

HOMOLOGICAL PROPERTIES OF BRAIDED HOPF ALGEBRAS

Thi Hoa Emilie NGUYEN

Joint work with Julien Bichon

Laboratoire de Mathématiques Blaise Pascal Université Clermont Auvergne

Table of Contents

- Introduction
- Cohomological dimension of braided Hopf algebras
 - Braided Hopf algebras
 - Modules and bimodules over a braided Hopf algebra
 - Cohomological dimension of braided Hopf algebras
 - Illustration 1
- Twisted Calabi-Yau algebras
 - Finiteness conditions and smoothness
 - The structure of $H^*(A, {}_AA \otimes A_A)$
 - Illustration 2

Table of Contents

- Introduction
- 2 Cohomological dimension of braided Hopf algebras
 - Braided Hopf algebras
 - Modules and bimodules over a braided Hopf algebra
 - Cohomological dimension of braided Hopf algebras
 - Illustration 1
- 3 Twisted Calabi-Yau algebras
 - Finiteness conditions and smoothness
 - The structure of $H^*(A, {}_AA \otimes A_A)$
 - Illustration 2

Let A be an algebra and let M be a (left) A-module.

• The **projective dimension** of the A-module M is the smallest possible length for a projective resolution of M:

$$\operatorname{pd}_{{}_A\mathcal{M}}(M)=\sup\{d\in\mathbb{N}\mid\exists N\in{}_A\mathcal{M},\operatorname{Ext}^d_{{}_A\mathcal{M}}(M,N)\neq\{0\}\}\in\mathbb{N}\cup\{\infty\}$$

Let A be an algebra and let M be a (left) A-module.

• The **projective dimension** of the A-module M is the smallest possible length for a projective resolution of M:

$$\operatorname{pd}_{{}_A\mathcal{M}}(M)=\sup\{d\in\mathbb{N}\mid\exists N\in{}_A\mathcal{M},\operatorname{Ext}^d_{{}_A\mathcal{M}}(M,N)\neq\{0\}\}\in\mathbb{N}\cup\{\infty\}$$

ullet The Hochschild cohomological dimension of $A:\operatorname{cd}(A)=\operatorname{pd}_{{}_A\mathcal{M}_A}(A)$

Let A be an algebra and let M be a (left) A-module.

• The projective dimension of the A-module M is the smallest possible length for a projective resolution of M:

$$\operatorname{pd}_{{}_A\mathcal{M}}(M)=\sup\{d\in\mathbb{N}\mid\exists N\in{}_A\mathcal{M},\operatorname{Ext}^d_{{}_A\mathcal{M}}(M,N)\neq\{0\}\}\in\mathbb{N}\cup\{\infty\}$$

- The Hochschild cohomological dimension of $A : cd(A) = pd_{AMA}(A)$
- The (left) global dimension of A:

(T.H.E. NGUYEN (UCA))

l.
$$gldim(A) = sup\{pd_{AM}(M), M \in AM\}$$

Let A be an algebra and let M be a (left) A-module.

• The **projective dimension** of the A-module M is the smallest possible length for a projective resolution of M:

$$\operatorname{pd}_{{}_A\mathcal{M}}(M)=\sup\{d\in\mathbb{N}\mid\exists N\in{}_A\mathcal{M},\operatorname{Ext}^d_{{}_A\mathcal{M}}(M,N)\neq\{0\}\}\in\mathbb{N}\cup\{\infty\}$$

- ullet The Hochschild cohomological dimension of $A:\operatorname{cd}(A)=\operatorname{pd}_{{}_A\mathcal{M}_A}(A)$
- The (left) global dimension of A:

l.
$$gldim(A) = sup\{pd_{AM}(M), M \in AM\}$$

We always have

l. gldim(A) < cd(A).

Motivation

Let k be a field.

• **Example**: The first Weyl algebra $A_1(k) = k\langle x, y \mid xy - yx = 1 \rangle$, If k has characteristic zero, then $\operatorname{gldim}(A_1(k)) = 1$ (Rinehart, 1962). However, we have $\operatorname{cd}(A_1(k)) = 2$ (Sridharan, 1961).

So, for an algebra A, when do we have cd(A) = gldim(A)?

Motivation

Let k be a field.

• **Example**: The first Weyl algebra $A_1(k) = k\langle x, y \mid xy - yx = 1 \rangle$, If k has characteristic zero, then $\operatorname{gldim}(A_1(k)) = 1$ (Rinehart, 1962). However, we have $\operatorname{cd}(A_1(k)) = 2$ (Sridharan, 1961).

So, for an algebra A, when do we have cd(A) = gldim(A)?

Classical cases:

- If A is a graded connected algebra, $cd(A) = gldim(A) = pd_A(\varepsilon k) = pd_{A^{op}}(k_\varepsilon)$ (Berger, 2005),
- If A is a Hopf algebra, $cd(A) = gldim(A) = pd_A(\varepsilon k) = pd_{A^{op}}(k_\varepsilon)$ (follows from Ginzburg Kumar, 1993)

Objective I - The main result:

Theorem (Bichon - N, 2024)

Let A be a Hopf algebra in the braided category \mathcal{M}^H of comodules over a coquasitriangular cosemisimple Hopf algebra H. Then we have

$$\operatorname{cd}(A) = \operatorname{l.gldim}(A) = \operatorname{r.gldim}(A) = \operatorname{pd}_A(\varepsilon k) = \operatorname{pd}_{A^{\operatorname{op}}}(k_\varepsilon)$$

Table of Contents

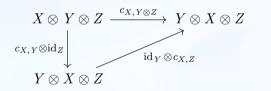
- 1 Introduction
- 2 Cohomological dimension of braided Hopf algebras
 - Braided Hopf algebras
 - Modules and bimodules over a braided Hopf algebra
 - Cohomological dimension of braided Hopf algebras
 - Illustration 1
- 3 Twisted Calabi-Yau algebras
 - Finiteness conditions and smoothness
 - The structure of $H^*(A, {}_AA \otimes A_A)$
 - Illustration 2

Braided categories

A *braided category* is a monoidal category $\mathcal C$ endowed with a *braiding*, i.e a family of natural isomorphisms

$$c_{X,Y}: X \otimes Y \to Y \otimes X$$

such that for all objects X, Y, Z in C, the following diagrams



 $X \otimes Y \otimes Z \xrightarrow{c_{X \otimes Y,Z}} Z \otimes X \otimes Y$ $id_X \otimes c_{Y,Z} \downarrow \qquad \qquad c_{X,Z} \otimes id_Y$ $X \otimes Z \otimes Y$

commute.

