Séminaire Géométrie et groupes discrets
Diophantine Approximation and Random Walks on the Modular Surface
par
→
Europe/Paris
Amphithéâtre Léon Motchane (IHES)
Amphithéâtre Léon Motchane
IHES
Le Bois Marie
35, route de Chartres
CS 40001
91893 Bures-sur-Yvette Cedex
Description
Khintchine's theorem is a key result in Diophantine approximation. Given a positive non-increasing function f defined over the integers, it states that the set of real numbers that are f-approximable has zero or full Lebesgue measure depending on whether the series of terms (f(n))n converges or diverges. I will present a recent work in collaboration with Weikun He and Han Zhang in which we extend Khintchine's theorem to any self-similar probability measure on the real line. The argument involves the quantitative equidistribution of upper triangular random walks on SL(2,R)/SL(2,Z).
Organisé par
Fanny Kassel
Contact