# Deformation quantization with branes and coloured MZVs

Clermont-Ferrand, en l'honneur de Dominique Manchon

Damien Calaque (Université de Montpellier)

27 November 2025

# Deformation quantization

Given a Poisson bracket  $\{-,-\}$  on a commutative algebra  $A_0$ , does there exist an associative formal deformation of the commutative product  $\cdot$  of the form  $\star = \cdot + \hbar\{-,-\} + o(\hbar)$ ?

Given a Poisson bracket  $\{-,-\}$  on a commutative algebra  $A_0$ , does there exist an associative formal deformation of the commutative product  $\cdot$  of the form  $\star = \cdot + \hbar \{-,-\} + o(\hbar)$ ?

The general answer is "NO" [Mathieu]

Given a Poisson bracket  $\{-,-\}$  on a commutative algebra  $A_0$ , does there exist an associative formal deformation of the commutative product  $\cdot$  of the form  $\star = \cdot + \hbar\{-,-\} + o(\hbar)$ ?

The general answer is "NO" [Mathieu], but it is "YES" whenever the  $A_0$  is reasonnable enough [Kontsevich]

Given a Poisson bracket  $\{-,-\}$  on a commutative algebra  $A_0$ , does there exist an associative formal deformation of the commutative product  $\cdot$  of the form  $\star = \cdot + \hbar \{-,-\} + o(\hbar)$ ?

The general answer is "NO" [Mathieu], but it is "YES" whenever the  $A_0$  is reasonnable enough [Kontsevich], that is to say:

- **1**  $A_0 = k[[x_1, \dots, x_n]]$  (k field of char. 0);
- ②  $A_0 = C^{\infty}(M)$ , M being a smooth manifold;
- **3**  $A_0 = k[X]$ , X being a smooth affine algebraic variety over k a field of char. 0.

Given a Poisson bracket  $\{-,-\}$  on a commutative algebra  $A_0$ , does there exist an associative formal deformation of the commutative product  $\cdot$  of the form  $\star = \cdot + \hbar \{-,-\} + o(\hbar)$ ?

The general answer is "NO" [Mathieu], but it is "YES" whenever the  $A_0$  is reasonnable enough [Kontsevich], that is to say:

- **1**  $A_0 = k[[x_1, \dots, x_n]]$  (*k* field of char. 0);
- ②  $A_0 = C^{\infty}(M)$ , M being a smooth manifold;
- **3**  $A_0 = k[X]$ , X being a smooth affine algebraic variety over k a field of char. 0.

Actually, (2) and (3) are obtained from (1) by globalization techniques that we are not going to discuss here. Kontsevich formula for (1) is remarkably elegant.

$$f\star g=\sum_{n\geq 0}\hbar^n\sum_{\Gamma\in\mathcal{G}_{n,2}}c_\Gamma B_{\Gamma,\alpha}(f,g)$$

$$f \star g = \sum_{n \geq 0} \hbar^n \sum_{\Gamma \in \mathcal{G}_{n,2}} c_{\Gamma} B_{\Gamma,\alpha}(f,g)$$

- $\bullet$   $\mathcal{G}_{n,2}$  is a set of directed graphs with
  - vertex set  $\{1, \ldots, n, \overline{1}, \overline{2}\}$ ,
  - no loops and no multiple edges,
  - exactly two outgoing edges from every blue vertex,
  - no outgoing edge from red vertices,

$$f \star g = \sum_{n \geq 0} \hbar^n \sum_{\Gamma \in \mathcal{G}_{n,2}} c_{\Gamma} B_{\Gamma,\alpha}(f,g)$$

- ullet  $\mathcal{G}_{n,2}$  is a set of directed graphs with
  - vertex set  $\{1, ..., n, \bar{1}, \bar{2}\}$ ,
  - no loops and no multiple edges,
  - exactly two outgoing edges from every blue vertex,
  - no outgoing edge from red vertices,
- $B_{\Gamma,\alpha}$  is a bidifferential operator built from  $\Gamma$  and the Poisson tensor  $\alpha = \alpha^{ij}\partial_i \wedge \partial_j$ , where  $\alpha^{ij} = \{x_i, x_j\}$ .

