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The Lorentz / Ehrenfest Gas - genesis

Physics. — “The motion of electrons in metallic dodies.” II. By
Prof. H. A. LoRenTZ.

(Communicated in the meeting of January 28, 1905).

Periodic Random




Detour:

Tatyana Afanasieva
(1876-1964)

Paul Ehrenfest
(1880-1933)

1907:

Ober zwei bekannte Einwinde gegen das Boltz- |
mannsche H-Theorem. |
|

Von Paul u. Tatiana Ehrenfest.

e > B

Genesis of Markov Chains: .. .|

AA Markov (1906), EH Bruns (1906),
P& T Ehrenfest (1907), O Perron (1907),
G Frobenius (1908), ...

1911:
IV 32. BEGRIFFLICHE GRUNDLAGEN
DER STATISTISCHEN AUFFASSUNG IN DER
MECHANIK.

Vox

P. u. T. EHRENFEST ¥)

IN ST. PETERSBURG.

In: F Klein (ed): Encyklopadie
der math. Wissenschaften vol. 4-4
extended book in 1912



The random Lorentz gas:
Ingredients:
e A spherically symmetric finite range potential:

o 1 R~ R U {+oo}, p(z) = p(zle) = o(@) 14 <my

two extremes:

&w&/&?@%CCZ) :

A

e A PPP win R%\ {z: |z| < r}, of density p.
Points ¢ € w will be the centres of fixed (co-mass) scatterers.
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The Lorentz/Ehrenfest trajectory: Particle of mass 1 moves
among the fixed scatterers, according to Newtonian dynamics

t— (V (1), X(t)), with i.c. X(0) =0¢eR%, V(0) € §¢-1.

Soft case:
d(z) = > oz —q), F(z) =—-V®(z) =—- > Ve(z —q)
qEW qew
V(t) = F(X(1)), X(t) = V(¢#), +i.c.
Hard core case: the ODE is
formal, nevertheless the dynamics —~/
is still (a.s.) well defined %;
No trapping: TN il ¢ ]
hard core: rdg < B¢, A\, : 1
soft: max || < me(r®o). — e



Sources of randomness:
e environment: random placement of scatterers, w ~ PPP(p).
e random direction of initial velocity, e.g., V(0) ~ UNI(S94—1).
and nothing more. Dynamics: fully deterministic, Newtonian.

Wanted: ¢t > 1 scaling behaviour of the trajectory t — (V(t), X (t))

Holy Grail: ? T_l/QX(Tt) = W((t) 7
(conditioned on no trapping)

annealed CLT/IP: averaged over V(0) and scatterer config
semi-quenched: ave over V(0), in prob. w.r.t. scatt. config
(fully) quenched: ave over V(0), a.s. w.r.t. scatterer config
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(A) Hard Core scatterers

Periodic (detour): Factorize on cell:
Sinai billiard, hyperbolic dynamics. /
Big theory, since the 1970s O‘ O

./ "
L o all
/FQJ\HOOL C ’J), Y

Source of randomness: V(0) ~ UNI(S%1)

Finite horizon: [L Bunimovich, Ya Sinai (1980)]: d=2
(conditional) [N Chernov, D Dolgopyat (2009)]: d > 3

Infinite horizon: [P Bleher (1992)]: conjecture
[DSzasz, T Varju (2007)], [N Chernov, D Dolgopyat (2008)]: d = 2

X(T) ey
vI'logT

d > 3. wide open




Random: No dynamics tools — _

less understood % "
Source of randomness: v . o -
d—1 SONLLS
w ~ PPP(0) & V(0) ~ UNI(S?1) D w| PPPE)

Wanted: ¢ > 1 scaling behaviour of the trajectory ¢t — (V(t), X (¢))

Holy Grail: ? T_l/QX(Tt) = Wi(t) ?
(conditioned on no trapping)

annealed CLT/IP: averaged over V(0) and scatterer config
semi-quenched: ave over V(0), in prob. w.r.t. scatt. config
(fully) quenched: ave over V(0), a.s. w.r.t. scatterer config
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Kinetic limits I: Boltzmann-Grad / Low Density:

o=c9 =MD pd = d/d-1) " o 0 (BGLIM)
low dvensity

e: microscopic (linear) length scale
In this limit the free flight between successive collisions is < 1

Random: Periodic:

000000000
2099PO0 00O




Random: Easy to guess . ..

{t — X ()t € [O,T]} (BEL M) {t =Y ()t € [O,T]}

t — Y (t) = Markovian random flight process:
o i.i.d EXP(1) flights, with |v] =1 ?

o Markovian scatterings with differential P
cross section o(v,v') ~ |v — /|37
Note: d = 3 is very speciall (Archimedes ©)

Hard to prove.
annealed, d > 2: [G Gallavotti (1970)], [H Spohn (1978)]
quenched, d = 2: [C Boldrighini, L Bunimovich, Ya Sinai (1982)]
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Periodic: Not so easy to guess ...

