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The Lorentz / Ehrenfest Gas - genesis

Periodic Random
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Detour:

Tatyana Afanasieva

(1876-1964)

Paul Ehrenfest

(1880-1933)

1907:

Genesis of Markov Chains: . . . ,

AA Markov (1906), EH Bruns (1906),

P&T Ehrenfest (1907), O Perron (1907),

G Frobenius (1908), . . .

1911:

In: F Klein (ed): Encyklopädie

der math. Wissenschaften vol. 4-4

extended book in 1912
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The random Lorentz gas:
Ingredients:

• A spherically symmetric finite range potential:

φ : Rd 7→ R ∪ {+∞}, φ(x) = φ(|x|e) = φ(x)11{|x|≤r}

two extremes:

• A PPP ω in Rd \ {x : |x| ≤ r}, of density ϱ.

Points q ∈ ω will be the centres of fixed (∞-mass) scatterers.
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The Lorentz/Ehrenfest trajectory: Particle of mass 1 moves

among the fixed scatterers, according to Newtonian dynamics

t 7→ (V (t)), X(t)), with i.c. X(0) = 0 ∈ Rd, V (0) ∈ §d−1.

Soft case:

Φ(x) :=
∑
q∈ω

φ(x− q), F (x) = −∇Φ(x) = −
∑
q∈ω
∇φ(x− q)

V̇ (t) = F (X(t)), Ẋ(t) = V (t), + i.c.

Hard core case: the ODE is

formal, nevertheless the dynamics

is still (a.s.) well defined

No trapping:

hard core: rdϱ < θc,

soft: max |φ| < mc(rdϱ).
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Sources of randomness:

• environment: random placement of scatterers, ω ∼ PPP(ϱ).

• random direction of initial velocity, e.g., V (0) ∼ UNI(Sd−1).
and nothing more. Dynamics: fully deterministic, Newtonian.

Wanted: t≫ 1 scaling behaviour of the trajectory t 7→ (V (t), X(t))

Holy Grail: ? T−1/2X(Tt)⇒W (t) ?
(conditioned on no trapping)

annealed CLT/IP: averaged over V (0) and scatterer config

semi-quenched: ave over V (0), in prob. w.r.t. scatt. config

(fully) quenched: ave over V (0), a.s. w.r.t. scatterer config
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(A) Hard Core scatterers

Periodic (detour): Factorize on cell:

Sinai billiard, hyperbolic dynamics.

Big theory, since the 1970s

Source of randomness: V (0) ∼ UNI(Sd−1)

Finite horizon: [L Bunimovich, Ya Sinai (1980)]: d = 2

(conditional) [N Chernov, D Dolgopyat (2009)]: d ≥ 3

X(T ·)√
T
⇒W (·)

Infinite horizon: [P Bleher (1992)]: conjecture

[DSzász,TVarjú(2007)], [NChernov,DDolgopyat(2008)]: d = 2

X(T ·)√
T logT

⇒W (·)

d ≥ 3: wide open
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Random: No dynamics tools –

less understood

Source of randomness:

ω ∼ PPP(ϱ) & V (0) ∼ UNI(Sd−1)

Wanted: t≫ 1 scaling behaviour of the trajectory t 7→ (V (t), X(t))

Holy Grail: ? T−1/2X(Tt)⇒W (t) ?
(conditioned on no trapping)

annealed CLT/IP: averaged over V (0) and scatterer config

semi-quenched: ave over V (0), in prob. w.r.t. scatt. config

(fully) quenched: ave over V (0), a.s. w.r.t. scatterer config
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Kinetic limits I: Boltzmann-Grad / Low Density:

ϱ = ε−d, r = εd/(d−1), ϱrd = εd/(d−1)︸ ︷︷ ︸
low density

, ε→ 0 (BGLIM)

ε: microscopic (linear) length scale

In this limit the free flight between successive collisions is ≍ 1

Random: Periodic:
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Random: Easy to guess . . .{
t 7→ X(t) : t ∈ [0, T ]

} (BGLIM)⇒
{
t 7→ Y (t) : t ∈ [0, T ]

}

t 7→ Y (t) = Markovian random flight process:

◦ i.i.d EXP(1) flights, with |v| = 1

◦ Markovian scatterings with differential

cross section σ(v, v′) ∼ |v − v′|3−d

Note: d = 3 is very special! (Archimedes ,)

Hard to prove.

annealed, d ≥ 2: [G Gallavotti (1970)], [H Spohn (1978)]

quenched, d = 2: [C Boldrighini, L Bunimovich, Ya Sinai (1982)]
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Periodic: Not so easy to guess . . .{
t 7→ X(t) : t ∈ [0, T ]

} (BGLIM)⇒
{
t 7→ Y (t) : t ∈ [0, T ]

}
t 7→ Y (t) = ”Hidden Markovian” random flight process:

◦ ηk ∈ Bd−1, vk ∈ Sd−1, ξk ∈ R+

◦ (ηk)k≥0: Markov chain

◦ vk = R(v0)S(η0) . . . S(ηk−1) e1

◦ E
(∏n

k=1 fk(ξk)|η
)
=

∏n
k=1E

(
fk(ξk)|ηk−1, ηk

)
◦ P

(
ξk > x

)
∼ x−2

[E Caglioti, F Golse (2008)] d = 2 [explicit formulas] . . . . . .

[J Marklof, A Strömbergsson (2011)] d ≥ 2 [qualitative formulas]
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Two-steps limit I.: first (BGLIM) then diffusive

Random: Since t 7→ Y (t) is essentially a rw, by Donsker’s Thm

T−1/2 Y (T ·)⇒W (·)

Periodic: more subtle. [Marklof-T (2016)]: For d ≥ 2

(T logT )−1/2 Y (T ·)⇒W (·)

Log-correction due to the heavy tails.

Note: Two paths to superdiffusivity . . .

Can one do better?
Random: Interpolate between the the (fully open) Holy Grail

and the two-steps limit.

Periodic: For d ≥ 3, infinite horizon: Interpolate between the

conjectured (fully open) super-diffusive limit (with fixed scatterer-

size) and the two-steps limit.

12



Interpolating IP for the rnd Lorentz gas (8 slides)

Theorem 1. [Annealed IP] [C Lutsko, BT (2020)]

Let d = 3, (BGLIM) hold and T = Tε be such that limε→0 T = ∞
and limε→0 r

2|log r|2T = 0. Then

T−1/2X(T ·) (BGLIM)⇒ W (·)

in the annealed sense.

Remarks:

◦ Up to T = o(r−1) purely probabilistic: Green’s fnc

arguments. Still goes beyond [Gallavotti (1969)], [Spohn (1978)].

◦ For r−1 ≪ T ≪ (r|log r|)−2 geometry & dynamics matter.

◦ Can be extended to d ≥ 2, up to T ≪ r1−d|log r|−α.
◦ Can be extended to other short-range interactions.
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Idea: Coupling

t 7→ Y (t) the Markovian flight process. U(t) := Ẏ (t)

t 7→ X(t) the Lorentz exploration process, constructed from Y (·),
adapted to the filtration of Y (·). V (t) := Ẋ(t).

The construction is such that w.h.p.

◦ mismatches between U(t) & V (t) occur w’ frequency ∼ r

◦ after mismatches U(t) & V (t) are recoupled (to U = V )

within an EXP(1) time

Up to t < T (r) = o(r−1): no mismatch of U(t) & V (t) w.h.p.

limP
(
inf{t : X(t) ̸= Y (t)} < T

)
= 0

Up to t < T (r) = o((r|log r|)−2): (hand waving argument)

max
0≤t≤1

∣∣∣∣∣X(Tt)√
t
−

Y (Tt)√
t

∣∣∣∣∣ ≤ 1√
T

∫ T

0
|V (s)− U(s)|ds ≈

1√
T
Tr → 0
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The coupling - in plain words:

◦ X(t) explores the environment on its way, trying

to fly parallel with Y (t) [trying to keep V (t) = U(t)]

whenever possible.

◦ Explored areas are recorded and kept unchanged

for ever.

◦ When in not-yet-explored ”virgin” area, X(t) behaves

like Y (t).

◦ When in already-explored-in-the-past area, X(t)

observes Newton’s Laws.

What can go wrong? . . . and the remedy . . .