$$f \star g = \sum_{n \geq 0} \hbar^n \sum_{\Gamma \in \mathcal{G}_{n,2}} c_{\Gamma} B_{\Gamma,\alpha}(f,g)$$

- $\mathcal{G}_{n,2}$  is a set of directed graphs with
  - vertex set  $\{1,\ldots,n,\bar{1},\bar{2}\}$ ,
  - no loops and no multiple edges,
  - exactly two outgoing edges from every blue vertex,
  - no outgoing edge from red vertices,
- $B_{\Gamma,\alpha}$  is a bidifferential operator built from  $\Gamma$  and the Poisson tensor  $\alpha = \alpha^{ij}\partial_i \wedge \partial_j$ , where  $\alpha^{ij} = \{x_i, x_j\}$ .

$$B_{\Gamma,\alpha}(f,g) = (\partial_k \alpha^{ij}) \alpha^{kl} (\partial_i f) (\partial_l \partial_j g)$$

$$f \star g = \sum_{n \geq 0} \hbar^n \sum_{\Gamma \in \mathcal{G}_{n,2}} c_{\Gamma} B_{\Gamma,\alpha}(f,g)$$

- $\mathcal{G}_{n,2}$  is a set of directed graphs with
  - vertex set  $\{1,\ldots,n,\overline{1},\overline{2}\}$ ,
  - no loops and no multiple edges,
  - exactly two outgoing edges from every blue vertex,
  - no outgoing edge from red vertices,
- $B_{\Gamma,\alpha}$  is a bidifferential operator built from  $\Gamma$  and the Poisson tensor  $\alpha = \alpha^{ij}\partial_i \wedge \partial_j$ , where  $\alpha^{ij} = \{x_i, x_j\}$ .

$$B_{\Gamma,\alpha}(f,g) = (\partial_k \alpha^{ij}) \alpha^{kl} (\partial_i f) (\partial_l \partial_j g)$$

• coefficients  $c_{\Gamma} \in \mathbb{R}$  are of transcendental nature.

 $C_{n,2}$  is the moduli of holomorphic (closed) disks D with an embedding  $\{1,\ldots,n\}\hookrightarrow D\backslash\partial D$ , and a cyclic order preserving embedding  $\{\overline{1},\overline{2},\infty\}\hookrightarrow\partial D$ .

 $C_{n,2}$  is the moduli of holomorphic (closed) disks D with an embedding  $\{1,\ldots,n\}\hookrightarrow D\backslash\partial D$ , and a cyclic order preserving embedding  $\{\overline{1},\overline{2},\infty\}\hookrightarrow\partial D$ .

$$C_{n,2}\simeq \left(\mathit{Conf}_n(\mathbb{H})\times \mathit{Conf}_{2,+}(\mathbb{R})\right)/\mathbb{R}_{>0}\ltimes \mathbb{R}.$$

 $C_{n,2}$  is the moduli of holomorphic (closed) disks D with an embedding  $\{1,\ldots,n\}\hookrightarrow D\backslash\partial D$ , and a cyclic order preserving embedding  $\{\overline{1},\overline{2},\infty\}\hookrightarrow\partial D$ .

$$C_{n,2}\simeq \left(\mathit{Conf}_n(\mathbb{H})\times \mathit{Conf}_{2,+}(\mathbb{R})\right)/\mathbb{R}_{>0}\ltimes \mathbb{R}.$$

### Kontsevich weight of $\Gamma \in \mathcal{G}_{n,2}$

$$c_{\Gamma} := \int_{C_{n,2}} \omega_{\Gamma} \,, \text{ with } \qquad \omega_{\Gamma} := \bigwedge_{(i,j) \in E(\Gamma)} \frac{dArg\left((z_j - z_i)(z_j - \bar{z}_i)\right)}{2\pi} \,.$$

