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Goal: Mathematical understanding of physical diffusion.

Three very different examples, at very different scales.



(A) Molecular diffusion, Brownian motion:

Macro Micro [~ 1079-1078 m]

[Wikipedia/public] [J Perrin, Les atomes, 1910]

Empirical:
... [d Ingenhousz (1785)] ...[R Brown (1827)] ...

T heoretical:

.. [A Fick (1855)] ... [A Einstein (1905)] ...

.. [M Smoluchowski (1906)] ... [P Langevin (1908)] ...
. [J Perrin (1910)] ...




(B) Convective (or, "turbulent”) diffusion:
Macro Micro [N 10_5—10_4m]

Hmmage é L? e

Empirical:

[Lucretius Carus (~ 60 BQ)] ...

... [L da Vinci (1510-12)] ...

T heoretical: TS0t s s s

... [JV Boussinesq (1870s)] ...[H Bénard (1900)] ...

... [M Smoluchowski (1906)] ... [T v. Karman (1930s)] ...
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(C) (Negative) Chemotaxis (or, chemorepulsion - in bio):

""Negative chemotaxis (a.k.a. chemorepulsion) occurs when cells
are exposed to a spatial gradient of a signaling molecule and
move down-gradient, toward regions with lower concentration.”
The medium may be influenced by the active population.

Schematic Micro [~ 10~%m]

Effect of chemoattractants
-
I
Effect of chemorepellents

fo—
= 1

© Kohidali, L. 2008

[from Wikipedia, by L Kohidai]



Denote t — X (t) € R? the trajectory of the tracer. This is a
stochastic process, with randomness coming from

o initial conditions, and

o [possibly] randomized dynamics

o thermal fluctuations

Goal: Understand the scaling limit, as € — 0O, of

X (1) ;= "X (e 1b).

o diffusive: v =1/2, X()=W() (t— W(t) "BM")
o super-diffusive: v > 1/2 (robust), &!/2|loge|? (borderline)
o sub-diffusive: v < 1/2 (robust), 1/2|loge|~ (borderline)



Why v = 1/27 Why "BM" ?:
The process ¢ — W (t) € R? is characterized by

o independent and stationary increments:

Let 0 <tg<t1 <+ <tp < oo, then the increments

(W(tj) — W(tj_1)>, 1 < 5 <n, are independent

and their distribution doesn’t depend on tg.
o finite second moment

E (W(tj) - W(tj_l)) =0
; (1)

Var (W(tj) - W(tj_l)) = o2(t; —tj_1)

o the path ¢t — W (t) is almost surely continuous.

Bonus: A fortiori: t — W (t) € R is a Gaussian process, specified
by (1).



... the bottomless well of the past ...

. [J Bernoulli (1713)] ...[A de Moivre (1711-1738)] ...

. [PS Laplace (....-1812)] ... [A Lyapunov (1901)] ...

. [C Pearson & Lord Rayleigh (1905)] ... [G Pdlya (1922)] ...
[N Wiener (1920-1933)] ... [P Lévy (1920-1940)] ...

.[M Kac (1946-....)] ...[M Donsker (1952)] ...

However:

The increments of the physical processes are by no means inde-
pendent. The (simple) random walk picture is too naive.



Examples of models which are mathematically tractable at
various levels

(A) Molecular diffusion, Brownian motion.
(A1) Hard ball gas. Cf. Thierry's lectures.

(A2) The random Lorentz gas. Hamiltonian dyn., random i.c.
(A2-BG) low density (Boltzmann-Grad) + diffusive limit.

~7 O _

X ™ —d

s o €

i T\/* erd < 0.1t d/(d—1)
L r=ce



[G Gallavotti (1970)], [H Spohn (1979)]: d > 2.
((Ve®), Xe(0) 1t € [0,T]) S ((U®),Y(®) 1t € [0,T]))

random fl|ght proc.
[C Boldrighini, L Bunimovich, Y Sinai (1982)]: d = 2.