See next slide.
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Mismatches and recouplings

◦ Recollisions with past scatterers

◦ Shadowed scatterings

◦ Note: {recollision} ↔ {shadowed scattering}, by time-reversal.
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Theorem 2. [C Lutsko - BT (2020)], main thm

Setting: d = 3, this coupling, (BGLIM).

(i) T (r) = o(r−1):

limP
(
inf{t : X(t) ̸= Y (t)} < T

)
= 0.

(ii) T (r) = o((r|log r|)−2): ∀δ > 0

limP
(

max
0≤t≤T

|X(t)− Y (t)| > δ
√
T
)
= 0.
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(i) Up to T = o(r−1): purely probablilistic,

no dynamical or geometric argument

P


Y returns to r-nb’hood

of starting point

after ≥ k scatterings

 ≤

Ckr

k if k ≤ d− 2

Ckr
k|log r| if k = d− 1

Ckr
d−1 if k ≥ d

Plus: Green function estimates for the random walk Y

Plus: Union bounds.

(Will see similar arguments in the wak coupling limit . . . )
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(ii) Up to T = o((r|logr|)−2) expect only

direct recollisions direct shadowings

Moreover: ξ2 = o(1) (actually: ξ2 = O(r))

We construct a triple coupling t 7→ (Y (t), Z(t), X(t)) s.t.

⋆ Y is the Markovian flight process

⋆ X is the Lorentz exploration process

⋆ Z is a myopic version of X, which considers only

direct recollisions & direct shadowings with ξ2 ≤ 1
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◦ Data: (ξj, vj)0≤j<∞ i.i.d, (ξj, vj) ∼ EXP(1)× UNI(S2).

◦ Break up the sequence into independent legs:

. . .
]
,
[
ξ > 1, ξ > 1, ξ, . . . , ξ, ξ > 1, ξ > 1

]
,
[
. . .

◦ Construct t 7→ (Y (t), Z(t),X (t)) within each leg and

concatenate. Note: concat.X ̸= X!

• [P&G&D] Within one leg: P
(
X ̸≡ Z

)
< C(r|log r|)2

• [P] Interference between legs:

P
(
a leg of Z interferes with a past leg

)
< Cr2

• [P] 1≪ T ≪ r−2: limP
(

max
0≤t≤T

|Y (t)− Z(t)| > δT
)
= 0.

◦ Putting together •&•&•, the result follows.
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Other interactions, and/or d ̸= 3: (2 slides)

Spherical scatterers in d = 3 are special (Archimedes ,) since

σ(v, v′)dv′ = |v − v′|3−ddv′

If Döblin’s condition σ(v, v′)dv′ > cdv′ holds, apply

Döblin’s trick: Break up Y into independent legs.

Essentially the same probabilistic estimates work.

Applications:

(1) Ehrenfest’s Wind-Tree model:

d = 2 ♢-scatterers v ∈ {→, ↑,←, ↓}

[Lutsko - T (2021)]: IP up to T = o(r−1).
Compare with the ”mirror model” on Zd.

[D Elboim, A Gloria, P Hernandez (2025)]: IP for the mirror

model under (BGLIM): d ≥ 5, up to T = O(r−N), N <∞!
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(2) Spherical scatterers, d ≥ 4. [Not written up]

Note however, that T = o(r1−d|log r|−α) is a

strict borderline for this method.

(3) Lorentz gas in d = 2, in transversal magnetic field.

Kinetic time scale, T = O(1): [Bobylev et al. (1995)] . . .

[A Nota, C Saffirio, S Simonella (2021)]

alt. proof & IP up to T (r) = o((r|log r|2)−1) [L-T (2024)]

If Döblin’s condition does not hold for σ but holds for σ ∗σ:
Break up Y into one-dependent legs. More tricky:

Green’s fnc estimates for RWs with one-dependent steps needed.

Application:

(4) d = 2, spherical scatterers, up to T (r) = o((r|log r|2)−1)
[Not written up]
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Semi-quenched: (4 slides)

◦ d = 3; scatterers: r = ε3/2 centred at {εq : q ∈ ϖ ∼ PPP(1)},
◦ t 7→ X(t): the Lorentz traj. with Ẋ(0) = UNI({v : ∠(v, e) ≤ β}).