Notations

For objects X and Y in C, as usual we have some diagrammatic notations:

$$id_X = \begin{array}{c} \frac{X}{} \\ X \end{array} \quad and \quad f = \begin{array}{c} \frac{X}{f} \\ \hline f \\ Y \end{array}$$

$$c_{X,Y} = igched{XY}{X} \quad ext{and} \quad c_{X,Y}^{-1} = igched{XX}{XY}.$$

Examples

• The category $_k\mathcal{M}$ of k-vector spaces is a braided category with the braiding given by the flip operators.

Examples

- The category $_k\mathcal{M}$ of k-vector spaces is a braided category with the braiding given by the flip operators.
- A coquasitriangular Hopf algebra is a Hopf algebra H equipped with a convolution invertible linear form $r: H \otimes H \to k$ (called a universal r-form) such that, for any $x, y, z \in H$.

$$yx = r(x_{(1)}, y_{(1)})x_{(2)}y_{(2)}r^{-1}(x_{(3)}, y_{(3)})$$

$$r(xy, z) = r(x, z_{(1)})r(y, z_{(2)}), \quad r(x, yz) = r(x_{(1)}, z)r(x_{(2)}, y)$$

(T.H.E. NGUYEN (UCA))

Examples

- The category ${}_k\mathcal{M}$ of k-vector spaces is a braided category with the braiding given by the flip operators.
- A coquasitriangular Hopf algebra is a Hopf algebra H equipped with a convolution invertible linear form $r: H \otimes H \to k$ (called a universal r-form) such that, for any $x,y,z \in H$,

$$yx = r(x_{(1)}, y_{(1)})x_{(2)}y_{(2)}r^{-1}(x_{(3)}, y_{(3)})$$

$$r(xy, z) = r(x, z_{(1)})r(y, z_{(2)}), \quad r(x, yz) = r(x_{(1)}, z)r(x_{(2)}, y)$$

Then, the category of H-comodules \mathcal{M}^H is a braided category with the braiding

$$r_{V,W}: V \otimes W \longrightarrow W \otimes V$$

 $v \otimes w \longmapsto r(v_{(1)}, w_{(1)})w_{(0)} \otimes v_{(0)}$

10 / 42

A concrete example

• Let Γ be an abelian group. Then the universal r-forms on the group algebra $k\Gamma$ correspond to the bicharacters $\Gamma \times \Gamma \to k^*$, i.e the maps ψ such that

$$\psi(xy,z) = \psi(x,z)\psi(y,z); \ \psi(x,yz) = \psi(x,y)\psi(x,z) \quad \text{for} \quad x,y,z \in \Gamma.$$

A concrete example

• Let Γ be an abelian group. Then the universal r-forms on the group algebra $k\Gamma$ correspond to the bicharacters $\Gamma \times \Gamma \to k^*$, i.e the maps ψ such that

$$\psi(xy,z) = \psi(x,z)\psi(y,z); \ \psi(x,yz) = \psi(x,y)\psi(x,z) \quad \text{for} \quad x,y,z \in \Gamma.$$

• $\mathcal{M}^{k\Gamma}$ identifies with the category of Γ -graded vector spaces as follows: If $V=(V,\alpha)$ is a right $k\Gamma$ -comodule, put, for $g\in \Gamma$, $V_g=\{v\in V\mid \alpha(v)=v\otimes g\}$. Then $V=\bigoplus_{g\in \Gamma}V_g$ defines a Γ -grading on V. Conversely, if $V=\bigoplus_{g\in \Gamma}V_g$ is Γ -graded, putting $\alpha(v)=v\otimes g$ for $v\in V_g$, defines a structure of $k\Gamma$ -comodule on V.

A concrete example

• Let Γ be an abelian group. Then the universal r-forms on the group algebra $k\Gamma$ correspond to the bicharacters $\Gamma \times \Gamma \to k^*$, i.e the maps ψ such that

$$\psi(xy,z) = \psi(x,z)\psi(y,z); \ \psi(x,yz) = \psi(x,y)\psi(x,z) \quad \text{for} \quad x,y,z \in \Gamma.$$

• $\mathcal{M}^{k\Gamma}$ identifies with the category of Γ -graded vector spaces as follows: If $V=(V,\alpha)$ is a right $k\Gamma$ -comodule, put, for $g\in \Gamma$, $V_g=\{v\in V\mid \alpha(v)=v\otimes g\}$. Then $V=\bigoplus_{g\in \Gamma}V_g$ defines a Γ -grading on V. Conversely, if $V=\bigoplus_{g\in \Gamma}V_g$ is Γ -graded, putting $\alpha(v)=v\otimes g$ for $v\in V_g$, defines a structure of $k\Gamma$ -comodule on V.

Given a bicharacter ψ , the category $\mathcal{M}^{k\Gamma}$ is braided with braiding:

$$c_{V,W}: V \otimes W \longrightarrow W \otimes V$$
$$v \otimes w \in V_g \otimes W_h \longmapsto \psi(g,h)w \otimes v$$

Hopf algebras in a monoidal category

Let C be a monoidal category.

• An **algebra** in $\mathcal C$ is an object A of $\mathcal C$ endowed with morphisms $m:A\otimes A\to A$ (the product) and $\eta:I\to A$ (the unit) such that

$$m(m \otimes \mathrm{id}_A) = m(\mathrm{id}_A \otimes m)$$
 and $m(\mathrm{id}_A \otimes \eta) = \mathrm{id}_A = m(\eta \otimes \mathrm{id}_A).$

• A coalgebra in $\mathcal C$ is an object C of $\mathcal C$ endowed with morphisms $\Delta:C\to C\otimes C$ (the coproduct) and $\varepsilon:C\to I$ (the counit) such that

$$(\Delta \otimes \operatorname{id}_C)\Delta = (\operatorname{id}_C \otimes \Delta)\Delta \quad \text{and} \quad (\operatorname{id}_C \otimes \varepsilon)\Delta = \operatorname{id}_C = (\varepsilon \otimes \operatorname{id}_C)\Delta.$$

Hopf algebras in a monoidal category

Let C be a monoidal category.

