

BÁLINT TÓTH
(Rényi Institute Budapest and University of Bristol)

**LARGE-SCALE BEHAVIOUR OF
RANDOM MOTIONS WITH LONG MEMORY**

**-2-
RANDOM WALK IN
DIVERGENCE-FREE RANDOM ENVIRONMENT**

**PDE AND PROBABILITY - SUMMER SCHOOL
Sorbonne Université, Paris, June 16-25, 2025**

Random Walk in Random Environment (RWRE)

$(\Omega, \pi, (\tau_z : \Omega \rightarrow \Omega, z \in \mathbb{Z}^d))$ probab. sp., ergodic \mathbb{Z}^d -action

$\mathcal{U} = \{k \in \mathbb{Z}^d : |k| = 1\}$ n.n. steps of the r.w.

$p : \Omega \rightarrow [0, \infty)^{\mathcal{U}}$, jump rates of the r.w.

RWRE: Given $\omega \in \Omega$, $t \mapsto X(t) \in \mathbb{Z}^d$ cont. time Markov chain:

$$\mathbf{P}_\omega (X(t+dt) = x+k | X(t) = x) = \underbrace{p_k(\tau_x \omega)}_{p_k(x, \omega)} dt + o(dt)$$

Separate symmetric and skew-symmetric part of jump rates:

$$\text{conductances} \quad r_k(\omega) := \sqrt{(p_k(\omega) + p_{-k}(\tau_k \omega))/2} = r_{-k}(\tau_k \omega)$$

$$\text{flows} \quad b_k(\omega) := (p_k(\omega) - p_{-k}(\tau_k \omega))/2 = -b_{-k}(\tau_k \omega)$$

Major issue in probability theory since the 1970s.

[Overwhelming majority of the RWRE literature is about '*random walk among random conductances*': $b \equiv 0$ a.s. – reversible, self-adjoint . . .]

Assumptions I. (minimal)

$$\sum_{k \in \mathcal{U}} b_k(\omega) \equiv 0 \quad \text{a.s.} \quad (\text{DIV-FREE})$$

$$r_k \in \mathcal{L}^2(\Omega, \pi) \quad (\text{UPPER})$$

$$\int_{\Omega} b_k(\omega) d\pi(\omega) = 0 \quad (\text{NO-DRIFT})$$

$$(r_k)^{-1} \in \mathcal{L}^2(\Omega, \pi) \quad (\text{LOWER})$$

Rather than strong ellipticity

$$r_k(\omega) \geq r_* > 0. \quad (\text{ELLIP})$$

First consequences:

- (DIV-FREE) \Rightarrow The *environment process*:

$$t \mapsto \eta_t := \tau_{X(t)}\omega$$

is *stationary* and *ergodic* Markov process in (Ω, π) .

- (UPPER) & (NO-DRIFT) \Rightarrow zero (annealed) drift & SLLN:

$$\mathbf{E}(X(t)) := \int_{\Omega} \mathbf{E}_{\omega}(X(t)) d\pi(\omega) = 0$$

$$t^{-1}X(t) \rightarrow 0, \quad \text{a.s.}$$

- (LOWER) \Rightarrow diffusive lower bound (not totally straightforward):

$$\varliminf_{t \rightarrow \infty} t^{-1} \mathbf{E}(|X(t)|^2) > 0$$

Questions left open:

Diffusive upper bound? CLT? Superdiffusive lower bound?

Analogous: **diffusion in div-free rnd drift field** $t \mapsto X(t) \in \mathbb{R}^d$

$$dX(t) = \left(\frac{1}{2} \nabla \cdot r^2(X(t)) + b(X(t)) \right) dt + r(X(t)) dB(t)$$

with infinitesimal generator

$$L := \frac{1}{2} \nabla \cdot r^2 \nabla + b \cdot \nabla,$$

where

$$r = r(\omega) : \mathbb{R}^d \rightarrow \mathbb{R}_+^{d \times d} \quad b = b(\omega) : \mathbb{R}^d \rightarrow \mathbb{R}^d$$

are space-wise stationary & ergodic,

$$\operatorname{div} b \equiv 0 \quad \pi\text{-a.s.} \quad (\text{DIV-FREE})$$

with conditions analogous to (UPPER), (NO-DRIFT), (LOWER).