 $C_{n,2}$  is the moduli of holomorphic (closed) disks D with an embedding  $\{1,\ldots,n\}\hookrightarrow D\backslash\partial D$ , and a cyclic order preserving embedding  $\{\overline{1},\overline{2},\infty\}\hookrightarrow\partial D$ .

$$C_{n,2} \simeq \left( Conf_n(\mathbb{H}) \times Conf_{2,+}(\mathbb{R}) \right) / \mathbb{R}_{>0} \ltimes \mathbb{R}.$$

### Kontsevich weight of $\Gamma \in \mathcal{G}_{n,2}$

$$c_{\Gamma} := \int_{C_{n,2}} \omega_{\Gamma} \,, \text{ with } \qquad \omega_{\Gamma} := \bigwedge_{(i,j) \in E(\Gamma)} \frac{dArg\left((z_j - z_i)(z_j - \bar{z}_i)\right)}{2\pi} \,.$$

These integrals converge and satisfy algebraic relations ensuring the associativity of  $\star$  [Kontsevich].

• fields are maps  $\phi: D \to M$  together with connection 1-form  $\eta \in \Omega^1(D, \phi^*T^*M)$ .

- fields are maps  $\phi: D \to M$  together with connection 1-form  $\eta \in \Omega^1(D, \phi^*T^*M)$ .
- action functional is  $S(\phi, \eta) := \int_D \left( \langle \eta, d\phi \rangle + \frac{1}{2} \langle \eta \wedge \eta, \phi^* \alpha \rangle \right)$ .

- fields are maps  $\phi: D \to M$  together with connection 1-form  $\eta \in \Omega^1(D, \phi^*T^*M)$ .
- action functional is  $S(\phi, \eta) := \int_D \left( \langle \eta, d\phi \rangle + \frac{1}{2} \langle \eta \wedge \eta, \phi^* \alpha \rangle \right)$ .
- the star products reads as

$$(f \star g)(x) = \int_{\text{fields}} f(\phi(\overline{1})) g(\phi(\overline{2})) \delta_{x=\phi(\infty)} e^{\frac{S(\phi,\eta)}{\hbar}} D\phi D\eta.$$

- fields are maps  $\phi: D \to M$  together with connection 1-form  $\eta \in \Omega^1(D, \phi^*T^*M)$ .
- action functional is  $S(\phi, \eta) := \int_D \left( \langle \eta, d\phi \rangle + \frac{1}{2} \langle \eta \wedge \eta, \phi^* \alpha \rangle \right)$ .
- the star products reads as

$$(f \star g)(x) = \int_{\text{fields}} f(\phi(\overline{1})) g(\phi(\overline{2})) \delta_{x=\phi(\infty)} e^{\frac{S(\phi,\eta)}{\hbar}} D\phi D\eta.$$

### Topological invariance guaranties the associativity of $\star$

Both 
$$((f \star g) \star h)(x)$$
 and  $(f \star (g \star h))(x)$  equal

$$\int_{\text{fields}} f(\phi(\overline{1})) g(\phi(\overline{2})) h(\phi(\overline{3})) \delta_{\mathbf{x} = \phi(\infty)} e^{\frac{S(\phi, \eta)}{\hbar}} D\phi D\eta.$$

Kontsevich formality theorem and applications

• More general observables: one is led to replace 2 with any positive integer  $m \implies (m)$  ( $m \implies (m)$ ).

- More general observables: one is led to replace 2 with any positive integer  $m \ (\Rightarrow \text{Kontsevich formality theorem})$ .
- There is a consistent choice of orientations on compactified configurations spaces that make all signs correct:
- D. Arnal, **D. Manchon**, M. Masmoudi, Choix des signes pour la formalité de M. Kontsevich, Pacific Journal of Mathematics **203** (2002), no. 1, 23–66.