• An **algebra** in $\mathcal C$ is an object A of $\mathcal C$ endowed with morphisms $m:A\otimes A\to A$ (the product) and $\eta:I\to A$ (the unit) such that

$$m(m \otimes \mathrm{id}_A) = m(\mathrm{id}_A \otimes m)$$
 and $m(\mathrm{id}_A \otimes \eta) = \mathrm{id}_A = m(\eta \otimes \mathrm{id}_A).$

• A coalgebra in $\mathcal C$ is an object C of $\mathcal C$ endowed with morphisms $\Delta:C\to C\otimes C$ (the coproduct) and $\varepsilon:C\to I$ (the counit) such that

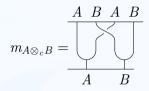
$$(\Delta \otimes \operatorname{id}_C)\Delta = (\operatorname{id}_C \otimes \Delta)\Delta \quad \text{and} \quad (\operatorname{id}_C \otimes \varepsilon)\Delta = \operatorname{id}_C = (\varepsilon \otimes \operatorname{id}_C)\Delta.$$

In diagrammatic notation, we denote

$$m = \underbrace{\frac{A \quad A}{A}}_{A} \quad ; \quad \eta = \underbrace{\frac{I}{\bullet}}_{A} \quad \text{and} \quad \Delta = \underbrace{\frac{C}{C \quad C}}_{C \quad C} \quad ; \quad \varepsilon = \underbrace{\frac{C}{\bullet}}_{I}.$$

Braided tensor product algebras

Let $\mathcal C$ be a braided category. Let A and B be two algebras in $\mathcal C$. The braiding of $\mathcal C$ gives rise to an algebra structure on the object $A\otimes B$ with multiplication given by



and unit $\eta_A \otimes \eta_B$.

The resulting algebra in C is denoted by $A \otimes_c B$ and is called the **braided tensor product** algebra of A and B.

Braided Hopf algebras

Let C be a braided category, with a braiding c.

• A **bialgebra** in $\mathcal C$ is an object H of $\mathcal C$ endowed with an algebra structure and a coalgebra structure in $\mathcal C$ such that its coproduct Δ and its counit ε are algebra morphisms, that is,

$$\frac{HH}{HH} = \frac{H}{H} + \frac{H}{H} + \frac{I}{HH} = \frac{I}{HH} \quad \text{and} \quad \frac{HH}{I} = \frac{HH}{I} + \frac{I}{I} = \frac{I}{I}$$

Braided Hopf algebras

Let C be a braided category, with a braiding c.

• A **bialgebra** in $\mathcal C$ is an object H of $\mathcal C$ endowed with an algebra structure and a coalgebra structure in $\mathcal C$ such that its coproduct Δ and its counit ε are algebra morphisms, that is,

$$\frac{HH}{HH} = \frac{H}{HH}, \frac{I}{\bullet} = \frac{I}{\bullet}, \frac{I}{\bullet} = \frac{I}{I}$$
 and
$$\frac{HH}{I} = \frac{HH}{I}, \frac{I}{I} = \frac{I}{I}$$

• A braided Hopf algebra is a bialgebra H in $\mathcal C$ such that there exists a morphism $S: H \to H$ in $\mathcal C$ (the antipode of H) with $m(S \otimes \mathrm{id}_H)\Delta = \eta \varepsilon = m(\mathrm{id}_H \otimes S)\Delta$, i.e

$$\frac{H}{\textcircled{\$}} = \frac{H}{\textcircled{\$}} = \frac{H}{\textcircled{\$}}$$

Example: two-parameter braided quantum SL₂

Definition

Let $p, q \in k^*$. The algebra $\mathcal{O}_{p,q}(\mathsf{SL}_2(k))$ is the algebra presented by generators a, b, c, d with the relations

$$ba = qab, ca = pac, db = qbd, dc = pcd, bc = cb$$

$$ad - p^{-1}bc = 1 = da - qbc$$

Proposition

The algebra $\mathscr{O}_{p,q}(\mathsf{SL}_2(k))$ has a $k\mathbb{Z}$ -comodule algebra structure whose coaction is defined by the algebra map

$$\delta: \mathscr{O}_{p,q}(\mathsf{SL}_2(k)) \longrightarrow \mathscr{O}_{p,q}(\mathsf{SL}_2(k)) \otimes k\mathbb{Z}$$

$$a, b, c, d \longmapsto a \otimes 1, b \otimes z^{-1}, c \otimes z, d \otimes 1$$

ullet where z is a fixed generator of the infinite cyclic group \mathbb{Z} .

Example: two-parameter braided quantum SL₂

Let $A = \mathcal{O}_{p,q}(\mathsf{SL}_2(k))$.

Consider the bicharacter $\psi: \mathbb{Z} \times \mathbb{Z} \to k^*$, $\psi(z,z) = p^{-1}q$. Recall that ψ induces a braiding on $\mathcal{M}^{k\mathbb{Z}}$, with, for instance, $c_{A,A}(b \otimes c) = \psi(z^{-1},z)c \otimes b = pq^{-1}c \otimes b$.

Example: two-parameter braided quantum SL₂

Let $A = \mathcal{O}_{p,q}(\mathsf{SL}_2(k))$.

Consider the bicharacter $\psi: \mathbb{Z} \times \mathbb{Z} \to k^*$, $\psi(z,z) = p^{-1}q$. Recall that ψ induces a braiding on $\mathcal{M}^{k\mathbb{Z}}$, with, for instance, $c_{A,A}(b \otimes c) = \psi(z^{-1},z)c \otimes b = pq^{-1}c \otimes b$.

Proposition

A is a Hopf algebra in the braided category $\mathcal{M}^{k\mathbb{Z}}$ with the structure

$$\Delta: A \longrightarrow A \otimes_{c} A$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} a \otimes a + b \otimes c & a \otimes b + b \otimes d \\ c \otimes a + d \otimes c & c \otimes b + d \otimes d \end{pmatrix}$$

$$\begin{array}{ccc}
\varepsilon: & A \longrightarrow k, & S: & A \longrightarrow A^{op,c} \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} d & -qb \\ -p^{-1}c & a \end{pmatrix}$$

Modules and bimodules over a braided Hopf algebra

Proposition

Let $\mathcal C$ be a braided category and let A be a bialgebra in $\mathcal C$. Let V be a left A-module in $\mathcal C$. Endow $V\otimes A$ with the right A-module structure defined by right multiplication. Then the morphism

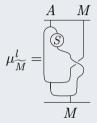
$$\mu^l_{V\otimes A} = \bigvee_{V}^{A} \bigvee_{A}^{V}$$

provides $V \otimes A$ with a left A-module structure, hence with an A-bimodule structure in C. Denoting the resulting A-bimodule by $V \boxtimes A$, this construction yields a functor

$$L = - \boxtimes A : {}_{A}\mathcal{C} \longrightarrow {}_{A}\mathcal{C}_{A}$$
$$V \longmapsto V \boxtimes A.$$

Proposition

Let $\mathcal C$ be a braided category and A be a Hopf algebra in $\mathcal C$. Let M be an A-bimodule in $\mathcal C$, the morphism



endows M with a left A-module structure in \mathcal{C} . We then denote by M the resulting left A-module. This construction gives us a functor

$$R: {}_{A}\mathcal{C}_{A} \longrightarrow {}_{A}\mathcal{C}$$
$$M \mapsto \widetilde{M}$$

Proposition

Let \mathcal{C} be a braided category and A be a Hopf algebra in \mathcal{C} . Then the functor $R: {}_{A}\mathcal{C}_{A} \longrightarrow {}_{A}\mathcal{C}$ is right adjoint to the functor $L = - \boxtimes A: {}_{A}\mathcal{C} \longrightarrow {}_{A}\mathcal{C}_{A}$.