{t — X(t) :t € [O,T]} (BEL M) {t Y ()it € [O,T]}
t — Y (t) = "Hidden Markovian” random flight process:

o 7). € Bd—1 VL € sd—1 §k € Ry

o (Mk)k>0: Markov chain

o v = R(vg) S(no) ... S(ng—1) e1

o E (IT7—y (&) In) = 17— 1 E (Fu(&R) Im—1, k)

© P(fk > :E) ~x 2

[E Caglioti, F Golse (2008)] d = 2 [explicit formulas] ... ...

[J Marklof, A Strombergsson (2011)] d > 2 [qualitative formulas]
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Two-steps limit I.: first (BGLIM) then diffusive
Random: Since t — Y (t) is essentially a rw, by Donsker's Thm

T2y (1) = W()
Periodic: more subtle. [Marklof-T (2016)]: For d > 2

(TlogT) Y2y (T) = W ()

LLog-correction due to the heavy tails.
Note: Two paths to superdiffusivity . ..

Can one do better?

Random: Interpolate between the the (fully open) Holy Grail
and the two-steps limit.

Periodic: For d > 3, infinite horizon: Interpolate between the
conjectured (fully open) super-diffusive limit (with fixed scatterer-
size) and the two-steps limit.
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Interpolating IP for the rnd Lorentz gas (8 slides)

Theorem 1. [Annealed IP] [C Lutsko, BT (2020)]
Let d = 3, (BGLIM) hold and T = T: be such that lim._,oT = oc
and lim._,gr?|logr|?T = 0. Then

BGLIM
(BGLTM)

712 x(T") W)

in the annealed sense.

Remarks:

o Up to T = o(r—1) purely probabilistic: Green's fnc
arguments. Still goes beyond [Gallavotti (1969)], [Spohn (1978)].

o For r~1 « T <« (r|logr|)~2 geometry & dynamics matter.
o Can be extended to d > 2, up to T < r1=4|logr|~.
o Can be extended to other short-range interactions.
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Idea: Coupling
t — Y (t) the Markovian flight process. U(t) := Y (¢)

t — X (t) the Lorentz exploration process, constructed from Y (+),
adapted to the filtration of Y (:). V(t) := X (¢t).

The construction is such that w.h.p.
o mismatches between U(t) & V (t) occur w' frequency ~ r

o after mismatches U(t) & V(t) are recoupled (to U =V)
within an EXP(1) time

Up to ¢t < T(r) = o(r~1): no mismatch of U(¢) & V(t) w.h.p.
lim P(inf{t X () EY (@)} < T) =0
Up to ¢t < T(r) = o((rllogr|)~2): (hand waving argument)

X(Tt) Y (Tt)
Vi Ve

Max
0<t<1

1 T 1
< ﬁ/o V(s) = Uls)lds ~ —=Tr = 0
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The coupling - in plain words:

o X(t) explores the environment on its way, trying

to fly parallel with Y (¢) [trying to keep V (t) = U(t)]
whenever possible.

o Explored areas are recorded and kept unchanged
for ever.

o When in not-yet-explored "virgin” area, X (¢t) behaves
like Y ().

o When in already-explored-in-the-past area, X ()
observes Newton’'s Laws.

What can go wrong? ...and the remedy ...
See next slide.
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Mismatches and recouplings

o Recollisions with past scatterers

'(uowgm&%

o Shadowed scatterings

o Note: {recollision} «< {shadowed scattering}, by time-reversal.
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Theorem 2. [C Lutsko - BT (2020)], main thm
Setting: d = 3, this coupling, (BGLIM).
(i) T(r) =o(r—1):

lim P(inf{t X () £ Y ()} < T) = 0.
(i) T(r) = o((r|logr|)™2): ¥§ > 0

lim P(Orgta<xT X(t) - Y (®)| > 6VT) =0.
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(i) Up to T = o(r—1): purely probabililistic, ~
no dynamical or geometric argument ;

©
Y returns to r-nb’hood (Cpr¥ if £ <d-—2
P of starting point <<{Cprfllogr| ifk=d-1
after > k scatterings \Ckrd—l if k> d

Plus: Green function estimates for the random walk Y

Plus: Union bounds.