Physical motivation: . . . passive tracer in turbulent flow . . .

Historic notes: . . . later . . .

Martingale decomposition:

$$X(t) = \underbrace{Z(t)}_{\checkmark} + \underbrace{\int_0^t (\varphi(\eta_s) + \psi(\eta_s)) ds}_{?}$$

where $\varphi, \psi : \Omega \rightarrow \mathbb{R}^d$,

$$\varphi(\omega) := \sum_{k \in \mathcal{U}} kr_k^2(\omega) \quad \psi(\omega) := \sum_{k \in \mathcal{U}} kb_k(\omega)$$

$$\varphi(\omega) + \psi(\omega) = \sum_{k \in \mathcal{U}} kp_k(\omega)$$

Then $t \mapsto Z(t) \in \mathbb{R}^d$ is a quenched martingale whose increments are stationary, ergodic and \mathcal{L}^2 in the annealed setting, and thus obeys the *martingale CLT*.

Blueprint: Martingale approx. of additive functionals (integrals above) of ergodic Markov processes – à la **Kipnis-Varadhan**.

Helmholtz: "div-free vector field = curl of vector potential" –
cum grano salis

Setting:

$(\Omega, \pi, (\tau_z : \Omega \rightarrow \Omega, z \in \mathbb{Z}^d))$ erg. \mathbb{Z}^d -action, $b : \Omega \rightarrow \mathbb{R}^{\mathcal{U}}$ s.t. π -a.s.

$$b_k(\omega) + b_{-k}(\tau_k \omega) = 0 \quad (\text{FLOW})$$

$$\sum_{k \in \mathcal{U}} b_k(\omega) = \frac{1}{2} \sum_{k \in \mathcal{U}} (b_k(\omega) - b_k(\tau_{-k} \omega)) = 0 \quad (\text{DIV-FREE})$$

Lift to \mathbb{Z}^d : $\mathbb{Z}^d \times \mathcal{U} \ni (x, k) \mapsto b_k(x, \omega) = b_k(\tau_x \omega)$ is a stationary & ergodic **divergence-free flow/vector field** on \mathbb{Z}^d :

$$b_k(x, \omega) + b_{-k}(x + k, \omega) = 0 \quad (\text{FLOW})$$

$$\sum_{k \in \mathcal{U}} b_k(x, \omega) = \frac{1}{2} \sum_{k \in \mathcal{U}} (b_k(x, \omega) - b_k(x - k, \omega)) = 0 \quad (\text{DIV-FREE})$$

Proposition 1. ['Helmholtz's thm'] [K-L-O(2012), K-T(2017), T(2025)]
 Let $b : \Omega \rightarrow \mathbb{R}^{\mathcal{U}}$ be a div-free flow/vf as above, $b \in \mathcal{L}^1(\Omega, \pi)$.
 There exists a stream tensor field $(x, k, l) \mapsto H_{k,l}(x, \omega)$, $H \in \mathcal{L}^{1w}(\Omega, \pi)$,
 $H_{-k,l}(x + k, \omega) = H_{k,-l}(x + l, \omega) = H_{l,k}(x, \omega) = -H_{k,l}(x, \omega)$ (**STREAM**)
with stationary increments, a.k.a. a cocycle

$$H_{k,l}(y, \omega) - H_{k,l}(x, \omega) = H_{k,l}(y - x, \tau_y \omega) - H_{k,l}(0, \tau_x \omega), \quad (\text{COCY})$$

such that Helmholtz's relation holds

$$\begin{aligned} b_k(x, \omega) &= \sum_{l \in \mathcal{U}} H_{k,l}(x, \omega) = \frac{1}{2} \sum_{l \in \mathcal{U}} (H_{k,l}(x, \omega) - H_{k,l}(x - l, \omega)) \\ &= \sum_{l \in \mathcal{U}} H_{k,l}(0, \tau_x \omega) \end{aligned} \quad (\text{HELMHOLTZ})$$

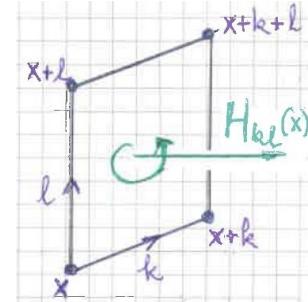
If $b \in \mathcal{L}^p(\Omega, \pi)$, $p \in (1, 2]$ then also $H \in \mathcal{L}^p(\Omega, \pi)$.