This will enable us to use the following classical result.

Proposition

Let $\mathcal C$ be a braided category and A be a Hopf algebra in $\mathcal C$. Then the functor $R: {}_A\mathcal C_A \longrightarrow {}_A\mathcal C$ is right adjoint to the functor $L = - \boxtimes A: {}_A\mathcal C \longrightarrow {}_A\mathcal C_A$.

This will enable us to use the following classical result.

Proposition

Let $\mathcal C$ and $\mathcal D$ be k-linear abelian categories, and let $F:\mathcal C\to\mathcal D$ and $G:\mathcal D\to\mathcal C$ be some k-linear functors with G right adjoint to F. Suppose that $\mathcal C$ has enough projectives and that F is exact. Then we have natural isomorphisms

$$\operatorname{Ext}_{\mathcal{D}}^*(F(X), V) \cong \operatorname{Ext}_{\mathcal{C}}^*(X, G(V))$$

for any $X \in \mathsf{Ob}(\mathcal{C})$ and $V \in \mathsf{Ob}(\mathcal{D})$.

Corollary

Let $\mathcal C$ be an abelian k-linear braided category with enough projectives and let A be a Hopf algebra in $\mathcal C$. There exists natural isomorphisms

$$\operatorname{Ext}\nolimits_{{}_{\!A}{\mathcal C}_{\!A}}^*(A,M)\cong\operatorname{Ext}\nolimits_{{}_{\!A}{\mathcal C}}^*({}_{\varepsilon}I,\widetilde{M}).$$

and we have $\operatorname{pd}_{{}_A\mathcal{C}_A}(A) = \operatorname{pd}_{{}_A\mathcal{C}}({}_{\varepsilon}I) = \operatorname{pd}_{\mathcal{C}_A}(I_{\varepsilon}).$

(The functor $-\otimes$ – is assumed to be exact and k-linear, and it follows that the categories ${}_A\mathcal{C}_A$ and ${}_A\mathcal{C}$ are abelian k-linear). Indeed, we have, for M in ${}_A\mathcal{C}_A$,

$$\operatorname{Ext}_{{}_{A}\mathcal{C}_{A}}^{*}({}_{\varepsilon}I\boxtimes A,M)\cong \operatorname{Ext}_{{}_{A}\mathcal{C}}^{*}({}_{\varepsilon}I,\widetilde{M})$$

and we get

$$\operatorname{pd}_{{}_A\mathcal{C}_A}(A) \leq \operatorname{pd}_{{}_A\mathcal{C}}({}_{\varepsilon}I).$$

Corollary

Let $\mathcal C$ be an abelian k-linear braided category with enough projectives and let A be a Hopf algebra in $\mathcal C$. There exists natural isomorphisms

$$\operatorname{Ext}\nolimits_{{}_{\!A}{\mathcal C}_{\!A}}^*(A,M)\cong\operatorname{Ext}\nolimits_{{}_{\!A}{\mathcal C}}^*({}_{\varepsilon}I,\widetilde{M}).$$

and we have $\operatorname{pd}_{{}_A\mathcal{C}_A}(A)=\operatorname{pd}_{{}_A\mathcal{C}}({}_\varepsilon I)=\operatorname{pd}_{\mathcal{C}_A}(I_\varepsilon).$

(The functor $-\otimes -$ is assumed to be exact and k-linear, and it follows that the categories ${}_A\mathcal{C}_A$ and ${}_A\mathcal{C}$ are abelian k-linear). Indeed, we have, for M in ${}_A\mathcal{C}_A$,

$$\operatorname{Ext}_{{}_{A}\mathcal{C}_{A}}^{*}({}_{\varepsilon}I\boxtimes A,M)\cong \operatorname{Ext}_{{}_{A}\mathcal{C}}^{*}({}_{\varepsilon}I,\widetilde{M})$$

and we get

$$\operatorname{pd}_{{}_A\mathcal{C}_A}(A) \leq \operatorname{pd}_{{}_A\mathcal{C}}(_{\varepsilon}I).$$

Then, we also have $\widetilde{M_{\varepsilon}} \cong M$ in ${}_A\mathcal{C}$ and we obtain

$$\operatorname{Ext}_{{}_{A}\mathcal{C}}^*(\,{}_{\varepsilon}I,M) \cong \operatorname{Ext}_{{}_{A}\mathcal{C}}^*(\,{}_{\varepsilon}I,\widetilde{M_{\varepsilon}}) \cong \operatorname{Ext}_{{}_{A}\mathcal{C}_A}^*(A,M_{\varepsilon})$$

Hence, $\operatorname{pd}_{{}_{A}\mathcal{C}}(\varepsilon I) \leq \operatorname{pd}_{{}_{A}\mathcal{C}_{A}}(A)$.

Cohomological dimension of braided Hopf algebras

Assume now that $\mathcal{C}=\mathcal{M}^H$ for H a coquasitriangular Hopf algebra. Since $\operatorname{pd}_{A\mathcal{C}_A}(A)=\operatorname{pd}_{A\mathcal{C}}(\varepsilon I)$, we have

l.
$$\operatorname{gldim}(A) \leq \operatorname{cd}(A) = \operatorname{pd}_{A\mathcal{M}_A}(A) \leq \operatorname{pd}_{A\mathcal{M}_A^H}(A) = \operatorname{pd}_{A\mathcal{M}^H}(\varepsilon k)$$

$$\stackrel{?}{=} \operatorname{pd}_{A\mathcal{M}}(\varepsilon k) \leq \operatorname{l.} \operatorname{gldim}(A).$$