(Will see similar arguments in the wak coupling limit ...)
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(i) Up to T = o((r|logr|)~2) expect only

direct recollisions direct shadowings
! 4N T i -~ ° L ||

Moreover: &> = o(1) (actually: & = O(r))
We construct a triple coupling t — (Y (t), Z(t), X(t)) s.t.
*x Y is the Markovian flight process
* X IS the Lorentz exploration process
*x Z IS a myopic version of X, which considers only
direct recollisions & direct shadowings with & <1
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o Data: (&;,vj)0<j<oo i-1.d, (&j,v;) ~ EXP(1) x UNI(S?).
o Break up the sequence into independent legs:

”j,k>Lg>Lguwg§>Lg>q,j”

o Construct ¢t — (Y (), Z(t),X(t)) within each leg and
concatenate. Note: concat. X¥# X!

o [P&G&D] Within one leg: P<X - Z) < C(r|log r|)2
e [P] Interference between legs:

P(a leg of Z interferes with a past Ieg) < Cr?

e [Pl T<r 2 lim P(OT&XTW(t) — Z(t)| > 0T) = 0.

o Putting together e& e& e, the result follows.
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Other interactions, and/or d #= 3: (2 slides)
Spherical scatterers in d = 3 are special (Archimedes ©) since
o(v,v)dv' = v — |3 4d’

If DOblin’s condition o(v,v")dv > cdv’ holds, apply
Doblin's trick: Break up Y into independent legs.
Essentially the same probabilistic estimates work.

Applications:
(1) Ehrenfest’'s Wind-Tree model:

d=2 {-scatterers veE{—>,T,,1}

[Lutsko - T (2021)]: IP up to T = o(r—1).

Compare with the " mirror model” on Z<.

D Elboim, A Gloria, P Hernandez (2025)]: IP for the mirror
model under (BGLIM): d > 5, up to T = O ), N < 0!
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(2) Spherical scatterers, d > 4. [Not written up]
Note however, that T = o(r1=4logr|~®) is a
strict borderline for this method.

(3) Lorentz gas in d = 2, in transversal magnetic field.
Kinetic time scale, T'= O(1): [Bobylev et al. (1995)] ...
[A Nota, C Saffirio, S Simonella (2021)]

alt. proof & IP up to T'(r) = o((r|logr|?)~1) [L-T (2024)]

If DODbIlin’s condition does not hold for ¢ but holds for o xo:
Break up Y into one-dependent legs. More tricky:
Green’s fnc estimates for RWs with one-dependent steps needed.
Application:

(4) d = 2, spherical scatterers, up to T(r) = o((r|logr|?)~1)
[INot written up]
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Semi-quenched: (4 slides)
o d = 3; scatterers: r = £3/2 centred at {eq: ¢ € @ ~ PPP(1)},
o t+ X (t): the Lorentz traj. with X(0) = UNI({v: Z(v,e) < B}).

Theorem 3. [Semi-quenched IP] [T (2025)]
If e, -0, Ty — 0o, Bn € (0,7] are such that

@)

> (rnTn logn + (rnﬁgl)zﬁ(log n)2> < 00

n=1

then for almost all realizations of the PPP o,

BGLIM
(BGLTM)

T-12x(T") W)

Convert annealed to (semi)quenched IP by joint exploration.

27



Quenched coupling: On an enlarged (2, F,P) realize jointly
(@ (X1 1 1< <N,0<t <)), ((Vj(1) 1 1< < N,0<t<T))

o w: a PPP(1) in R3

o X;: Lorentz trajectories among scatterers of rad. r = £3/2
centred at ew, with i.c. X;(0) =0, X;(0) = v; € S? (possibly
also random). w := min{Z(v;,v;) : 1 <i<j< N}

0 Yj: i.i.d flight processes, with the same i.c.

o the coupling: at the blackboard ...

o time of first mismatch: 7:=min{t € [0,T] : X(t) # Y (t)}.
Note: 7 is (actually) F(Y)-measurablel

o Key bound: P(T < T) < C(NrT 4 N?rw™1)

28



Putting the bits together:

o Choose N,, such that
lim Np(logn)™ 1 = oo (%)

n—oo

Z (Nn"“nTn + Nq% (Tnﬂgl)(d_l)/d) < o0

e Borel-Cantelli: With o, = /%8~ 1)/4 e get
P(Tn < Tn) < P(wn < Oén) + P({Tn < Tn} M {wn > Q‘n})
< C’Ng(anﬁgl)d_l + C(NprnTh + N,,%rnozgl)

< C(NnTnTn + Ng(rnﬁﬁl)(d_l)/d)

and P(max{n:Tn<Tn}<oo) =1
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e SLLN for A-ar arrays: Under (*), a.s., for any F' € Cy(C),
Nnp,

lim. (N,;l S (T Y2y, (Tw)) - E (F(Tgl/QYn,l(Tn.))) ) —0
j=1
Jim_ (anjé F(Ty Y2 X, (Tn)) — Bu (F(Tn_l/zXn’l(Tn-))) ) —0

e Donsker:  lim E (F(Tgl/QYn,l(Tn.))) =E(F(W(-)))
o Putting together e&e& e, the result follows. _JThm 3

