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Goal: Mathematical understanding of physical diffusion.

Three very different examples, at very different scales.
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(A) Molecular diffusion, Brownian motion:

Macro

[Wikipedia/public]

Micro [∼ 10−9-10−8 m]

[J Perrin, Les atomes, 1910]

Empirical:

. . . [J Ingenhousz (1785)] . . . [R Brown (1827)] . . .

Theoretical:

. . . [A Fick (1855)] . . . [A Einstein (1905)] . . .

. . . [M Smoluchowski (1906)] . . . [P Langevin (1908)] . . .

. . . [J Perrin (1910)] . . .
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(B) Convective (or, ”turbulent”) diffusion:

Macro

Hommage à

Micro [∼ 10−5-10−4m]

Empirical:

[Lucretius Carus (∼ 60 BC)] . . .

. . . [L da Vinci (1510-12)] . . .

Theoretical:

. . . [JV Boussinesq (1870s)] . . . [H Bénard (1900)] . . .

. . . [M Smoluchowski (1906)] . . . [T v. Kármán (1930s)] . . .
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(C) (Negative) Chemotaxis (or, chemorepulsion - in bio):

”Negative chemotaxis (a.k.a. chemorepulsion) occurs when cells

are exposed to a spatial gradient of a signaling molecule and

move down-gradient, toward regions with lower concentration.”

The medium may be influenced by the active population.

Schematic Micro [∼ 10−4m]

[from Wikipedia, by L Kohidai]
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Denote t 7→ X(t) ∈ Rd the trajectory of the tracer. This is a

stochastic process, with randomness coming from

◦ initial conditions, and

◦ [possibly] randomized dynamics

◦ thermal fluctuations

Goal: Understand the scaling limit, as ε → 0, of

Xε(t) := ενX(ε−1t).

◦ diffusive: ν = 1/2, Xε(·) ⇒ W (·) (t 7→ W (t) ”BM”)

◦ super-diffusive: ν > 1/2 (robust), ε1/2|log ε|γ (borderline)

◦ sub-diffusive: ν < 1/2 (robust), ε1/2|log ε|−γ (borderline)
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Why ν = 1/2? Why ”BM”?:

The process t 7→ W (t) ∈ Rd is characterized by

◦ independent and stationary increments:

Let 0 ≤ t0 < t1 < · · · < tn < ∞, then the increments(
W (tj)−W (tj−1)

)
, 1 ≤ j ≤ n, are independent

and their distribution doesn’t depend on t0.

◦ finite second moment

E
(
W (tj)−W (tj−1)

)
= 0

Var
(
W (tj)−W (tj−1)

)
= σ2(tj − tj−1)

(1)

◦ the path t 7→ W (t) is almost surely continuous.

Bonus: A fortiori: t 7→ W (t) ∈ Rd is a Gaussian process, specified

by (1).
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. . . the bottomless well of the past . . .

. . . [J Bernoulli (1713)] . . . [A de Moivre (1711-1738)] . . .

. . . [PS Laplace (....-1812)] . . . [A Lyapunov (1901)] . . .

. . . [C Pearson & Lord Rayleigh (1905)] . . . [G Pólya (1922)] . . .

. . . [N Wiener (1920-1933)] . . . [P Lévy (1920-1940)] . . .

. . . [M Kac (1946-....)] . . . [M Donsker (1952)] . . .

However:

The increments of the physical processes are by no means inde-

pendent. The (simple) random walk picture is too naive.
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Examples of models which are mathematically tractable at

various levels

(A) Molecular diffusion, Brownian motion.

(A1) Hard ball gas. Cf. Thierry’s lectures.

(A2) The random Lorentz gas. Hamiltonian dyn., random i.c.

(A2-BG) low density (Boltzmann-Grad) + diffusive limit.

ϱrd < θcrit

t 7→ X(t)

The BG limit:

ϱ = ε−d

r = εd/(d−1)

t 7→ Xε(t)
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[G Gallavotti (1970)], [H Spohn (1979)]: d ≥ 2.(
(Vε(t), Xε(t)) : t ∈ [0, T ]

) a⇒
(
(U(t), Y (t) : t ∈ [0, T ])

)
︸ ︷︷ ︸

random flight proc.

=

[CBoldrighini, L Bunimovich, Y Sinai (1982)]: d = 2.(
(Vε(t), Xε(t)) : t ∈ [0, T ]

) q⇒
(
(U(t), Y (t) : t ∈ [0, T ])

)
︸ ︷︷ ︸

random flight proc.