Cohomological dimension of braided Hopf algebras

Assume now that $\mathcal{C}=\mathcal{M}^H$ for H a coquasitriangular Hopf algebra. Since $\operatorname{pd}_{{}_A\mathcal{C}_A}(A)=\operatorname{pd}_{{}_A\mathcal{C}}({}_{\varepsilon}I),$ we have

$$\begin{split} \text{l. gldim}(A) &\leq \operatorname{cd}(A) = \operatorname{pd}_{A\mathcal{M}_A}(A) \leq \operatorname{pd}_{A\mathcal{M}_A^H}(A) = \operatorname{pd}_{A\mathcal{M}^H}(\varepsilon k) \\ &\stackrel{?}{=} \operatorname{pd}_{A\mathcal{M}}(\varepsilon k) \leq \text{l. gldim}(A). \end{split}$$

Definition (Nastasescu, Van den Bergh, Van Oystaeyen, 1989)

Let \mathcal{C}, \mathcal{D} be categories and let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F induces a natural transformation $\mathcal{P}_{-,-}: \operatorname{Hom}_{\mathcal{C}}(-,-) \longrightarrow \operatorname{Hom}_{\mathcal{D}}\left(F(-),F(-)\right)$. We say that F is a **separable functor** if there is a natural transformation

$$\mathbf{M}_{-,-}: \mathrm{Hom}_{\mathcal{D}}\left(F(-), F(-)\right) \longrightarrow \mathrm{Hom}_{\mathcal{C}}(-, -)$$

such that $\mathbf{M}_{-,-}\circ\mathcal{P}_{-,-}=\mathbf{1}_{\mathrm{Hom}_{\mathcal{C}}(-,-)}.$

Cohomological dimension of braided Hopf algebras

Proposition

Let $\mathcal C$ and $\mathcal D$ be k-linear abelian categories with enough projective objects, and let $F:\mathcal C\to\mathcal D$ be a k-linear functor. Assume that F is exact, preserves projective objects and is separable. Then for any object X in $\mathcal C$, we have $\operatorname{pd}_{\mathcal C}(X)=\operatorname{pd}_{\mathcal D}(F(X))$.

Cohomological dimension of braided Hopf algebras

Proposition

Let $\mathcal C$ and $\mathcal D$ be k-linear abelian categories with enough projective objects, and let $F:\mathcal C\to\mathcal D$ be a k-linear functor. Assume that F is exact, preserves projective objects and is separable. Then for any object X in $\mathcal C$, we have $\operatorname{pd}_{\mathcal C}(X)=\operatorname{pd}_{\mathcal D}(F(X))$.

We recall some of the main examples of separable functors:

Proposition (Caenepeel-Militaru-Ion-Zhu 1999)

Let H be a cosemisimple Hopf algebra and let A be a right H-comodule algebra. The forgetful functors ${}_A\mathcal{M}^H \to {}_A\mathcal{M}$ and $\mathcal{M}^H_A \to \mathcal{M}_A$ are separable.

This result can be proven directly by using the Haar integral.

Clermont-Ferrand. November 27, 2025

Cohomological dimension of braided Hopf algebras

Assuming moreover that H is cosemisimple, we thus have

l.
$$\operatorname{gldim}(A) \leq \operatorname{cd}(A) = \operatorname{pd}_{A\mathcal{M}_A}(A) \leq \operatorname{pd}_{A\mathcal{M}_A^H}(A) = \operatorname{pd}_{A\mathcal{M}^H}(\varepsilon k)$$

= $\operatorname{pd}_{A\mathcal{M}}(\varepsilon k) \leq \operatorname{l.} \operatorname{gldim}(A)$

Cohomological dimension of braided Hopf algebras

Assuming moreover that H is cosemisimple, we thus have

$$\begin{split} \text{l. gldim}(A) &\leq \operatorname{cd}(A) = \operatorname{pd}_{{}_A\mathcal{M}_A}(A) \leq \operatorname{pd}_{{}_A\mathcal{M}_A^H}(A) = \operatorname{pd}_{{}_A\mathcal{M}^H}(\varepsilon k) \\ &= \operatorname{pd}_{{}_A\mathcal{M}}(\varepsilon k) \leq \operatorname{l. gldim}(A) \end{split}$$

and we obtain

Theorem

Let A be a Hopf algebra in the braided category \mathcal{M}^H of comodules over a coquasitriangular cosemisimple Hopf algebra H. Then we have

$$\operatorname{cd}(A) = \operatorname{l.gldim}(A) = \operatorname{r.gldim}(A) = \operatorname{pd}_{A(\varepsilon)}(k) = \operatorname{pd}_{A\circ p}(k_{\varepsilon})$$

A free resolution of εk

Let $A = \mathcal{O}_{p,q}(\mathsf{SL}_2(k))$.

The following generalizes a construction of Hadfield-Krämer (2005) in the p=q case:

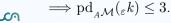
Proposition

The following is a resolution of εk by free left A-modules:

$$(P_*): 0 \longrightarrow A \xrightarrow{\phi_3} A^3 \xrightarrow{\phi_2} A^3 \xrightarrow{\phi_1} A \xrightarrow{\varepsilon} k \longrightarrow 0.$$

where
$$\phi_1(x, y, z) = x(a - 1) + yb + zc$$
, $\phi_3(x) = x(c, -b, pqa - 1)$ and

$$\phi_2(x, y, z) = (x, y, z) \begin{pmatrix} b & 1 - qa & 0 \\ c & 0 & 1 - pa \\ 0 & c & -b \end{pmatrix}.$$



Ext-space

For $t \in k^*$, there exists an algebra map

$$\begin{array}{ccc}
\varepsilon_t : A \longrightarrow k \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$$

Proposition

For $p, q \in k^*$, put $t = (pq)^{-1}$. We have

$$\operatorname{Ext}_A^3({}_{\varepsilon}k,{}_{\varepsilon_t}k)\cong k.$$

Ext-space

For $t \in k^*$, there exists an algebra map

$$\begin{array}{ccc}
\varepsilon_t : A \longrightarrow k \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$$

Proposition

For $p, q \in k^*$, put $t = (pq)^{-1}$. We have

$$\operatorname{Ext}_{A}^{3}(\varepsilon k, \varepsilon_{t} k) \cong k.$$

$$\Longrightarrow \operatorname{pd}_{AM}(\varepsilon k) \geq 3.$$

Corollary

We have $\operatorname{cd}(\mathscr{O}_{p,q}(\mathsf{SL}_2(k))) = 3$ for any $p, q \in k^*$.

Table of Contents

- 1 Introduction
- 2 Cohomological dimension of braided Hopf algebras
 - Braided Hopf algebras
 - Modules and bimodules over a braided Hopf algebra
 - Cohomological dimension of braided Hopf algebras
 - Illustration 1
- Twisted Calabi-Yau algebras
 - Finiteness conditions and smoothness
 - The structure of $H^*(A, {}_AA \otimes A_A)$
 - Illustration 2

Twisted Calabi-Yau algebras

Let A be a k-algebra;

• A is said to be *smooth* if A is of type FP as an A-bimodule, that is, A has a finite resolution by finitely generated projective A^e -modules.