((Ve®), Xe(0) 1t € [0,T]) = ((U®),Y(®) 1 t € [0,T]))

random fhght proc.

[C Lutsko, BT (2020)]: d=3, 1 < T: < ¢ 3|loge|~2.

(T2 12X (Tet) st € [0,00)) 2 (Wo(t) 1 t € [0,00))
BT (2025)]: d=3, 1< T: € 2,

(T2 12X (Tet) 1t € [0,00)) 2 (Wo(t) 1 t € [0,00))
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(A2-WC) Weak coupling + diffusive limit.
Same, with soft/smooth finite range potential, .

o=¢¢ r =g, intensity of potential ~ el/%
weak &Dupling
be(w) =2 Y o) ~eV?
gce-w
Fo(z) = -2 3 Vp(—) ~e7V/2,
gece-w S
Va(t) = Fe(X=(1)), Xe(t) = Ve(t), + i.c

Note: (1) |[V=(1)|? = |V=(0)|2 + O(e). (2) In time dt, ~ e Ldt
scatterings of impact ~e1/2 on the travelling velocity.
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[H Kesten, G Papanicolaou (1980)]: d > 3.

((Ve®), Xe(0) 1t € [0,T]) S ((U®), Y () : t € [0,T]))

spherical La?gevin proc.

SLP:  dU(t) = U(t) x dB(t), dY(t) = U(t)dt.

[T Komorowski, L Ryzhik (2007)], [BT (2025+)]:
d>3,1<T:<e @2 (KR 1< T <& %, k>0.)

(T2 12X (Tet) 1t € [0,00)) 2 (Wo(t) 1 t € [0,00))
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(A3) Tagged particle diffusion in stochastic interacting par-
ticle systems. The exclusion process (random dynamics!)

t—m € Q2= {O,l}Zd

o particle configurations: w € 2
o (pz)zezdi a finite range rw kernel

o particles attempt jumps = ~~ y

independently, with rate p, .. If the
target site is free then the jump is
performed, otherwise it is suppressed.

MP

e

5!

Fact: BER(p), o € (0,1), are time-wise ergodic measures for the
MP t — m:. These are the only ones which are also space-wise
ergodic. Also, seen from the position of a tagged particle.
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Goal: Scaling limit for the trajectory of t — X (¢) of a
tagged particle.

SEP: p, = p_, (symmetric/reversible/self-adjoint)

IR Arratia (1983)]: d = 1, only nearest neighbour jumps.

T_1/4X(T-) = frBM subdiffusive!

Method: " Combinatorial-probabilistic”
reminiscent of [T Harris (1965)].

[C Kipnis, SRS Varadhan (1986-)]: d =1 and not n.n., or d > 2.

T-Y2X(T) = Ws(.).
Method: KV martingale approximation - reversible setting.
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ASEP: p. # p_. (asymmetric/not reversible/not self-adjoint)

[SRS Varadhan (1996)] d > 1, zero mean >, zp, = O.
T-12X(T) = Wy ().

Method: KV martingale approximation - nonreversible setting,
strong sector condition.

[S Sethuraman, SRS Varadhan, H-T Yau (2000)] d > 3.
non-zero mean > . zp, 7= 0.

T-Y2(X(T-) = E(X(T")) = Ws(-).

Method: KV martingale approximation - nonreversible setting,
graded sector condition.

Open: d=1,2, >, zp, += 0.
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(B) Convective diffusion.

AS Monin, AM Yaglom (1965): Statistical Fluid Mechanics -
Ch. 10: Turbulent Diffusion.

(t,z) — v(t,z) € RY velocity field: e.g., (turbulent) sIn of incom-

pressible E/NS eq. In particular, V-v = 0.

(t,z) — 9(t,x) € Ry concentration of "passive tracers”, carried

by the flow:

80 + V - (Yv) = gAﬁ
This is exactly the bwK equation of the diffusion process

dX(t) =v(t, X)) dt + VadB(t).