- More general observables: one is led to replace 2 with any positive integer  $m \ (\Rightarrow$  Kontsevich formality theorem).
- There is a consistent choice of orientations on compactified configurations spaces that make all signs correct:
- D. Arnal, **D. Manchon**, M. Masmoudi, Choix des signes pour la formalité de M. Kontsevich, Pacific Journal of Mathematics **203** (2002), no. 1, 23–66.
  - There is an additional compatibility with cup-products:
- **D. Manchon**, C. Torossian, Cohomologie tangente et cup-produit pour la quantification de Kontsevich, Annales mathématiques Blaise Pascal **10** (2003) no. 1, 75–106.
  - ⇒ New proof of the Duflo isomorphism [Kontsevich] and algebraic geometry analog [C-Van den Bergh].

- More general observables: one is led to replace 2 with any positive integer  $m \ (\Rightarrow \text{Kontsevich formality theorem})$ .
- There is a consistent choice of orientations on compactified configurations spaces that make all signs correct:
- D. Arnal, **D. Manchon**, M. Masmoudi, Choix des signes pour la formalité de M. Kontsevich, Pacific Journal of Mathematics **203** (2002), no. 1, 23–66.
  - There is an additional compatibility with cup-products:
- **D. Manchon**, C. Torossian, Cohomologie tangente et cup-produit pour la quantification de Kontsevich, Annales mathématiques Blaise Pascal **10** (2003) no. 1, 75–106.
  - ⇒ New proof of the Duflo isomorphism [Kontsevich] and algebraic geometry analog [C-Van den Bergh].
  - Different gauge fixing: one obtains variants of  $c_{\Gamma}$ 's where dArg is replaced by dlog.

• Boundary condition: require that  $\phi(\partial D) \subset C$ , where  $C \subset M$  is a coisotropic submanifold (a "brane");  $\Rightarrow A_{\infty}$ -deformation of  $\Gamma(C, \wedge^{\bullet}NC)$ ;  $\Rightarrow$  quantization of reduced spaces [Cattaneo–Felder].

- Boundary condition: require that  $\phi(\partial D) \subset C$ , where  $C \subset M$  is a coisotropic submanifold (a "brane");  $\Rightarrow A_{\infty}$ -deformation of  $\Gamma(C, \wedge^{\bullet}NC)$ ;  $\Rightarrow$  quantization of reduced spaces [Cattaneo–Felder].
- Several branes (⇒ Fukaya-type category):
  - two branes [Cattaneo–Felder]: two  $A_{\infty}$ -algebras together with an invertible  $A_{\infty}$ -bimodule realizing a Koszul/Morita duality/equivalence [C–Felder–Ferrario–Rossi] (conjectured by Shoikhet).

- Boundary condition: require that  $\phi(\partial D) \subset C$ , where  $C \subset M$  is a coisotropic submanifold (a "brane");  $\Rightarrow A_{\infty}$ -deformation of  $\Gamma(C, \wedge^{\bullet}NC)$ ;  $\Rightarrow$  quantization of reduced spaces [Cattaneo–Felder].
- Several branes (⇒ Fukaya-type category):
  - two branes [Cattaneo–Felder]: two  $A_{\infty}$ -algebras together with an invertible  $A_{\infty}$ -bimodule realizing a Koszul/Morita duality/equivalence [C–Felder–Ferrario–Rossi] (conjectured by Shoikhet).
    - $\Rightarrow$  Applications to Lie theory [Cattaneo–Torossian] and algebraic geometry [C–Vitanov] (in progress).

- Boundary condition: require that  $\phi(\partial D) \subset C$ , where  $C \subset M$  is a coisotropic submanifold (a "brane");  $\Rightarrow A_{\infty}$ -deformation of  $\Gamma(C, \wedge^{\bullet}NC)$ ;  $\Rightarrow$  quantization of reduced spaces [Cattaneo–Felder].
- Several branes (⇒ Fukaya-type category):
  - two branes [Cattaneo–Felder]: two  $A_{\infty}$ -algebras together with an invertible  $A_{\infty}$ -bimodule realizing a Koszul/Morita duality/equivalence [C–Felder–Ferrario–Rossi] (conjectured by Shoikhet).
    - ⇒ Applications to Lie theory [Cattaneo–Torossian] and algebraic geometry [C–Vitanov] (in progress).
  - $\bullet$  three branes: composition up to homotopy of  $A_{\infty}\text{-bimodules}$  [Ferrario].
  - more...?