Clermont-Ferrand. November 27, 2025

Twisted Calabi-Yau algebras

Let A be a k-algebra;

- A is said to be *smooth* if A is of type FP as an A-bimodule, that is, A has a finite resolution by finitely generated projective A^e -modules.
- A is said to be twisted Calabi-Yau of dimension n > 0 if A is smooth and

$$H^{i}(A, {}_{A}A \otimes A_{A}) \simeq \begin{cases} \{0\} & \text{if} \quad i \neq n \\ A_{\mu} & \text{if} \quad i = n \end{cases}$$

as A-bimodules, for an algebra automorphism $\mu \in \operatorname{Aut}(A)$, called the $\operatorname{\it Nakayama}$ automorphism of A.

Homological duality

The motivation for the concept of twisted Calabi-Yau algebra comes from the following result:

Theorem (Van Den Bergh)

If A is a twisted Calabi-Yau algebra of dimension n with Nakayama automorphism μ , then necessarily $n=\operatorname{cd}(A)$, and if M is an A-bimodule, then we have for any $i\geq 0$

$$H^{i}(A, M) \simeq H_{n-i}(A, \mu^{-1}M)$$

Clermont-Ferrand. November 27, 2025

Objective II - The main result:

This result provides examples of twisted Calabi-Yau algebras in the setting of braided Hopf algebras; it generalizes a previous result of Brown-Zhang (2008) for ordinary Hopf algebras.

Theorem (Bichon - N, 2024)

Let A be a Hopf algebra with bijective antipode in the braided category \mathcal{M}^H of comodules over a coquasitriangular Hopf algebra H (with the r-form \mathbf{r}). Assume that the A-module $_{\varepsilon}k$ is of type FP in $_A\mathcal{M}^H$ and that there is an integer $n\geq 0$ such that $\operatorname{Ext}_A^i(_{\varepsilon}k,A)=\{0\}$ for $i\neq n$ and $\operatorname{Ext}_A^n(_{\varepsilon}k,A)$ is one-dimensional. Then A is twisted Calabi-Yau of dimension n, with Nakayama automorphism defined by

$$\mu(a) = \psi(a_{[1]}) \mathbf{r} (a_{[2](1)}, S_H(a_{2}) g^{-1}) S_A^2(a_{[2](0)})$$

where $\psi:A\to k$ is the algebra map corresponding to the A-module structure on $\operatorname{Ext}\nolimits_A^n(\varepsilon k,A)$ and satisfies $\psi(a_{(0)})a_{(1)}=\psi(a)1$ for any $a\in A$, and $g\in H$ is the group-like element corresponding to an appropriate H-comodule structure on $\operatorname{Ext}\nolimits_A^n(\varepsilon k,A)$.

Finiteness conditions

Let \mathcal{C} be an abelian k-linear monoidal category (this always mean that $-\otimes -$ is exact in each variable) and let A be an algebra in \mathcal{C} .

• An object V in $\mathcal C$ is said to have a left dual if there exists an object V^* together with morphisms $e:V^*\otimes V\to I$ and $\delta:I\to V\otimes V^*$ such that

$$(\operatorname{id}_V \otimes e) \circ (\delta \otimes \operatorname{id}_V) = \operatorname{id}_V, \quad (e \otimes \operatorname{id}_{V^*}) \circ (\operatorname{id}_{V^*} \otimes \delta) = \operatorname{id}_{V^*}$$

Finiteness conditions

(T.H.E. NGUYEN (UCA))

Let \mathcal{C} be an abelian k-linear monoidal category (this always mean that $-\otimes -$ is exact in each variable) and let A be an algebra in \mathcal{C} .

• An object V in $\mathcal C$ is said to have a left dual if there exists an object V^* together with morphisms $e:V^*\otimes V\to I$ and $\delta:I\to V\otimes V^*$ such that

$$(\operatorname{id}_V \otimes e) \circ (\delta \otimes \operatorname{id}_V) = \operatorname{id}_V, \quad (e \otimes \operatorname{id}_{V^*}) \circ (\operatorname{id}_{V^*} \otimes \delta) = \operatorname{id}_{V^*}$$

• A left A-module M in $\mathcal C$ is said to be finite relative projective if M is isomorphic, as an A-module, to a direct summand of a free A-module $A\otimes V$, with V an object of $\mathcal C$ having a left dual.

Finiteness conditions

Let \mathcal{C} be an abelian k-linear monoidal category (this always mean that $-\otimes -$ is exact in each variable) and let A be an algebra in \mathcal{C} .

• An object V in $\mathcal C$ is said to have a left dual if there exists an object V^* together with morphisms $e:V^*\otimes V\to I$ and $\delta:I\to V\otimes V^*$ such that

$$(\mathrm{id}_V \otimes e) \circ (\delta \otimes \mathrm{id}_V) = \mathrm{id}_V, \quad (e \otimes \mathrm{id}_{V^*}) \circ (\mathrm{id}_{V^*} \otimes \delta) = \mathrm{id}_{V^*}$$

- A left A-module M in $\mathcal C$ is said to be finite relative projective if M is isomorphic, as an A-module, to a direct summand of a free A-module $A\otimes V$, with V an object of $\mathcal C$ having a left dual.
- ullet A left A-module M in ${\mathcal C}$ is said to be of type FP if it has a finite resolution by finite relative projectives, in the sense that there exists an exact sequence of A-modules

$$0 \to P_n \to P_{n-1} \to \cdots \to P_2 \to P_1 \to P_0 \to M \to 0$$

where for each i, the A-module P_i is finite relative projective.

Proposition

Let $\mathcal C$ be a braided category and let A be a bialgebra in $\mathcal C$. Let V be a left A-module in $\mathcal C$. Endow $V\otimes A$ with the right A-module structure defined by right multiplication. Then the morphism

$$\mu^l_{V\otimes A} = \begin{array}{c} A & V A \\ \hline \\ V & A \end{array}$$

provides $V \otimes A$ with a left A-module structure, hence with an A-bimodule structure in C. Denoting the resulting A-bimodule by $V \boxtimes A$, this construction yields a functor

$$L = - \boxtimes A : {}_{A}\mathcal{C} \longrightarrow {}_{A}\mathcal{C}_{A}$$
$$V \longmapsto V \boxtimes A.$$

Proposition

Let $\mathcal C$ be a braided category and let A be an algebra in $\mathcal C$. The functor

 $L = - \boxtimes A : {}_A\mathcal{C} \longrightarrow {}_A\mathcal{C}_A$ transforms free A-modules into free A-bimodules. If moreover \mathcal{C} is an abelian k-linear braided category, then the functor L transforms objects that are of type FP in ${}_A\mathcal{C}$ into objects that are of type FP in ${}_A\mathcal{C}_A$.