Replace the "incompressible turbulent flow” with steady state
"incompressible random flow” v(z) = v(x,w) - stationary and
ergodic w.r.t. spatial shifts.
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(B1) Diffusion in divergence-free random drift field

x+— alz,w) € Rg;nfi n z s v(z,w) € RY

stationary & ergodic w.r.t. spatial shifts, both LN C?! a.s.
Assume (for now ...)

DIVFREE : V.-v=0 a.s.
NO DRIFT : E(v) =0
T he diffusion:

AX(1) = (3V - a(X () +v(X(®)) + a2/ (X (1)) dB()

Q: CLT T 12X(T) = N(0,52), or IP T 12X(T) = W,() 7

A: Yes! Under suitable (not merely technical!) conditions.
No! Inrelevantcases. (Not merely strange counterexamples!)
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(B2) RW in {Divfree/Doubly Stochastic} rnd environment

Let «pk(w’w}ké“))xezd stationary—+ergodic rnd jump rates.
Assume (for now ...)

DIVFREE : Y pp(z) = > p_p(z+k)
keld kel

NODRIFT : > kE(py) =0
keld

The (continuous time) random walk:

Puo(X({t+dt) =+ kX)) =2) = pr(x,w) dt + o(dt)

Q: CLT T 12X(T) = N(0,52), or IP T 12X(T) = W,() 7

A: Yes! Under suitable (not merely technical!) conditions.
No! Inrelevantcases. (Not merely strange counterexamples!)
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and also in higher dimension ...
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list of results to be written here
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(C) Self-repelling walk/diffusion. Pushed by the negative
gradient of its own occupation time measure.

(C1) Self-repelling diffusion (SRBP): ¢t — X (t) € R4
0(t,A) :=0(0,A) + [{0<s<t:X(s)e A}
dX (t) = dB(t) — grad (v « 0(t, -))(X(t))dt
VR [0,00) approx.-s, V(p):= /Rd eV (z)dx > 0
(C2) Self-repelling random walk (TSAW): ¢ — X (t) € 2%,
0(t,z) = £(0,z) + {0 < s < t: X(s) =z}
P(X(t+dt) =2+ kX)) =2)=wl(ta)—L0tz+k))dt

w:R — (0,00) increasing
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Roots:

TSAW, physics:

D Amit, G Parisi, L Peliti (1983)]
S Obukhov, L Peliti (1983)]
L Peliti, L Pietronero (1987)]

SRBP, probability:

[J Norris, C Rogers, D Williams (1987)]
R Durrett, C Rogers (1992)]

(M Cranston, Y Le Jan (1995)]

M Cranston, T Mountford (1996)]
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Conjectures, based on RG and scaling arguments (" physics” ):

ed=1: X()~t2/3, intricate, non-Gausssian scaling limit.
(Limit distributions not identified.)

ed=2: X()~tY2@ogt)s, Gaussian scaling limit.
(Controversy about the value of (.)
ed>3: X(t)~tl/2 Gaussian scaling limit.

Some results: ...
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od—=1:
o Limit theorem in some particular (lattice) cases,
[T (1995), T-Vet6 (2011)]:

t72/3X (1) = X.

o Construction of the scaling limit process
(TSRM, the Brownian Web, ...), [T-Werner (1998)]

t— X(t)
o " Robust” bounds, [Tarrés-T-Valko (2012)]:
C1t°/* < E (IX (1)) < Cat®/2.

Method: resolvent calculus, analysis

o Missing: Universality = Fully robust proof of the limit
theorem, not relying on " combinatorial details”.
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o d—=2:
o Super diffusive bounds, [T-Valko (2012)]:

Citloglogt < E (|X(t)|2) < Cotlogt.
Method: resolvent calculus, analysis
o Expected: E (X(t)z) ~ t/l1ogt
t=1/2(logt)~1/4 X (t) = N(0, o)

o d = 3:;
o CLT, [Horvath-T-Vetd (2012)]:

t=12x () = N(0, o).

Method: KV martingale approximation, graded sector
condition

Precise conditions and statements: later
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