Theorem 3. [Semi-quenched IP] [T (2025)]

If εn → 0, Tn →∞, βn ∈ (0, π] are such that

∞∑
n=1

(
rnTn logn+ (rnβ

−1
n )2/3(logn)2

)
<∞

then for almost all realizations of the PPP ϖ,

T−1/2X(T ·) (BGLIM)⇒ W (·)

Convert annealed to (semi)quenched IP by joint exploration.

27



Quenched coupling: On an enlarged (Ω,F ,P) realize jointly(
(ϖ, (Xj(t) : 1 ≤ j ≤ N,0 ≤ t ≤ T )),

(
(Yj(t) : 1 ≤ j ≤ N,0 ≤ t ≤ T )

)
◦ ϖ: a PPP(1) in R3

◦ Xj: Lorentz trajectories among scatterers of rad. r = ε3/2

centred at εϖ, with i.c. Xj(0) = 0, Ẋj(0) = vj ∈ S2 (possibly

also random). w := min{∠(vi, vj) : 1 ≤ i < j ≤ N}

◦ Yj: i.i.d flight processes, with the same i.c.

◦ the coupling: at the blackboard . . .

◦ time of first mismatch: τ := min{t ∈ [0, T ] : X(t) ̸= Y (t)}.
Note: τ is (actually) F(Y )-measurable!

◦ Key bound: P
(
τ < T

)
≤ C(NrT +N2rw−1)
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Putting the bits together:

◦ Choose Nn such that

lim
n→∞Nn(logn)−1 =∞ (*)

∑
n

(
NnrnTn +N2

n

(
rnβ
−1
n

)(d−1)/d )
<∞

• Borel-Cantelli: With αn := r
1/d
n β

(d−1)/d
n we get

P
(
τn < Tn

)
≤ P

(
wn < αn

)
+P

(
{τn < Tn} ∩ {wn ≥ αn}

)
≤ CN2

n(αnβ
−1
n )d−1 + C(NnrnTn +N2

nrnα
−1
n )

≤ C(NnrnTn +N2
n(rnβ

−1
n )(d−1)/d)

and P
(
max{n : τn < Tn} <∞

)
= 1
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• SLLN for △-ar arrays: Under (*), a.s., for any F ∈ C0(C),

lim
n→∞

(
N−1n

Nn∑
j=1

F (T
−1/2
n Yn,j(Tn·))− E

(
F (T

−1/2
n Yn,1(Tn·))

))
= 0

lim
n→∞

(
N−1n

Nn∑
j=1

F (T
−1/2
n Xn,j(Tn·))− Eω

(
F (T

−1/2
n Xn,1(Tn·))

))
= 0

• Donsker: lim
n→∞E

(
F (T

−1/2
n Yn,1(Tn·))

)
= E (F (W (·)))

◦ Putting together •&•&•, the result follows. Thm 3

Remarks:

(1) Theorem 3 [d = 3, T = o(r−1), semi-quenched]

to be compared with [Boldrighini-Bunimovich-Sinai (1982)]

[d = 2, T = O(1), fully quenched]

(2) With harder work (Döblin trick) Thm 3 extendsed to d ≥ 2.
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(B) Soft scatterers and weak coupling

◦ A spherically symmetric, smooth

finite range potential: φ : Rd 7→ R,

φ(x) = φ(|x|e) = φ(x)11{|x|≤r}

◦ A PPP(ϱ), ω ⊂ Rd \ {x : |x| ≤ r}. Points q ∈ ω will be the centres

of fixed (∞-mass) scatterers.

◦ The (overall) potential and force field

Φ(x) :=
∑
q∈ω

φ(x− q), F (x) = −∇Φ(x) = −
∑
q∈ω
∇φ(x− q)

◦ The Lorentz/Ehrenfest trajectory: t 7→ (V (t)), X(t))

V̇ (t) = F (X(t)), Ẋ(t) = V (t), + i.c.

