehat{\lambda}_{i}), \widehat{\lambda}_{i}) \varepsilon = 0$ to find out dual variable γ^{\star} .

Solution Mapping and Upper Bound of Dual Variable

Divergence function	Solution mapping $arphi(au,\gamma,b)$	Upper bound of γ^{\star}		
Kullback-Leibler	$\frac{-\gamma + \sqrt{\gamma^2 + 8\tau(2+\gamma)b^2}}{4\tau b}$	$\max\left\{\frac{2p}{\varepsilon},\frac{2\tau\widehat{\lambda}_p^2+1}{e^{\varepsilon/P}-1}\right\}$		
Wasserstein	unique positive root a of $ au a^2 + \gamma a - \gamma \sqrt{b} \sqrt{a} - 1 = 0$	$\sqrt{\max\left\{\frac{p(1-\tau\widehat{\lambda}_1^2)^2}{\varepsilon\widehat{\lambda}_1},\frac{p(1-\tau\widehat{\lambda}_p^2)^2}{\varepsilon\widehat{\lambda}_1}\right\}}$		
Symmetrized Stein	unique positive root a of $2\tau ba^3 + \gamma a^2 - 2ba - \gamma b^2 = 0$	$\sqrt{\max\left\{\frac{\rho(1-\tau\widehat{\lambda}_{\rho}^2)^2}{4\varepsilon\widehat{\lambda}_1^4},\frac{\rho(1-\tau\widehat{\lambda}_1^2)^2}{4\varepsilon\widehat{\lambda}_1^4}\right\}}$		
Squared Frobenius	$\frac{\gamma b}{\tau + 2\gamma} + \frac{\sqrt{\gamma^2 b^2 + \tau + 2\gamma}}{\tau + 2\gamma}$	$\sqrt{\max\left\{\frac{\rho(1-\tau\widehat{\lambda}_1^2)^2}{4\varepsilon\widehat{\lambda}_1^2},\frac{\rho(1-\tau\widehat{\lambda}_p^2)^2}{4\varepsilon\widehat{\lambda}_1^2}\right\}}$		
Weighted Frobenius	$\frac{\gamma b}{\tau b + 2\gamma} + \frac{\sqrt{\gamma^2 b^2 + b(\tau b + 2\gamma)}}{\tau b + 2\gamma}$	$\sqrt{\max\left\{\frac{\rho\widehat{\lambda}_{\rho}(1-\tau\widehat{\lambda}_{1}^{2})^{2}}{4\varepsilon\widehat{\lambda}_{1}^{2}},\frac{\rho\widehat{\lambda}_{\rho}(1-\tau\widehat{\lambda}_{\rho}^{2})^{2}}{4\varepsilon\widehat{\lambda}_{1}^{2}}\right\}}$		

Table 2: Solution mapping and upper bound of dual variable. $\widehat{\lambda}_1$ and $\widehat{\lambda}_p$ are the smallest and largest eigenvalues of $\widehat{\Sigma}$.

Parameter Tuning: Minimizing MSE not Working

- Our estimator $\Sigma^*(\tau, \varepsilon)$ is parameterized by τ and ε , where τ determine the shrinkage target and ε is the shrinkage intensity.
- In Ledoit-Wolf's linear shrinkage estimator, they minimize MSE of the proposed estimator to find optimal parameters.
- If we borrow the same idea , we could solve

$$\min_{\tau \in \mathbb{R}_{++}, \varepsilon \in \mathbb{R}_{+}} \mathbb{E}[\|\Sigma^{\star}(\tau, \varepsilon) - \Sigma_{0}\|_{F}^{2}]. \tag{2}$$

- However, the dependence of $\Sigma^*(\tau, \varepsilon)$ on τ and ε is nonlinear. It makes (2) hard to analyze.
- From another perspective, we hope the optimal solution of (P-Mat) is close to Σ_0 .