=

[C Lutsko, BT (2020)]: d = 3, 1 ≪ Tε ≪ ε−3|log ε|−2.(
T
−1/2
ε Xε(Tεt) : t ∈ [0,∞)

) a⇒
(
Wσ(t) : t ∈ [0,∞)

)
[BT (2025)]: d = 3, 1 ≪ Tε ≪ ε−2.(

T
−1/2
ε Xε(Tεt) : t ∈ [0,∞)

) sq⇒
(
Wσ(t) : t ∈ [0,∞)

)
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(A2-WC) Weak coupling + diffusive limit.

Same, with soft/smooth finite range potential, φ.

ϱ = ε−d, r = ε, intensity of potential ∼ ε1/2︸ ︷︷ ︸
weak coupling

Φε(x) := ε1/2
∑

q∈ε·ω
φ(

x− q

ε
) ∼ ε1/2,

Fε(x) = −ε−1/2 ∑
q∈ε·ω

∇φ(
x− q

ε
) ∼ ε−1/2,

V̇ε(t) = Fε(Xε(t)), Ẋε(t) = Vε(t), + i.c.

Note: (1) |Vε(t)|2 = |Vε(0)|2 + O(ε). (2) In time dt, ∼ ε−1dt

scatterings of impact ∼ε1/2 on the travelling velocity.
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[H Kesten, G Papanicolaou (1980)]: d ≥ 3.(
(Vε(t), Xε(t)) : t ∈ [0, T ]

) a⇒
(
(U(t), Y (t) : t ∈ [0, T ])

)
︸ ︷︷ ︸

spherical Langevin proc.

SLP: dU(t) = U(t)× dB(t), dY (t) = U(t)dt.

[T Komorowski, L Ryzhik (2007)], [BT (2025+)]:

d ≥ 3, 1 ≪ Tε ≪ ε−(d−2). ([KR]: 1 ≪ Tε ≪ ε−κ, κ > 0.)(
T
−1/2
ε Xε(Tεt) : t ∈ [0,∞)

) a⇒
(
Wσ(t) : t ∈ [0,∞)

)
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(A3) Tagged particle diffusion in stochastic interacting par-

ticle systems. The exclusion process (random dynamics!)

t 7→ ηt ∈ Ω := {0,1}Z
d

MP

◦ particle configurations: ω ∈ Ω

◦ (pz)z∈Zd: a finite range rw kernel

◦ particles attempt jumps x⇝ y

independently, with rate py−x. If the

target site is free then the jump is

performed, otherwise it is suppressed.

Fact: BER(ϱ), ϱ ∈ (0,1), are time-wise ergodic measures for the

MP t 7→ ηt. These are the only ones which are also space-wise

ergodic. Also, seen from the position of a tagged particle.
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Goal: Scaling limit for the trajectory of t 7→ X(t) of a

tagged particle.

SEP: pz ≡ p−z (symmetric/reversible/self-adjoint)

[R Arratia (1983)]: d = 1, only nearest neighbour jumps.

T−1/4X(T ·) ⇒ frBM subdiffusive!

Method: ”Combinatorial-probabilistic”

reminiscent of [T Harris (1965)].

[C Kipnis, SRS Varadhan (1986-)]: d = 1 and not n.n., or d ≥ 2.

T−1/2X(T ·) ⇒ Wσ(·).

Method: KV martingale approximation - reversible setting.

14



ASEP: pz ̸≡ p−z (asymmetric/not reversible/not self-adjoint)

[SRS Varadhan (1996)] d ≥ 1, zero mean
∑

z zpz = 0.

T−1/2X(T ·) ⇒ Wσ(·).

Method: KV martingale approximation - nonreversible setting,

strong sector condition.

[S Sethuraman, SRS Varadhan, H-T Yau (2000)] d ≥ 3.

non-zero mean
∑

z zpz ̸= 0.

T−1/2(X(T ·)− E (X(T ·)) ⇒ Wσ(·).

Method: KV martingale approximation - nonreversible setting,

graded sector condition.

Open: d = 1,2,
∑

z zpz ̸= 0.
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(B) Convective diffusion.

AS Monin, AM Yaglom (1965): Statistical Fluid Mechanics -

Ch. 10: Turbulent Diffusion.

(t, x) 7→ v(t, x) ∈ Rd velocity field: e.g., (turbulent) sln of incom-

pressible E/NS eq. In particular, ∇ · v ≡ 0.

(t, x) 7→ ϑ(t, x) ∈ R+ concentration of ”passive tracers”, carried

by the flow:

∂tϑ+∇ · (ϑv) =
a

2
∆ϑ

This is exactly the bwK equation of the diffusion process

dX(t) = v(t,X(t)) dt+
√
a dB(t).

Replace the ”incompressible turbulent flow” with steady state

”incompressible random flow” v(x) = v(x, ω) - stationary and

ergodic w.r.t. spatial shifts.