Proof: $b \in \mathcal{L}^2$: soft / $b \in \mathcal{L}^1$: relies on Calderón-Zygmund.

Remarks/comments:

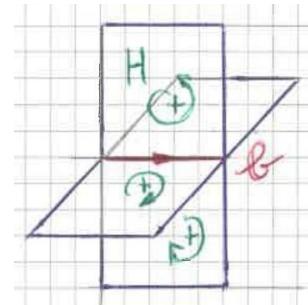
- This is *not the ‘usual’* Helmholtz Thm.

- (**STREAM**) means that $(x, k, l) \mapsto H_{k,l}(x)$ is a function of the *oriented plaquettes* of \mathbb{Z}^d



- In 2-dim H is a *height function* on the dual \mathbb{Z}^2 .
In 3-dim H is a *flow / vector field* on the dual \mathbb{Z}^3 .

- (**HELMHOLTZ**):



- (**STREAM**), (**COCY**), (**HELMHOLTZ**) determine H *uniquely*, up to the additive $H_{k,l}(0)$. The standard choice is: $H_{k,l}(0) = 0$.

- **Subtle q.:** Is the (COCY) stream field actually *stationary*?

$$H_{k,l}(x, \omega) = h_{k,l}(\tau_x \omega) - h_{k,l}(\omega) \quad (\text{STATI-STREAM})$$

with some $(k, l) \mapsto h_{k,l}(\omega)$, such that

$$h_{-k,l}(\tau_k \omega) = h_{k,-l}(\tau_l \omega) = h_{l,k}(\omega) = -h_{k,l}(\omega) \quad (\text{STATI-STREAM})$$

Could be

- (Y1) Yes, with h in the same \mathcal{L} -class as H
- (Y2) Yes, with h in weaker \mathcal{L} -class as H
- (N) No.

Given $b \in \mathcal{L}^p$, $p \in [1, 2]$, div-free, it can be hard to see whether the case (Y1), (Y2) or (N) holds.

Except: $b \in \mathcal{L}^2$: $h \in \mathcal{L}^2$ (i.e. (Y1) holds) iff $b \in \mathcal{H}_{-1}(\Delta)$.
More about this - later.

Back to the RWRE: Recall notation:

$$r_k(\omega) := \sqrt{(p_k(\omega) + p_{-k}(\tau_k \omega))/2} \quad b_k(\omega) := (p_k(\omega) - p_{-k}(\tau_k \omega))/2$$

Assumptions II. (final form)

- **(UPPER)+(LOWER):**

$$r_k \in \mathcal{L}^2(\Omega, \pi) \quad (r_k)^{-1} \in \mathcal{L}^2(\Omega, \pi)$$

- **(STATI-STREAM):** $\exists h : \Omega \rightarrow \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$ s.t.

$$h_{k,l}(\omega) = -h_{-k,l}(\tau_k \omega) = -h_{k,-l}(\tau_l \omega) = -h_{l,k}(\omega)$$

$$b_k(\omega) = \sum_{l \in \mathcal{N}} h_{k,l}(\omega)$$

- **(H-1):** (new!)

$$(r_k)^{-1} h_{k,l} \in \mathcal{L}^2(\Omega, \pi) \quad (\text{H-1})$$

Remarks:

- Bonus: (**LOWER**) + (**UPPER**) + (**H-1**) imply

$$h_{k,l} \in \mathcal{L}^1(\Omega, \pi) \quad (r_k)^{-1} h_{k,l} (r_l)^{-1} \in \mathcal{L}^1(\Omega, \pi)$$