Optimal Shrinkage Target

- In the first step, we hope the shrinkage target is near to Σ_0 .
- Recall that the objective of (P-Mat) is

$$\ell_{ au}(S) riangleq \log \det S - rac{1}{2} au \|S\|_F^2,$$

and the shrinkage target $\sqrt{\frac{1}{\tau}}I$ is the optimal solution of

$$\min_{S\in\mathbb{S}^p_{++}}\ \ell_{\tau}(S).$$

- We choose τ such that Σ_0 can nearly solve $\min_{S \in \mathbb{S}_{++}^p} \ell_{\tau}(S)$ (and thus close to $\sqrt{\frac{1}{\tau}}I$).
- We minimize the gradient norm of $\ell_{\tau}(S)$ evaluated at $S = \Sigma_0$:

$$\min_{\tau \in \mathbb{R}_{++}} \|\nabla_{\mathcal{S}} \ell_{\tau}(\mathcal{S})|_{\mathcal{S} = \Sigma_0} \|_{\mathcal{F}} = \min_{\tau \in \mathbb{R}_{++}} \|\Sigma_0^{-1} - \tau \Sigma_0\|_{\mathcal{F}}.$$

Optimal Shrinkage Target

• The above problem is solved by $\tau = \tau^\star \triangleq \frac{p}{\|\Sigma_0\|_E^2}$, and the induced shrinkage target is

$$S = \frac{\|\Sigma_0\|_F}{\sqrt{p}}I.$$

• Note that $\left\|\frac{\|\Sigma_0\|_F}{\sqrt{p}}I\right\|_F = \|\Sigma_0\|_F$, and thus the target can be viewed as a uniform prior with the same scale as Σ_0 , i.e., the total scale is distributed evenly to each dimension.

Optimal Shrinkage Intensity I

• With the optimal target chosen as above, we tune the radius ε so that the true covariance Σ_0 is near the optimal solution of

$$S_{\tau^{\star}}^{\star} \triangleq \arg\max_{S \in \mathbb{S}_{+}^{p}: D(S, \widehat{\Sigma}_{n}) \leq \varepsilon} \log \det S - \frac{1}{2} \tau^{\star} \|S\|_{F}^{2}. \tag{P-Mat-}\tau^{\star})$$

• When the constraint $D(S,\widehat{\Sigma}_n) \leq \varepsilon$ is active, the first-order optimality condition of (P-Mat- τ^*) dictates that $S_{\tau^*}^*$ and the dual variable $\gamma_{\tau^*}^*$ satisfies

$$(S_{\tau^{\star}}^{\star})^{-1} - \tau^{\star} S_{\tau^{\star}}^{\star} - \gamma_{\tau^{\star}}^{\star} D'(S_{\tau^{\star}}^{\star}, \widehat{\Sigma}_{n}) = 0, \tag{3}$$

$$D(S_{\tau^*}^*, \widehat{\Sigma}_n) - \varepsilon = 0, \tag{4}$$

$$\gamma_{\tau^*}^* > 0, S_{\tau^*}^* \in \mathbb{S}_{\perp}^p. \tag{5}$$

Optimal Shrinkage Intensity II

• Recall that $S = \Sigma^*(\tau^*, \varepsilon)$ uniquely solves (3)-(5). By the construction of $\Sigma_n^*(\tau^*, \varepsilon)$, equation (4) becomes

$$\sum_{i=1}^{p} d(\varphi(\tau^{\star}, \gamma, \widehat{\lambda}_{i}), \widehat{\lambda}_{i}) - \varepsilon = 0.$$

• Then the optimal solution of (P-Mat- τ^*) solves

$$S^{-1} - \tau^* S - \gamma_{\widehat{\lambda}}(\varepsilon) D'(S, \widehat{\Sigma}_n) = 0.$$
 (6)

We call the left hand side of (6) as the *extended* gradient of problem (P-Mat- τ^*).

ullet To measure the optimality of S on average, we define the average extended gradient by

$$g(S) \triangleq S^{-1} - \tau^* S - \gamma_{\lambda}(\varepsilon) \mathbb{E}_n[D'(S, \widehat{\Sigma}_n)].$$