- Boundary condition: require that  $\phi(\partial D) \subset C$ , where  $C \subset M$  is a coisotropic submanifold (a "brane");  $\Rightarrow A_{\infty}$ -deformation of  $\Gamma(C, \wedge^{\bullet}NC)$ ;  $\Rightarrow$  quantization of reduced spaces [Cattaneo–Felder].
- Several branes (⇒ Fukaya-type category):
  - two branes [Cattaneo–Felder]: two  $A_{\infty}$ -algebras together with an invertible  $A_{\infty}$ -bimodule realizing a Koszul/Morita duality/equivalence [C–Felder–Ferrario–Rossi] (conjectured by Shoikhet).
    - ⇒ Applications to Lie theory [Cattaneo–Torossian] and algebraic geometry [C–Vitanov] (in progress).
  - three branes: composition up to homotopy of  $A_{\infty}$ -bimodules [Ferrario].
  - more...?

Spoiler: already with two branes, the weights (and graphs) involved are more general.

# Multiple zeta values

### Definition

Standard facts

Let  $s_1, \ldots, s_\ell$  be positive integers, with  $s_1 > 1$ :

$$\zeta(s_1,\ldots,s_\ell):=\sum_{n_1>\cdots>n_\ell\geq 1}rac{1}{n_1^{s_1}\cdots n_\ell^{s_\ell}}\,.$$

#### Definition

Let  $s_1, \ldots, s_\ell$  be positive integers, with  $s_1 > 1$ :

$$\zeta(s_1,\ldots,s_\ell):=\sum_{n_1>\cdots>n_\ell\geq 1}rac{1}{n_1^{s_1}\cdots n_\ell^{s_\ell}}\,.$$

These numbers also have an integral representation:

$$\zeta(s_1,\ldots,s_\ell) = \int_{\Delta^k} \omega_0(t_1)\ldots\omega_0(t_{s_1-1})\omega_1(t_{s_1})\omega_0(t_{s_1+1})\ldots\omega_1(t_k)$$

where

• 
$$\omega_0(t) = dt/t$$
 and  $\omega_1(t) = dt/(1-t)$ ,

• 
$$\Delta^k = \{(t_1, \ldots, t_k) \in [0, 1]^k | t_1 \ge \cdots \ge t_k \}.$$

#### Definition

Let  $s_1, \ldots, s_\ell$  be positive integers, with  $s_1 > 1$ :

$$\zeta(s_1,\ldots,s_\ell):=\sum_{n_1>\cdots>n_\ell\geq 1}rac{1}{n_1^{s_1}\cdots n_\ell^{s_\ell}}\,.$$

These numbers also have an integral representation:

$$\zeta(s_1,\ldots,s_\ell) = \int_{\Delta^k} \omega_0(t_1)\ldots\omega_0(t_{s_1-1})\omega_1(t_{s_1})\omega_0(t_{s_1+1})\ldots\omega_1(t_k)$$

where

• 
$$\omega_0(t) = dt/t$$
 and  $\omega_1(t) = dt/(1-t)$ ,

• 
$$\Delta^k = \{(t_1, \ldots, t_k) \in [0, 1]^k | t_1 \geq \cdots \geq t_k \}.$$

They are iterated integrals of dlog(c.r.) on  $\mathcal{M}_{0,4}$ .

• [Broadhurst–Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.

- [Broadhurst–Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Brown]: periods of  $\mathcal{M}_{0,n}$  are  $\mathbb{Q}[(2\pi i)^{-1}]$ -linear combinations of MZVs.

- [Broadhurst–Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Brown]: periods of  $\mathcal{M}_{0,n}$  are  $\mathbb{Q}[(2\pi i)^{-1}]$ -linear combinations of MZVs.
- Warning (life isn't simple): there are amplitudes in  $\phi^4$  at high loop orders, which are related to modular forms (e.g. [Brown–Schnetz]), and not expected to be expressible as multiple zeta values (contrary to what may have been believed in the past).