Proposition

Let $\mathcal C$ be a braided category and let A be an algebra in $\mathcal C$. The functor $L=-\boxtimes A: {}_A\mathcal C \longrightarrow {}_A\mathcal C_A$ transforms free A-modules into free A-bimodules. If moreover $\mathcal C$ is an abelian k-linear braided category, then the functor L transforms objects that are of type FP in ${}_A\mathcal C$ into objects that are of type FP in ${}_A\mathcal C_A$.

Since $\mathcal C$ is an abelian k-linear braided category, the functor $-\otimes -$ is assumed to be exact, hence it suffices to prove that $(A\otimes V)\boxtimes A\simeq A\otimes V\otimes A$ as A-bimodules.

Clermont-Ferrand, November 27, 2025

Proposition

Let $\mathcal C$ be a braided category and let A be an algebra in $\mathcal C$. The functor $L=-\boxtimes A: {}_A\mathcal C\longrightarrow {}_A\mathcal C_A$ transforms free A-modules into free A-bimodules. If moreover $\mathcal C$ is an abelian k-linear braided category, then the functor L transforms objects that are of type FP in ${}_A\mathcal C$ into objects that are of type FP in ${}_A\mathcal C_A$.

Since $\mathcal C$ is an abelian k-linear braided category, the functor $-\otimes -$ is assumed to be exact, hence it suffices to prove that $(A\otimes V)\boxtimes A\simeq A\otimes V\otimes A$ as A-bimodules.

Theorem

Let A be a Hopf algebra in the braided category \mathcal{M}^H of comodules over a coquasitriangular Hopf algebra H. If εk is of type FP in ${}_A\mathcal{M}^H$, then A is a smooth algebra.

Take $\mathcal{C}=\mathcal{M}^H$. We have $L(_{arepsilon}k)\simeq A$, hence A is of type FP in $_A\mathcal{M}_A^H$ and thus, of type FP

in $_{A}\mathcal{M}_{A}$.

Sweedler's Notation

We fix a coquasitriangular Hopf algebra H and a Hopf algebra A in the braided category \mathcal{M}^H . We denote by, for $a \in A, x \in H$,

- $\Delta_A(a) = a_{[1]} \otimes a_{[2]}$, the comultiplication of A;
- $\Delta_H(x) = x_{(1)} \otimes x_{(2)}$, the comultiplication of H;
- $\alpha(a) = a_{(0)} \otimes a_{(1)}$, the *H*-coaction on *A*.

Theorem (Bichon - N, 2024)

Let A be a Hopf algebra in the braided category \mathcal{M}^H of comodules over a coquasitriangular Hopf algebra H. If $_{\varepsilon}k$ is of type FP in $_A\mathcal{M}^H$, then there is an isomorphism of right A^e -modules

$$H^*(A, {}_{A}A \otimes A_A) \simeq \operatorname{Ext}_A^*({}_{\varepsilon}k, {}_{A}A) \otimes A$$

Theorem (Bichon - N, 2024)

Let A be a Hopf algebra in the braided category \mathcal{M}^H of comodules over a coquasitriangular Hopf algebra H. If $_{\varepsilon}k$ is of type FP in $_A\mathcal{M}^H$, then there is an isomorphism of right A^e -modules

$$H^*(A, {}_{A}A \otimes A_A) \simeq \operatorname{Ext}_A^*(\varepsilon k, {}_{A}A) \otimes A$$

where the right A^e -action on $\operatorname{Ext}_A^*(\varepsilon k, {}_AA) \otimes A$ is defined by

$$([f] \otimes a') \cdot (a \otimes b) = ([f] \cdot a_{[1]})_{(0)} \otimes ba' S_A^2(a_{[2](0)}) \mathbf{r} \big[a_{[2](1)}, S_H(a_{2}) S_H(([f] \cdot a_{[1]})_{(1)}) \big]$$

with the right A-structure on $\operatorname{Ext}_A^*(\varepsilon k, AA)$ induced by right multiplication in A and the right H-comodule structure is given by (see next slide)

$$\bar{\delta}: \operatorname{Ext}_{A}^{*}(\varepsilon k, {}_{A}A) \longrightarrow \operatorname{Ext}_{A}^{*}(\varepsilon k, {}_{A}A) \otimes H$$
$$[f] \longmapsto [f]_{(0)} \otimes [f]_{(1)} = [f_{(0)}] \otimes f_{(1)}$$

Lemma

Let P be a finite relative projective object in ${}_{A}\mathcal{M}^{H}$. Then there is a map

$$\delta: \operatorname{Hom}_A(P, A) \longrightarrow \operatorname{Hom}_A(P, A) \otimes H$$

$$f \longmapsto f_{(0)} \otimes f_{(1)}$$

such that for all $x \in P$, $f_{(0)}(x) \otimes f_{(1)} = f(x_{(0)})_{(0)} \otimes S_H^{-1}(x_{(1)})f(x_{(0)})_{(1)}$ that endows $\operatorname{Hom}_A(P,A)$ with an H-comodule structure, and makes it into an object in \mathcal{M}_A^H .

Lemma

Let P be a finite relative projective object in ${}_{A}\mathcal{M}^{H}$. Then there is a map

$$\delta: \operatorname{Hom}_A(P, A) \longrightarrow \operatorname{Hom}_A(P, A) \otimes H$$

$$f \longmapsto f_{(0)} \otimes f_{(1)}$$

such that for all $x \in P$, $f_{(0)}(x) \otimes f_{(1)} = f(x_{(0)})_{(0)} \otimes S_H^{-1}(x_{(1)})f(x_{(0)})_{(1)}$ that endows $\operatorname{Hom}_A(P,A)$ with an H-comodule structure, and makes it into an object in \mathcal{M}_A^H .

Lemma

Let M be an A-module of type FP in ${}_{A}\mathcal{M}^{H}$. For $n \in \mathbb{N}$, the map

$$\bar{\delta} : \operatorname{Ext}_A^n(M, A) \longrightarrow \operatorname{Ext}_A^n(M, A) \otimes H$$

$$[f] \longmapsto [f]_{(0)} \otimes [f]_{(1)} = [f_{(0)}] \otimes f_{(1)}$$

making $\operatorname{Ext}\nolimits_A^n(M,A)$ into an H-comodule, and an object in \mathcal{M}_A^H .