- Assuming (**ELLIP**) [rather than (**LOWER**)] (**H-1**) reduces to

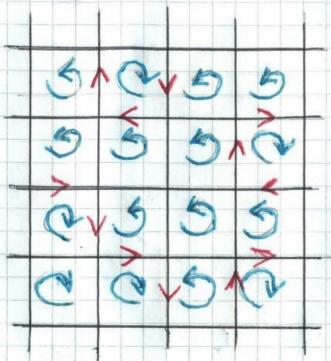
$$h_{k,l} \in \mathcal{L}^2(\Omega, \pi) \quad \Leftrightarrow \quad b \in \mathcal{H}_{-1}(\Delta) \quad (\text{H-1/ELLIP})$$

More on this - later.

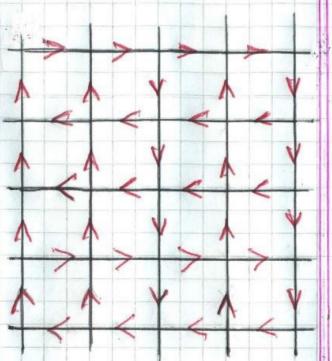
- Examples - on next three slides . . .

Examples $r, b \in \mathcal{L}^\infty(\Omega, \pi) + (\text{ELLIP})$

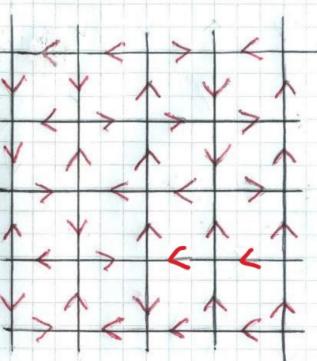
Small cycles
with short
range dependence



"Manhattan"



Six-vertex /
"Square Ice"

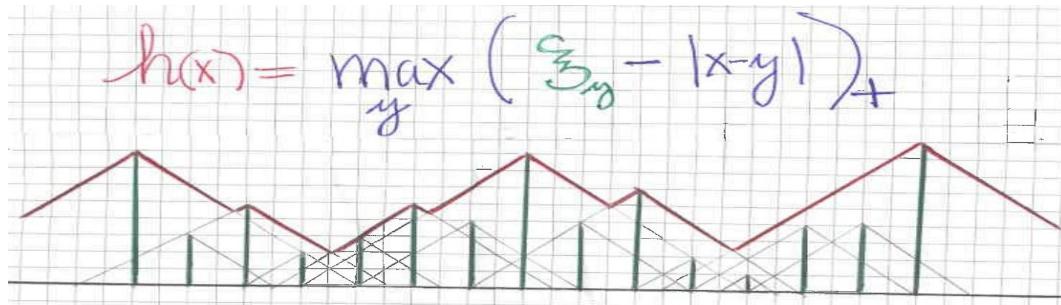


and also in higher dimension ...

$X(t)$: RW, at each step
uniform choice between
the allowed directions

Q: large scale behaviour ? diffusive ? super diff. ?

and another
example
on the next slide



This example is due to **Ron Peled**. Do the same on \mathbb{Z}_*^2

Let $(\xi_y)_{y \in \mathbb{Z}_*^2}$ i.i.d., $\xi_y \in \mathbb{N}$, and $h : \mathbb{Z}_*^2 \rightarrow \mathbb{N}$,

$$h(x) := \sup \left\{ (\xi_y - |x - y|)_+ : y \in \mathbb{Z}_*^2 \right\}.$$

By Borel-Cantelli: $h(x) < \infty$ a.s. iff $\mathbf{E}(\xi^2) < \infty$. In this case, $x \mapsto h(x)$ is (obviously) stationary and $\text{Lip}(1)$. Furthermore, $\mathbf{E}(|h(x)|^p) < \infty$ iff $\mathbf{E}(|\xi|^{p/2}) < \infty$.