- [Broadhurst–Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Brown]: periods of  $\mathcal{M}_{0,n}$  are  $\mathbb{Q}[(2\pi i)^{-1}]$ -linear combinations of MZVs.
- Warning (life isn't simple): there are amplitudes in  $\phi^4$  at high loop orders, which are related to modular forms (e.g. [Brown–Schnetz]), and not expected to be expressible as multiple zeta values (contrary to what may have been believed in the past).

What about the Kontsevich weights  $c_{\Gamma}$ , that are Feynman amplitudes for the Poisson  $\sigma$ -model?

- [Broadhurst–Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Brown]: periods of  $\mathcal{M}_{0,n}$  are  $\mathbb{Q}[(2\pi i)^{-1}]$ -linear combinations of M7Vs
- Warning (life isn't simple): there are amplitudes in  $\phi^4$  at high loop orders, which are related to modular forms (e.g. [Brown-Schnetz]), and not expected to be expressible as multiple zeta values (contrary to what may have been believed in the past).

What about the Kontsevich weights  $c_{\Gamma}$ , that are Feynman amplitudes for the Poisson  $\sigma$ -model?

# Theorem [Banks–Panzer–Pym]

The coefficients  $c_{\Gamma}$  are  $\mathbb{Q}[(2\pi i)^{-1}]$ -linear combinations of MZVs.

Ingredients of the proof of Banks-Panzer-Pym

• Consider the map  $\iota: C_{n,m} \hookrightarrow C_{2n+m} \simeq \mathcal{M}_{0,2n+m+1}$  that "double" the interior marked points.

- Consider the map  $\iota: C_{n,m} \hookrightarrow C_{2n+m} \simeq \mathcal{M}_{0,2n+m+1}$  that "double" the interior marked points.
- **2** Define the sheaf  $\mathcal{U}^{\bullet}$  of polylogarithmic forms on  $\mathcal{M}_{0,2n+m+1}$

- **①** Consider the map  $\iota: C_{n,m} \hookrightarrow C_{2n+m} \simeq \mathcal{M}_{0,2n+m+1}$  that "double" the interior marked points.
- ② Define the sheaf  $\mathcal{U}^{\bullet}$  of polylogarithmic forms on  $\mathcal{M}_{0,2n+m+1}$ : linear combinations of dlog of cross-ratios with coefficients being polylogs (period integrals on the universal curve).

- Consider the map  $\iota: C_{n,m} \hookrightarrow C_{2n+m} \simeq \mathcal{M}_{0,2n+m+1}$  that "double" the interior marked points.
- ② Define the sheaf  $\mathcal{U}^{\bullet}$  of polylogarithmic forms on  $\mathcal{M}_{0,2n+m+1}$ : linear combinations of *dlog* of cross-ratios with coefficients being polylogs (period integrals on the universal curve).
- **3** Restrict:  $\mathcal{U}_{n,m}^{\bullet} := \iota^* \mathcal{U}^{\bullet}$ .

- **①** Consider the map  $\iota: C_{n,m} \hookrightarrow C_{2n+m} \simeq \mathcal{M}_{0,2n+m+1}$  that "double" the interior marked points.
- ② Define the sheaf  $\mathcal{U}^{\bullet}$  of polylogarithmic forms on  $\mathcal{M}_{0,2n+m+1}$ : linear combinations of *dlog* of cross-ratios with coefficients being polylogs (period integrals on the universal curve).
- **3** Restrict:  $\mathcal{U}_{n,m}^{\bullet} := \iota^* \mathcal{U}^{\bullet}$ .

# Theorem [Banks-Panzer-Pym]

Fiber-integrating along "forgetting-a-point" maps sends polylogarithmic forms to polylogarithmic forms.

- **①** Consider the map  $\iota: C_{n,m} \hookrightarrow C_{2n+m} \simeq \mathcal{M}_{0,2n+m+1}$  that "double" the interior marked points.
- ② Define the sheaf  $\mathcal{U}^{\bullet}$  of polylogarithmic forms on  $\mathcal{M}_{0,2n+m+1}$ : linear combinations of *dlog* of cross-ratios with coefficients being polylogs (period integrals on the universal curve).
- **3** Restrict:  $\mathcal{U}_{n,m}^{\bullet} := \iota^* \mathcal{U}^{\bullet}$ .