The main result

Theorem (Bichon - N, 2024)

Let A be a Hopf algebra with bijective antipode in the braided category \mathcal{M}^H of comodules over a coquasitriangular Hopf algebra H. Assume that the A-module εk is of type FP in ${}_A\mathcal{M}^H$ and that there is an integer $n\geq 0$ such that $\operatorname{Ext}_A^i(\varepsilon k,A)=\{0\}$ for $i\neq n$ and $\operatorname{Ext}_A^n(\varepsilon k,A)$ is one-dimensional. Then A is twisted Calabi-Yau of dimension n, with Nakayama automorphism defined by

$$\mu(a) = \psi(a_{[1]}) \mathbf{r}(a_{[2](1)}, S_H(a_{2})g^{-1}) S_A^2(a_{[2](0)})$$

where $\psi:A\to k$ is the algebra map corresponding to the A-module structure on $\operatorname{Ext}\nolimits_A^n(\varepsilon k,A)$ and satisfies $\psi(a_{(0)})a_{(1)}=\psi(a)1$ for any $a\in A$, and $g\in H$ is the group-like element corresponding to the H-comodule structure on $\operatorname{Ext}\nolimits_A^n(\varepsilon k,A)$.

Clermont-Ferrand. November 27, 2025

Proof:

Since $H^*(A, {}_AA \otimes A_A) \simeq \operatorname{Ext}_A^*(\varepsilon k, {}_AA) \otimes A$,

• Assuming that $\operatorname{Ext}_A^i(\varepsilon k,A)=\{0\}$ for $i\neq n$, we obtain that $H^i(A,\,{}_AA\otimes A_A)=\{0\}$ for $i\neq n$.

Proof:

Since $H^*(A, {}_AA \otimes A_A) \simeq \operatorname{Ext}_A^*({}_{\varepsilon}k, {}_AA) \otimes A$,

- Assuming that $\operatorname{Ext}_A^i(\varepsilon k,A)=\{0\}$ for $i\neq n$, we obtain that $H^i(A,{}_AA\otimes A_A)=\{0\}$ for $i\neq n$.
- Assuming moreover $\operatorname{Ext}_A^n(\varepsilon k,A)$ is one dimensional. The H-comodule structure on $\operatorname{Ext}_A^n(\varepsilon k,A)$ corresponds to a group-like element $g\in H$. Let

$$\psi: A \to k$$

be the algebra map associated with the A-module structure on $\operatorname{Ext}_A^n(\varepsilon k,A)$. It follows from the fact that $\operatorname{Ext}_A^n(\varepsilon k,A)$ is an object in \mathcal{M}_A^H that ψ satisfies $\psi(a_{(0)})a_{(1)}=\psi(a)1$ for any $a\in A$. Then the right A^e -action on $\operatorname{Ext}_A^*(\varepsilon k,A)\otimes A$ is

$$([f] \otimes a') \cdot (a \otimes b) = [f] \otimes ba'\psi(a_{[1]})S_A^2(a_{[2](0)})\mathbf{r} \big[a_{[2](1)}, S_H(a_{2})g^{-1}\big].$$

and this gives the announced formula for μ .

Two-parameter braided quantum SL₂

We recall the example of $\mathcal{O}_{n,q}(\mathsf{SL}_2(k))$:

Definition

Let $p, q \in k^*$. The algebra $\mathcal{O}_{p,q}(\mathsf{SL}_2(k))$ is the algebra presented by generators a, b, c, d with the relations

$$ba = qab, ca = pac, db = qbd, dc = pcd, bc = cb$$

$$ad - p^{-1}bc = 1 = da - qbc$$

Recall that $\mathcal{M}^{k\mathbb{Z},\xi}$ is an abelian k-linear braided category, where \mathbb{Z} is the infite cyclic group with generator z, and the bicharacter

$$\psi: \mathbb{Z} \times \mathbb{Z} \longrightarrow k^*$$
$$(z, z) \longmapsto \xi.$$

(T.H.E. NGUYEN (UCA))

A free resolution of εk in $\mathcal{M}^{k\mathbb{Z}}$

Let $A = \mathcal{O}_{p,q}(\mathsf{SL}_2(k))$.

Proposition

Let V, W be the 3-dimensional $k\mathbb{Z}$ -comodules with respective bases (e_1,e_2,e_3) and (e_1',e_2',e_3') , and coactions defined by

$$\delta_V: V \longrightarrow V \otimes k\mathbb{Z}$$

$$\delta_W: W \longrightarrow W \otimes k\mathbb{Z}$$

$$e_1, e_2, e_3 \longmapsto e_1 \otimes 1, e_2 \otimes z^{-1}, e_3 \otimes z$$

$$e'_1, e'_2, e'_3 \longmapsto e'_1 \otimes z^{-1}, e'_2 \otimes z, e'_3 \otimes 1.$$

Then we have a resolution of εk by free A-modules in $\mathcal{M}^{k\mathbb{Z}}$

$$0 \to A \longrightarrow A \otimes W \longrightarrow A \otimes V \longrightarrow A \xrightarrow{\varepsilon} k \to 0$$

In particular εk is of type FP in ${}_{A}\mathcal{M}^{k\mathbb{Z}}$.

Thus $\mathcal{O}_{p,q}(\mathsf{SL}_2(k))$ is smooth.

Ext-space

For $t \in k^*$, there exists an algebra map

$$\begin{array}{ccc}
\varepsilon_t : A \longrightarrow k \\
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}$$

Proposition

For $p,q\in k^*$, put $t=(pq)^{-1}$. We have $\operatorname{Ext}_A^n(\varepsilon k,A)=0$ if $n\neq 3$, and $\operatorname{Ext}_A^3(\varepsilon k,A)\simeq k_{\varepsilon_{(pq)^{-1}}}$ as right A-modules.

Theorem

The algebra $\mathcal{O}_{p,q}(\mathsf{SL}_2(k))$ is twisted Calabi-Yau of dimension 3, with Nakayama automorphism defined by

$$\mu: \quad \mathscr{O}_{p,q}(\mathsf{SL}_2(k)) \quad \longrightarrow \mathscr{O}_{p,q}(\mathsf{SL}_2(k))$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \begin{pmatrix} (pq)^{-1}a & b \\ c & (pq)d \end{pmatrix}.$$

Clermont-Ferrand. November 27, 2025

- THE END -

Thank you for your attention

Contact:

thi_hoa.nguyen@uca.fr julien.bichon@uca.fr

