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Motivation: infrastructure-planning models

Goal: build or upgrade some infrastructure, for ex.:
• energy-supply system for a remote location• power supply system for a ship

Constraints: the infrastructure has to be able fulfil its purpose:
• satisfying specified energy demands• being able to propel the ship on a given route

Measure: normally minimizing overall costs

Problem:
• Typically, long time horizons (many years)
• But the operational part needs time resolution of hours or finer.
• How to handle this in one model, esp. if we want uncertainty as well?
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Multi-horizon models
Structure of the optimization problem:

strat. period
oper. period

Robust solutions require use of several operational profiles:

• This works fine with 1 strategic period
• With multiple strat. periods, the size grows very fast. . .

— used for for upgrades, ageing/degradation, etc.



Multi-horizon models

Normal approach:

Multi-horizon approach:

• No connection between the last oper.period and the next strat. period.
• This stops the exponential growth in size.

• It also allows the usage of short
representative periods/scenarios

— this again decreases the model size— very useful feature of the approach— can be useful even with 1 scenario



Multi-horizon models

Normal approach: Multi-horizon approach:

• No connection between the last oper.period and the next strat. period.
• This stops the exponential growth in size.

• It also allows the usage of short
representative periods/scenarios

— this again decreases the model size— very useful feature of the approach— can be useful even with 1 scenario



Multi-horizon models

Normal approach: Multi-horizon approach:

• No connection between the last oper.period and the next strat. period.
• This stops the exponential growth in size.

• It also allows the usage of short
representative periods/scenarios

— this again decreases the model size— very useful feature of the approach— can be useful even with 1 scenario



Multi-horizon models

Normal approach: Multi-horizon approach:

• No connection between the last oper.period and the next strat. period.
• This stops the exponential growth in size.
• It also allows the usage of short
representative periods/scenarios

— this again decreases the model size— very useful feature of the approach— can be useful even with 1 scenario



Multi-horizon models
The multi-horizon approach works also with strategic uncertainty:

This is used for modelling of:• step-by step building of the infrastructure• ageing/degradation of the infrastructure• technology changes (performance and/or price)• regulatory changes
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Multi-horizon vs. long-term storages

The disconnect of operational periods in different strategic periods makes itdifficult to model long-term storages.
Full-length operational periods:• Initial inventory level in a strat. period is equal to the weighted average offinal inventory levels from scenarios in previous period.• Storage capacity is such that it can handle inventory levels in all oper. scenarios.

Representative scenarios as operational periods:• None of the above holds.• Handling of inventory levels has been shown in Strømholm and Rolfsen (2021).— total inventory-level change is a weighted sum of scaled per-scenario changes• Determining the storage capacity is the main contribution of the presented paper.
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Storages with representative periods – example

oper. sc. ∆Td
sc MSC

sn,sc days WSC
sn,sc inv∆

i,sn,sc inv∆SP
i,sn,sc

winter 7 13 91 91/365 − 10 −130spring 7 13 91 91/365 15 195summer 7 13 91 91/365 − 5 −65autumn 7 13 91 91/365 0 0bad day 1 1 1 1/365 − 5 −5
sum 365 1.0 −5

The overall inventory change is given by the weighted sum of inv∆
i,sn,sc.

But what about the required storage capacity?
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Representative periods as random eventsSelection of 1000 possible paths of inventory levels throughout a year
Inventory-level paths if the scenarios represented random events:
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• But our scenarios are ordered (except for the ‘bad day’).• → Add ordered scenario groups to the model.• Inside each group, the scenarios occur in random order.
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Representative periods as a sequenceWith the ‘bad day’ scenario assigned to spring
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The ‘main path’ requires storage capacity of 195 − 5 = 190.To handle the ‘bad day’ at the start of spring, this increases to 195.
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Representative periods as a sequenceWith the ‘bad day’ scenario assigned to spring – all paths
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Representative periods as a sequenceWith the ‘bad day’ scenario assigned to spring and extra summer scenarios

For summer, we replace the one week scen. by the following three:
oper. scen. MSC,G

sn,g,sc WSC,G
sn,g,sc WSC

sn,sc inv∆
i,sn,sc inv∆G

i,sn,g,sc

summer-1 6 6/13 42/365

5 30

summer-2 6 6/13 42/365

− 12 −72

summer-3 1 1/13 7/365

− 23 −23

sum 13 1.0 91/365

−65
The total inventory change is the same as before – was 13 ×−5 = −65.
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Representative periods as a sequenceWith the ‘bad day’ scenario assigned to spring and extra summer scenarios
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Worst case:• Summer starts with 6 × ‘summer-1’• → Storage capacity increases by 6 × 5 = 30.

• But this has probability of only ( 613)6 ≈ 1% – do we want to include this?
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Computing storage requirements

• For each scenario, we take into accountrepetitions up to given probability.
• By default, we set the limit to 5%.

• In our example, this means taking into account3 repetitions of ‘summer-1’, since ( 613)4 ≈ 4.5%.
• This brings the highest inventory level to 195 + 3 × 5 = 210.
• Since min. level is zero, the required storage capacity is 210 − 0 = 210.
• This assumes that ‘summer-1’ is never higher than +5.
• What if it first rises to +10, before falling to the (final) +5?
• This would increase the required storage cap. by +5 to 215.

— have to be taken into account as well. . .

1 2 3 4 5 60
0.2
0.4

5%
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Formulation and implementation
Mathematical formulation of the presented approach is in Kaut (2024).• It is rather messy, requiring many sets and indices.• Based on HyOpt, our infrastructure-optimization model.

HyOpt implementation• All the presented work is implemented in the open version of HyOpt,available from https://gitlab.sintef.no/open-hyopt.• Test case from the paper is available there as well.• All the presented features are available in the JSON input format for pyHyOpt,the python interface to HyOpt.• It has been used in several projects at SINTEF.

The presented research has been done under projects ‘LowEmission Centre’ and ‘Offlex’,funded by the Research Council of Norway projects number 296207 and 319158.

https://doi.org/10.1007/s10287-024-00508-z
https://gitlab.sintef.no/open-hyopt
https://gitlab.sintef.no/open-hyopt/test-case-2
https://gitlab.sintef.no/open-hyopt/pyhyopt
https://prosjektbanken.forskningsradet.no/project/FORISS/296207
https://prosjektbanken.forskningsradet.no/project/FORISS/319158 
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