Remarks:
(1) Theorem 3 [d =3, T = o(r—1), semi-quenched]
to be compared with [Boldrighini-Bunimovich-Sinai (1982)]
[d =2, T = O(1), fully quenched]
(2) With harder work (Doblin trick) Thm 3 extendsed to d > 2.
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(B) Soft scatterers and weak coupling
&wﬂ/&ﬁ% (C”") '
/

o A spherically symmetric, smooth
finite range potential: ¢ : R? — R,

p(z) = ¢(zle) = o(@) 14 <r)

o A PPP(p), w C R4\ {z : |z| < r}. Points ¢ € w will be the centres
of fixed (oco-mass) scatterers.

o The (overall) potential and force field

d(z) =) olx—q), F(x)=-VP(z)=-> Vo(zr—q)

qcw qEW
o The Lorentz/Ehrenfest trajectory: t — (V(t)), X ())

V(t) = F(X(1)), X(t) = V(¢t), +i.c.
o Condition on no trapping: max|y| < me(rp).
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Kinetic limits II. Weak Coupling:

0= s_d, r=c¢, intensity of potential ~ ¢

weak cou pling

de(z) =2 Y o) ~ell2
gce-w €

Fe(x) = — —1/2’

~ £

qgce-w

The trajectory under (WCLIM):

1/2

(WCLIM)

Ve(t) = Fe(Xe(1)), Xe(t) = Ve(t), +i.c.
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Let’s guess the limit together.
o Conservation of energy:

V()2 4+ De(Xe(2) =1
—— ~~
Ekin 1/2

Epot ~ €

The particle travels with speed |V:(t)| =1 — 0(51/2).
o In (infinitesimal) time dt it encounters ~ ¢~ 1d¢ scatterers.

o Each scatterer has impact -?" g
~ el/2 on V.(t): §£/?_\7LFC{6
0

The expected limit: Spherical Langevin Process:

t — U(t): Wiener ("BM") on S¢-1, Y (t) = [§U(s)ds.
Not so easy to guess. Even harder to prove.
[H Kesten, G Papanicolaou (1980)]
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Two-steps limit II.: first (WCLIM) then diffusive

[KP80] : (Ve(t), Xe(t)) = W),y @)
spherical Langevin proc.
Doeblin : T-Y2y(Tt) = W ().

Can one do better? in the (WCLIM) setting

7 T() V22X (T()) = W () 7 (INTERPOL)
with T'(¢) — oo — the faster the better.
o [T Komorowski, L Ryzhyk (2006)]: d> 3, T(e) = F, k>0
o [L Erd&s, M Salmhofer, H-T Yau (2007)]: g-setting, x = 1/370.

Theorem 4. [annealed IP in WC setting] [BT (2025+)]
Let d > 3. Under (WCLIM), (INTERPOL) holds with T(¢) = e (4=2)
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Explore!

Rather than sample . .. better explore the environment!

R

_ XT(;:’AIWLSFM e

U (t)
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Probabilistic ingredient for the construction of the Markovized
Process:

\ \

e explicit construction

e the MP ¢t — (U:(t),&:(t)) is well-behaved due to

e 0., = successive times when &.(t) = 0.

0z 41 — Oen| ~ e, n Us(0:n) is @ O(d)-invar. RW on gd—1
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Limit theorems for the Markovized process.

(i) Fix0<T < oc0o. Then, as e — 0,

(Ue(t), Ye(t)) = W), Y())

spherical Le;/rvgevin proc.
[Key: CLT for RW on O(d).]

(ii) Let T'(e) — oo (no matter how fast or slow). Then, ase — 0O,

T(e)~"Y2v.(T(e)t) = W (¢)
[Key: Martingale approximation 4+ martingale CLT ]

Nothing new or surprising here.
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Couple! (the physical and the Markovized processes)

To be proven: Up to ¢t < T'(¢) = o(e~912), with high probability,
no e-neighbourhood of a point left behind is revisited by the
Markovized process ¢t — Yz(t):

> =inf{t: 0 < dr <ds < t,such that

Be(Ye(r)) N Be(Yz(s))" N B:(Y=(t)) # 0}

= the first time (¢) when a point which was within range ¢
some time (r) in the past, and left behind (at time s > r),
is revisited within range ¢ (at time t > s).

By construction (coupling): inf{t: Ve(t) ZU:(t)} > ¢

Lower bound on 2: is needed. However, > . can in principle be
very small, if the trajectory t — Yz(t) is too rough.
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Geometry helps:

Ye| = |Ue| ~ /2 w1

$ \Sigma_{\epsilon} $

The main probabilistic input
(note the

P C Eo{—fl difference
\" from BM)

Il
40@,

relies on Green-function (for ¢ — Y, ;) and geometric estimates
Hence (by union bounds and some massaging) the key estimate
P(Z8 < T) <COTe% 2, ©®
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