Let $b_k(x) := h(x + (1+i)k/2) - h(x + (1-i)k/2)$

Then $(x, k) \mapsto b_k(x)$ is (**DIV-FREE**) and $|b_k(x)| \leq 1$ a.s. Finally,

$$p_k(x) := 1 + b_k(x).$$

Examples ctd. Why bother with non-ellipticity?

Let $t \mapsto X(t)$ be a RWRE as on page 2. Without (DIV-FREE) the environment process $t \mapsto \eta_t := \tau_{X(t)}\omega$ won't be stationary.

The equation for stationary RN derivative:

$$\sum_{k \in \mathcal{N}} p_{-k}(\tau_k \omega) \varrho(\tau_k \omega) = \sum_{k \in \mathcal{N}} p_k(\omega) \varrho(\omega)$$

This is a hard problem! See, e.g. [Sabot (2013)].

Assume sln $\varrho \in \mathcal{L}^1(\Omega, \pi)$ exists. Then, $t \mapsto \widetilde{X}(t)$ with jump rates

$$\widetilde{p}_k(\omega) := p_k(\omega) \varrho(\omega)$$

will be (obviously) (DIV-FREE).

However, this is a time-changed version of the original RWRE. So, proving CLT/non-CLT for $t \mapsto X(t)$ reduces to checking/refuting the stated conditions for the rates $(\widetilde{p}_k(\omega))_{k \in \mathcal{U}} \dots$

Theorem 1. [CLT in probability w.r.t. the environment]

[G Kozma, BT (2017)], [BT (2025)]

Assume (UPPER) & (LOWER) & (STATIONARY-STREAM) & (H-1). Then

$$X(t) = Y(t) + Err(t)$$

so that the following limits hold as $N \rightarrow \infty$.

(i) For π -almost all $\omega \in \Omega$, $t \mapsto Y(t)$ is a square integrable martingale whose increments are stationary and ergodic in the annealed setting. Thus (due to the martingale IP) for π -almost all $\omega \in \Omega$,

$$N^{-1/2}Y(N \cdot) \Rightarrow W_\sigma(\cdot)$$

in $D([0, 1])$ under the quenched probab. measure $\mathbf{P}_\omega(\dots)$, where $W_\sigma(\cdot)$ is a BM with $\sigma^2 \in (0, \infty)$.

(ii) For any $t \in [0, 1]$ and $\delta > 0$,

$$\lim_{N \rightarrow \infty} \pi\left(\left\{\omega \in \Omega : N^{-1} \mathbf{E}_\omega(|Err(Nt)|^2) > \delta\right\}\right) = 0.$$

Theorem 2. [quenched CLT π -a.s. w.r.t. the envi.] [BT (2018)]
 Assume (UPPER) & (ELLIP) & (STATI-STREAM) & (H-1+ ε /ELLIP)

$$h_{k,l} \in \mathcal{L}^{2+\varepsilon} \quad (\text{H-1+}\varepsilon\text{/ELLIP})$$

Then the statement of Theorem 1 holds with

$$\lim_{N \rightarrow \infty} N^{-1/2} |Err(Nt)| = 0 \quad \text{a.s.}$$

Comments.

- Theorem 1: CLT in probability w.r.t. ω ("semi-quenched").
 Theorem 2: CLT for π -a.a. ω . ("quenched")
- Proof of Theorem 1: martingale approx. + functional analysis.
 Proof of Theorem 2: extra ingredients: Nash-type arguments
 (therefore (ELLIP) needed)

Martingale approx, Kipnis-Varadhan theory - in a nutshell: (5 slides)

$t \mapsto \eta_t, \eta_t^* \in \Omega$ stat&erg MP on (Ω, π) and its time-reversal.