Optimal Shrinkage Intensity III

• Then, again, to choose ε so that Σ_0 can nearly solve (P-Mat- τ^*) on average and thus be close to $\Sigma_n^*(\tau^*,\varepsilon)$, we minimize the norm of average extended gradient evaluated at $S=\Sigma_0$:

$$\varepsilon_n^{\star} = \arg\min_{\varepsilon > 0} \ \|g(\Sigma_0)\|_F^2 = \arg\min_{\varepsilon > 0} \ \|\Sigma_0^{-1} - \tau^{\star}\Sigma_0 - \gamma_{\lambda}(\varepsilon)\mathbb{E}_n D'(\Sigma_0, \widehat{\Sigma}_n)\|_F^2. \tag{7}$$

• Though the optimal intensity defined by (7) is not achievable, since we have no access to precise evaluation of Σ_0 and $\mathbb{E}_n D'(\Sigma_0, \widehat{\Sigma}_n)$, it is possible for us to characterize the limit behavior of ε_n^* .

Assumptions

Assumption 1 (Locally-quadratic divergence)

For any b > 0, there exists positive constant $C_{b,d}$ that depends on the divergence d and the limit point b such that

$$\lim_{a\to b}\frac{d(a,b)}{(a-b)^2}=C_{b,d}.$$

• All the divergences in Table 1 satisfy Assumption 1.

Assumptions

Assumption 2 (Non-degenerating divergence gradient)

For all integers n sufficiently large, the derivative of divergence D satisfies $\mathbb{E}_n[D'(\Sigma_0, \widehat{\Sigma}_n)] \neq 0$ and there exists strictly positive C_1 and C_2 such that

$$\lim_{n\to\infty} n \|\mathbb{E}_n[D'(\Sigma_0,\widehat{\Sigma}_n)]\|_F = C_1$$

and

$$\lim_{n\to\infty} n\left\langle \Sigma_0^{-1} - \tau^*\Sigma_0, \mathbb{E}_n[D'(\Sigma_0, \widehat{\Sigma}_n)]\right\rangle = C_2.$$

• Frobenius divergence does not satisfy the assumption, since $D(\Sigma_0, \Sigma_n) = \|\Sigma_0 - \Sigma_n\|_F^2$, and

$$\mathbb{E}[D'(\Sigma_0,\Sigma_n)]=\mathbb{E}[2(\Sigma_0-\Sigma_n)]=0.$$

$1/n^2$ -order optimal radius

Theorem 5 $(1/n^2$ -order optimal radius)

Under the above assumptions, the optimal intensity ε_n^* defined as (7) satisfies

$$\lim_{n\to\infty} n^2 \varepsilon_n^* = \varepsilon^*,$$

where the limit ε^* depends on divergence D and the underlying data-generating distribution.

Corollary: Optimal Shrinkage Intensity of Convex Divergences I

Let the optimal radius ε_n^* be defined as (7). Then under Assumptions, we have

(i) if D is taken as Kullback-Leibler divergence, then

$$\lim_{n \to \infty} n^2 \varepsilon_n^* = \frac{(p+1)^2 \|\Sigma_0^{-1}\|_F^4}{16 \left(\|\Sigma_0^{-1}\|_F^2 - \frac{p^2}{\|\Sigma_0\|_F^2} \right)^2} \sum_{i=1}^p \left(1 - \tau^* \lambda_i^2 \right)^2, \tag{8}$$

(ii) if D is taken as symmetrized Stein divergence, then

$$\lim_{n \to \infty} n^2 \varepsilon_n^* = \frac{(p+1)^2 \|\Sigma_0^{-1}\|_F^4}{32 \left(\|\Sigma_0^{-1}\|_F^2 - \frac{p^2}{\|\Sigma_0\|_F^2}\right)^2} \sum_{i=1}^p \left(1 - \tau^* \lambda_i^2\right)^2,\tag{9}$$

Corollary: Optimal Shrinkage Intensity of Convex Divergences II

(iii) if D is taken as Wasserstein divergence, then

$$\lim_{n\to\infty} n^2 \varepsilon_n^{\star} = \frac{(p+1)^2 p^2}{256 \left(\operatorname{tr}(\Sigma_0^{-1}) - \frac{p}{\|\Sigma_0\|_E^2} \operatorname{tr}(\Sigma_0) \right)^2} \sum_{i=1}^p \frac{(1-\tau^{\star}\lambda_i)^2}{\lambda_i}.$$
 (10)

Numerical Test Setup

Data Generation

True covariance

$$\Sigma_0 = V^{\top} \Lambda V \in \mathbb{S}_+^p, \quad \Lambda = \operatorname{diag}(1, 2, \dots, p),$$

with V drawn uniformly from the orthogonal group. Thus $\kappa(\Sigma_0) = p$.