# Theorem [Banks-Panzer-Pym]

Fiber-integrating along "forgetting-a-point" maps sends polylogarithmic forms to polylogarithmic forms.

This is essentially the same strategy as for Brown's result, with a specific difficulty for when one forgets an interior point.

Let  $s_1, \ldots, s_\ell$  be non-zero integers, with  $s_1 \neq 1$ :

$$\zeta(s_1,\ldots,s_\ell):=\sum_{n_1>\cdots>n_\ell\geq 1}\frac{\epsilon(s_1)^{n_1}\cdots\epsilon(s_\ell)^{n_\ell}}{n_1^{|s_1|}\cdots n_\ell^{|s_\ell|}}\,,$$

where 
$$\epsilon(s) = s/|s|$$
.

Let  $s_1, \ldots, s_\ell$  be non-zero integers, with  $s_1 \neq 1$ :

$$\zeta(s_1,\ldots,s_\ell) := \sum_{n_1 > \cdots > n_\ell \geq 1} \frac{\epsilon(s_1)^{n_1} \cdots \epsilon(s_\ell)^{n_\ell}}{n_1^{|s_1|} \cdots n_\ell^{|s_\ell|}},$$

where  $\epsilon(s) = s/|s|$ .

New period in the game:  $\zeta(-1) = \sum_{n>1} \frac{(-1)^n}{n} = -\log(2)$ .

Let  $s_1, \ldots, s_\ell$  be non-zero integers, with  $s_1 \neq 1$ :

$$\zeta(s_1,\ldots,s_\ell) := \sum_{n_1 > \cdots > n_\ell \geq 1} \frac{\epsilon(s_1)^{n_1} \cdots \epsilon(s_\ell)^{n_\ell}}{n_1^{|s_1|} \cdots n_\ell^{|s_\ell|}},$$

where  $\epsilon(s) = s/|s|$ .

New period in the game:  $\zeta(-1) = \sum_{n \geq 1} \frac{(-1)^n}{n} = -\log(2)$ .

#### Generalization: N-coloured MZVs

$$s_1,\ldots,s_\ell\in\mathbb{N}_{>0}$$
 and  $\xi_1,\ldots\xi_\ell\in\mu_N$ , with  $(s_1,\xi_1)\neq(1,1)$ :

$$\zeta(s_1,\ldots,s_\ell|\xi_1,\ldots,\xi_\ell) := \sum_{n_1>\cdots>n_\ell\geq 1} \frac{\xi_1^{n_1}\cdots\xi_\ell^{n_\ell}}{n_1^{s_1}\cdots n_\ell^{s_\ell}},$$

Let  $s_1, \ldots, s_\ell$  be non-zero integers, with  $s_1 \neq 1$ :

$$\zeta(s_1,\ldots,s_\ell) := \sum_{n_1 > \cdots > n_\ell \geq 1} \frac{\epsilon(s_1)^{n_1} \cdots \epsilon(s_\ell)^{n_\ell}}{n_1^{|s_1|} \cdots n_\ell^{|s_\ell|}},$$

where  $\epsilon(s) = s/|s|$ .

New period in the game:  $\zeta(-1) = \sum_{n>1} \frac{(-1)^n}{n} = -\log(2)$ .