Assume suff. regularity. Their semigroups P_t, P_t^* , resolvents R_λ, R_λ^* , infinitesimal generators L, L^* act on $\mathcal{L}^p(\Omega, \pi)$, $p \in [1, \infty]$.

$$P_t f(\omega) := \mathbf{E}_\omega(f(\eta_t)) \quad \|P_t\|_{p \rightarrow p} = 1$$

$$R_\lambda := \int_0^\infty e^{-\lambda t} P_t dt \quad \|R_\lambda\|_{p \rightarrow p} = \lambda^{-1}$$

$$L := \text{st-lim}_{t \rightarrow 0} t^{-1} (P_t - I)$$

On $\mathcal{L}^2(\Omega, \pi)$, assume

$$L = -S + A \quad S := -(L + L^*)/2 \quad A := (L - L^*)/2,$$

define $S^{-1/2}$ in terms of the Spectral Theorem, and $\mathcal{H}_- := \mathcal{H}_{-1}(S)$:

$$\mathcal{H}_- := \left\{ f \in \mathcal{L}^2 : \|f\|_-^2 := \lim_{\lambda \rightarrow 0} \langle f, (\lambda I + S)^{-1} f \rangle = \|S^{-1/2} f\|_2^2 < \infty \right\}^{\text{cl-}}$$

WANTED: Efficient martingale approx. $t \mapsto \int_0^t \varphi(\eta_s) ds$.

Theorem 3. [non-reversible KV] [KV (1986)], [T (1986)]

Let $\varphi \in \mathcal{L}^1$ such that $\int_{\Omega} \varphi d\pi = 0$ and for all $\lambda > 0$, $R_{\lambda}\varphi \in \mathcal{L}^2$.

If the following two conditions hold

$$(A) \quad \lim_{\lambda \rightarrow 0} \lambda^{1/2} \|R_{\lambda}\varphi\|_2 = 0,$$

$$(B) \quad \lim_{\lambda \rightarrow 0} \|S^{1/2}R_{\lambda}\varphi - v\|_2 = 0, \quad v \in \mathcal{L}^2,$$

then there exists a sq-integrable martingale $t \mapsto Z(t)$ (adapted to the natural filtration), with stat&erg increments and variance

$$\mathbf{E}(|Z(t)|^2) = 2\|v\|_2^2 t,$$

such that

$$\lim_{t \rightarrow \infty} t^{-1} \mathbf{E} \left(\left| \int_0^t \varphi(\eta_s) ds - Z(t) \right|^2 \right) = 0.$$

Comments, remarks:

- The **self-adjoint** case [Kipnis-Varadhan (1986)], $L = -S$,

$$\{\varphi \in \mathcal{H}_-\} \iff (\text{A}) \iff (\text{B})$$

- General, **non-self-adjoint** case:

Proposition 2. [H_{-1} rules!] [Varadhan (1995)]

$$\forall \varphi \in \mathcal{H}_- \cap \mathcal{L}^1, t \in [0, \infty)$$

$$\text{Var} \left(\int_0^t \varphi(\eta_s) ds \right) \leq 2 \|\varphi\|_-^2 t.$$

Hwvr, $\varphi \in \mathcal{H}_-$ is too little (for CLT) & too much (for $\sigma^2 < \infty$).

- **non-self-adjoint** case: (A) & (B) are too implicit to be checked directly. (Though, exceptions exist.)
- **Sufficient:** *Strong Sector Condition* [Varadhan (1995)];
Graded Sector Condition [Sethuraman-Varadhan-Yau (2000)]
notoriously technical. Appl. restricted to graded structure . . .

A handy sufficient condition: Let

$$\mathcal{B} := \{f \in \mathcal{H}_- \cap \mathcal{L}^2 : S^{-1/2}f \in \text{Dom}(A) \text{ & } AS^{-1/2}f \in \mathcal{H}_- \cap \mathcal{L}^2\}$$

$$B : \mathcal{B} \rightarrow \mathcal{L}^2, \quad Bf := S^{-1/2}AS^{-1/2}f.$$

Comments: $B : \mathcal{B} \rightarrow \mathcal{L}^2$ is obviously skew-symmetric. However, $\mathcal{B} \subset \mathcal{L}^2$ could be too thin Even if \mathcal{B} is dense in \mathcal{L}^2 it could still happen that $B \prec \overline{B} \not\preceq -B^*$.