16



(B1) Diffusion in divergence-free random drift field

x 7→ a(x, ω) ∈ Rd×d
sym,+ x 7→ v(x, ω) ∈ Rd

stationary & ergodic w.r.t. spatial shifts, both L∞ ∩ C1 a.s.

Assume (for now . . . )

DIVFREE : ∇ · v ≡ 0 a.s.

NO DRIFT : E (v) = 0

The diffusion:

dX(t) =
(1
2
∇ · a(X(t)) + v(X(t))

)
+ a1/2(X(t)) dB(t)

Q: CLT T−1/2X(T ) ⇒ N (0, σ2), or IP T−1/2X(T ·) ⇒ Wσ(·) ?

A: Yes! Under suitable (not merely technical!) conditions.

No! Inrelevantcases. (Not merely strange counterexamples!)
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(B2) RW in {Divfree/Doubly Stochastic} rnd environment

Let
(
(pk(x, ω)k∈U)

)
x∈Zd stationary+ergodic rnd jump rates.

Assume (for now . . . )

DIVFREE :
∑
k∈U

pk(x) =
∑
k∈U

p−k(x+ k)

NODRIFT :
∑
k∈U

kE (pk) = 0

The (continuous time) random walk:

Pω (X(t+ dt) = x+ k|X(t) = x) = pk(x, ω) dt+ o(dt)

Q: CLT T−1/2X(T ) ⇒ N (0, σ2), or IP T−1/2X(T ·) ⇒ Wσ(·) ?

A: Yes! Under suitable (not merely technical!) conditions.

No! Inrelevantcases. (Not merely strange counterexamples!)
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list of results to be written here

20



(C) Self-repelling walk/diffusion. Pushed by the negative

gradient of its own occupation time measure.

(C1) Self-repelling diffusion (SRBP): t 7→ X(t) ∈ Rd

ℓ(t, A) := ℓ(0, A) + |{0 < s ≤ t : X(s) ∈ A}|

dX(t) = dB(t)− grad
(
V ∗ ℓ(t, ·)

)
(X(t))dt

V : Rd → [0,∞) approx.-δ, V̂ (p) :=
∫
Rd

eip·xV (x)dx ≥ 0

(C2) Self-repelling random walk (TSAW): t 7→ X(t) ∈ Zd,

ℓ(t, x) := ℓ(0, x) + |{0 < s ≤ t : X(s) = x}|

P (X(t+ dt) = x+ k|X(t) = x) = w(ℓ(t, x)− ℓ(t, x+ k))dt

w : R → (0,∞) increasing
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Roots:

TSAW, physics:

[D Amit, G Parisi, L Peliti (1983)]

[S Obukhov, L Peliti (1983)]

[L Peliti, L Pietronero (1987)]

. . .

SRBP, probability:

[J Norris, C Rogers, D Williams (1987)]

[R Durrett, C Rogers (1992)]

[M Cranston, Y Le Jan (1995)]

[M Cranston, T Mountford (1996)]

. . .
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Conjectures, based on RG and scaling arguments (”physics”):

• d = 1 : X(t) ∼ t2/3, intricate, non-Gausssian scaling limit.

(Limit distributions not identified.)

• d = 2 : X(t) ∼ t1/2(log t)ζ, Gaussian scaling limit.

(Controversy about the value of ζ.)

• d ≥ 3 : X(t) ∼ t1/2, Gaussian scaling limit.

Some results: . . .
23



• d = 1:

◦ Limit theorem in some particular (lattice) cases,

[T (1995), T-Vető (2011)]:

t−2/3X(t) ⇒ X .

◦ Construction of the scaling limit process

(TSRM, the Brownian Web, . . . ), [T-Werner (1998)]

t 7→ X (t)

◦ ”Robust” bounds, [Tarrés-T-Valkó (2012)]:

C1t
5/4 ≤ E

(
|X(t)|2

)
≤ C2t

3/2.

Method: resolvent calculus, analysis

◦ Missing: Universality = Fully robust proof of the limit

theorem, not relying on ”combinatorial details”.
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• d = 2:

◦ Super diffusive bounds, [T-Valkó (2012)]:

C1t log log t ≤ E
(
|X(t)|2

)
≤ C2t log t.

Method: resolvent calculus, analysis

◦ Expected: E
(
X(t)2

)
∼ t

√
log t

t−1/2(log t)−1/4X(t) ⇒ N (0, σ)

• d = 3:

◦ CLT, [Horváth-T-Vető (2012)]:

t−1/2X(t) ⇒ N (0, σ).

Method: KV martingale approximation, graded sector

condition

Precise conditions and statements: later
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