#### Generalization: N-coloured MZVs

$$s_1,\ldots,s_\ell\in\mathbb{N}_{>0}$$
 and  $\xi_1,\ldots\xi_\ell\in\mu_N$ , with  $(s_1,\xi_1)\neq(1,1)$ :

$$\zeta(s_1,\ldots,s_\ell|\xi_1,\ldots,\xi_\ell) := \sum_{\substack{n_1>\cdots>n_\ell>1}} \frac{\xi_1^{n_1}\cdots\xi_\ell^{n_\ell}}{n_1^{s_1}\cdots n_\ell^{s_\ell}},$$

These numbers also have an integral representation, as iterated integrals of dlog of t, and  $t - \xi$ ,  $\xi \in \mu_N$ . 4 D > 4 B > 4 B > 4 B > 9 Q P

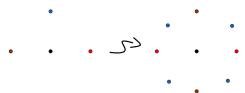
$$\begin{aligned} \{1,\ldots,n\} &\hookrightarrow \mathrm{int}(D) \\ \{-\bar{p},\ldots,-\bar{1},0,\bar{1},\ldots,\bar{q},\infty\} &\hookrightarrow \partial D \,. \end{aligned}$$

$$\{1,\ldots,n\} \hookrightarrow \operatorname{int}(D)$$
$$\{-\bar{p},\ldots,-\bar{1},0,\bar{1},\ldots,\bar{q},\infty\} \hookrightarrow \partial D.$$

We have a map  $\iota: \mathcal{C}_{n,p+1+q} \hookrightarrow \mathcal{M}_{0,N(2n+p+q)+2}$  sending all coloured (blue, brown and red) points, that we see as points in the upper half-plane, to their N-th roots and complex conjugates.

$$\{1,\ldots,n\} \hookrightarrow \operatorname{int}(D)$$
$$\{-\bar{p},\ldots,-\bar{1},0,\bar{1},\ldots,\bar{q},\infty\} \hookrightarrow \partial D.$$

We have a map  $\iota: \mathcal{C}_{n,p+1+q} \hookrightarrow \mathcal{M}_{0,N(2n+p+q)+2}$  sending all coloured (blue, brown and red) points, that we see as points in the upper half-plane, to their N-th roots and complex conjugates.



An illustration of the map  $\iota$  for N=2

$$\{1,\ldots,n\} \hookrightarrow \operatorname{int}(D)$$
$$\{-\bar{p},\ldots,-\bar{1},0,\bar{1},\ldots,\bar{q},\infty\} \hookrightarrow \partial D.$$

We have a map  $\iota: \mathcal{C}_{n,p+1+q} \hookrightarrow \mathcal{M}_{0,N(2n+p+q)+2}$  sending all coloured (blue, brown and red) points, that we see as points in the upper half-plane, to their N-th roots and complex conjugates.



An illustration of the map  $\iota$  for N=2

One then defines the sheaf  $\mathcal{U}_N^{\bullet} := \iota^* \mathcal{U}^{\bullet}$  of *N*-coloured polylogarithmic forms.

Deformation quantization with branes and coloured MZVs Multiple zeta values

Main result - open questions

# Theorem [C]

Fiber-integrating along "forgetting-a-point" maps sends N-coloured polylogarithmic forms to N-coloured polylogarithmic forms.

# Theorem [C]

Fiber-integrating along "forgetting-a-point" maps sends N-coloured polylogarithmic forms to N-coloured polylogarithmic forms.

 $(N=2) \Rightarrow$  Weights (a-k-a Feynman amplitudes) appearing in [C–Felder-Ferrario–Rossi] for the deformation quantization in the presence of two branes are  $\mathbb{Q}[(2\pi \mathrm{i})^{-1}]$ -linear combinations of alternating multiple zeta values.

# Theorem [C]

Fiber-integrating along "forgetting-a-point" maps sends N-coloured polylogarithmic forms to N-coloured polylogarithmic forms.

 $(N=2)\Rightarrow$  Weights (a-k-a Feynman amplitudes) appearing in [C–Felder-Ferrario–Rossi] for the deformation quantization in the presence of two branes are  $\mathbb{Q}[(2\pi \mathrm{i})^{-1}]$ -linear combinations of alternating multiple zeta values.

#### Questions:

- Occurrences of N-coloured MZVs in the Poisson σ-model for N ∉ {1,2}?
- Nature of the weights when there are more branes?
- Higher genus version? E.g.: do eMZVs appear if one replaces the source with a genus one curve in the Poisson  $\sigma$ -model?

# Thank you Dominique !!!