- Draw n samples from $\mathcal{N}(0, \Sigma_0)$ and compute the sample covariance $\widehat{\Sigma}$.
- Estimators under Comparison

$$W(\widehat{\Sigma}),\quad L(\widehat{\Sigma}),\quad NL(\widehat{\Sigma}),$$

denoting the Wasserstein-based nonlinear shrinkage estimator, Ledoit–Wolf linear estimator, and Ledoit–Wolf nonlinear estimator, respectively.

Performance Metric & Hypothesis Tests

Condition Number Error

$$\varepsilon(\mathsf{M}) = \mathbb{E}\big[\big|\kappa(\mathsf{M}(\widehat{\Sigma})) - \kappa(\Sigma_0)\big|\big], \quad \mathsf{M} \in \{\mathsf{W},\mathsf{L},\mathsf{NL}\}.$$

• **Hypothesis Tests** (paired *t*-test, $\alpha = 0.05$)

$$H_{\mathsf{L}}^0: \, \varepsilon(\mathsf{W}) \ge \varepsilon(\mathsf{L}) \quad \text{vs} \quad H_{\mathsf{L}}^1: \, \varepsilon(\mathsf{W}) < \varepsilon(\mathsf{L}),$$
 (I)

$$H_{\mathrm{NL}}^{0}: \varepsilon(\mathsf{W}) \geq \varepsilon(\mathsf{NL}) \quad \text{vs} \quad H_{\mathrm{NL}}^{1}: \varepsilon(\mathsf{W}) < \varepsilon(\mathsf{NL}).$$
 (II)

- Repeat sampling M times to obtain $\widehat{\varepsilon}(M)$.
- Test statistic: $\widehat{\varepsilon}(W) \widehat{\varepsilon}(L)$ or $\widehat{\varepsilon}(W) \widehat{\varepsilon}(NL)$.
- Reject H^0 implies W significantly outperforms the competitor.

Simulation Results

Sample size	Average of $\kappa(W(\widehat{\Sigma}))$	Average of $\kappa(L(\widehat{\Sigma}))$	<i>t</i> -value	<i>p</i> -value	Reject $H_{\rm L}^0$ or not
300	320.60	3.00	-76.58	0.0	Reject
400	230.49	3.40	-306.72	0.0	Reject
600	189.82	4.16	-628.65	0.0	Reject
800	180.02	4.88	-578.36	0.0	Reject
1000	177.75	5.61	-642.50	0.0	Reject
1200	177.52	6.30	-652.57	0.0	Reject
1400	177.93	6.98	-690.35	0.0	Reject
1600	178.81	7.65	-710.80	0.0	Reject
1800	179.42	8.30	-736.08	0.0	Reject
2000	180.55	8.95	-780.41	0.0	Reject

Table 3: Hypothesis test for p = 200.

Simulation Results

Sample size	Average of $\kappa(W(\widehat{\Sigma}))$	Average of $\kappa(NL(\widehat{\Sigma}))$	<i>t</i> -value	<i>p</i> -value	Reject $H_{ m NL}^0$ or not
300	320.60	63.96	-10.30	0.0	Reject
400	230.49	97.50	-69.99	0.0	Reject
600	189.82	128.77	-231.95	0.0	Reject
800	180.02	144.63	-252.25	0.0	Reject
1000	177.75	154.88	-187.61	0.0	Reject
1200	177.52	161.76	-138.53	0.0	Reject
1400	177.93	166.40	-106.77	0.0	Reject
1600	178.81	169.92	-86.35	0.0	Reject
1800	179.42	172.26	-77.84	0.0	Reject
2000	180.55	174.70	-69.77	0.0	Reject

Table 4: Hypothesis test for p = 200.