◦ Condition on no trapping: max |φ| < mc(rdϱ).
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Kinetic limits II. Weak Coupling:

ϱ = ε−d, r = ε, intensity of potential ∼ ε1/2︸ ︷︷ ︸
weak coupling

(WCLIM)

Φε(x) := ε1/2
∑

q∈ε·ω
φ(

x− q

ε
) ∼ ε1/2,

Fε(x) = −ε−1/2
∑

q∈ε·ω
∇φ(

x− q

ε
) ∼ ε−1/2,

The trajectory under (WCLIM):

V̇ε(t) = Fε(Xε(t)), Ẋε(t) = Vε(t), + i.c.
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Let’s guess the limit together.

◦ Conservation of energy:

|Vε(t)|2︸ ︷︷ ︸
Ekin

+ Φε(Xε(t))︸ ︷︷ ︸
Epot ∼ ε1/2

= 1

The particle travels with speed |Vε(t)| = 1−O(ε1/2).
◦ In (infinitesimal) time dt it encounters ∼ ε−1dt scatterers.

◦ Each scatterer has impact

∼ ε1/2 on Vε(t):

The expected limit: Spherical Langevin Process:

t 7→ U(t): Wiener (”BM”) on Sd−1, Y (t) =
∫ t
0U(s)ds.

Not so easy to guess. Even harder to prove.

[H Kesten, G Papanicolaou (1980)]
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Two-steps limit II.: first (WCLIM) then diffusive

[KP80] : (Vε(t), Xε(t))⇒ (U(t), Y (t))︸ ︷︷ ︸
spherical Langevin proc.

Doeblin : T−1/2Y (Tt)⇒W (t).

Can one do better? in the (WCLIM) setting

? T (ε)−1/2Xε(T (ε)t)⇒W (t) ? (INTERPOL)

with T (ε)→∞ – the faster the better.

◦ [T Komorowski, L Ryzhyk (2006)]: d ≥ 3, T (ε) = ε−κ, κ > 0

◦ [L Erdős, M Salmhofer, H-T Yau (2007)]: q-setting, κ ≈ 1/370.

Theorem 4. [annealed IP in WC setting] [BT (2025+)]

Let d ≥ 3. Under (WCLIM), (INTERPOL) holds with T (ε) = ε−(d−2)
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Explore!
Rather than sample . . . better explore the environment!

Markovize! t 7→ (Uε(t), ξε(t))
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Probabilistic ingredient for the construction of the Markovized

process:

• explicit construction

• the MP t 7→ (Uε(t), ξε(t)) is well-behaved due to

• θε,n = successive times when ξε(t) = ∅.

|θε,n+1 − θε,n| ∼ ε, n 7→ Uε(θε,n) is a O(d)-invar. RW on §d−1
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Limit theorems for the Markovized process.

(i) Fix 0 < T <∞. Then, as ε→ 0,

(Uε(t), Yε(t))⇒ (U(t), Y (t))︸ ︷︷ ︸
spherical Langevin proc.

[Key: CLT for RW on O(d).]

(ii) Let T (ε)→∞ (no matter how fast or slow). Then, as ε→ 0,

T (ε)−1/2Yε(T (ε)t)⇒W (t)

[Key: Martingale approximation + martingale CLT.]

Nothing new or surprising here.
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Couple! (the physical and the Markovized processes)

To be proven: Up to t < T (ε) = o(ε−d+2), with high probability,

no ε-neighbourhood of a point left behind is revisited by the

Markovized process t 7→ Yε(t):

Σε := inf{t : 0 < ∃ r < ∃ s < t, such that

Bε(Yε(r)) ∩Bε(Yε(s))
c ∩Bε(Yε(t)) ̸= ∅}

= the first time (t) when a point which was within range ε

some time (r) in the past, and left behind (at time s > r),

is revisited within range ε (at time t > s).

By construction (coupling): inf{t : Vε(t) ̸= Uε(t)} ≥ Σε

Lower bound on Σε is needed. However, Σε can in principle be

very small, if the trajectory t 7→ Yε(t) is too rough.
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Geometry helps:

|Ÿε| = |U̇ε| ∼ ε−1/2 ≪ ε−1

The main probabilistic input
(note the

difference

from BM)

relies on Green-function (for t 7→ Yε(t)) and geometric estimates

Hence (by union bounds and some massaging) the key estimate

P
(
Σε < T

)
< CTεd−2. ,
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