Theorem 4. [relaxed sector condition] [Horváth-T-Vető (2012)] (streamlined)

Assume that \mathcal{B} is dense in \mathcal{L}^2 and the operator $B : \mathcal{B} \rightarrow \mathcal{L}^2$ is essentially skew-self-adjoint: $B \prec \overline{B} = -B^*$. Then for any $\varphi \in \mathcal{H}_- \cap \mathcal{L}^1$ the conditions of Theorem KV (and hence the martingale approximation) hold.

Proof sketch. [Details in separate set of notes.]

For simplicity assume $\|L\|_{2 \rightarrow 2} < \infty$ and let

$$B_\lambda := (\lambda I + S)^{-1/2} A (\lambda I + S)^{-1/2}, \quad B_\lambda^* = -B_\lambda$$

$$K_\lambda := (I + B_\lambda)^{-1}, \quad \|K_\lambda\| \leq 1.$$

$$R_\lambda = (\lambda I + S)^{-1/2} K_\lambda (\lambda I + S)^{-1/2}$$

If by some miracle: $K_\lambda \xrightarrow{\text{s.o.t.}} K$, then, for $\varphi \in \mathcal{H}_-$,

$$(A) \quad \lambda^{1/2} R_\lambda \varphi = \lambda^{1/2} (\lambda I + S)^{-1/2} K_\lambda (\lambda I + S)^{-1/2} \varphi \rightarrow 0$$

$$(B) \quad S^{1/2} R_\lambda \varphi = S^{1/2} (\lambda I + S)^{-1/2} K_\lambda (\lambda I + S)^{-1/2} \varphi \rightarrow \underbrace{KS^{-1/2} \varphi}_v$$

Under the conditions of the Thm, by an argument reminiscent of Trotter-Kurtz, $K_\lambda \xrightarrow{\text{s.o.t.}} K$. □

Back to the main issue. Spaces.

\mathcal{L} : scalars; \mathcal{V} : vectors; \mathcal{R} : rot-free vects; \mathcal{D} : div-free vects; \mathcal{K} : ??.

$$\mathcal{L}^p := \left\{ f : \Omega \rightarrow \mathbb{R} : \|f\|_p^p := \int_{\Omega} |f|^p d\pi < \infty, \quad \int_{\Omega} f d\pi = 0 \right\}$$

$$\mathcal{V}^p := \left\{ u : \Omega \rightarrow \mathbb{R}^{\mathcal{U}} : u_k \in \mathcal{L}^p, \quad u_k(\omega) + u_{-k}(\tau_k \omega) = 0, \quad \|u\|_p^p = \sum_{k \in \mathcal{U}} \|u_k\|_p^p \right\}$$

$$\mathcal{R}^p := \left\{ u \in \mathcal{V}^p : u_k(\omega) + u_l(\tau_k \omega) = u_l(\omega) + u_k(\tau_l \omega) \right\} \quad [\mathcal{R} \text{ for } \text{rot-free}]$$

$$\mathcal{D}^p := \left\{ u \in \mathcal{V}^p : \sum_{k \in \mathcal{U}} u_k(\omega) = 0 \right\} \quad [\mathcal{D} \text{ for } \text{div-free}]$$

$$\mathcal{K}^p := \left\{ u \in \mathcal{V}^p : (r_k^{-1} u_k)_{k \in \mathcal{U}} \in \mathcal{R} \right\}^{\text{cl } p}$$

$$\text{Helmholtz-Hodge:} \quad \mathcal{V}^2 = \mathcal{R}^2 \oplus \mathcal{D}^2.$$

$\mathcal{L}, \mathcal{V}, \mathcal{R}, \mathcal{D}, \mathcal{K}$: same, without integrability conditions.

Back to the main issue. Operators.

$$\begin{aligned} T_z f(\omega) &:= f(\tau_z \omega), & \partial_k &:= T_k - I, \\ R_k f(\omega) &:= r_k(\omega) f(\omega), & H_{k,l} f(\omega) &:= h_{k,l}(\omega) f(\omega) \end{aligned}$$

$$\begin{aligned} \nabla : \mathcal{L} &\rightarrow \mathcal{V}, & (\nabla f)_k &:= \partial_k f \\ \nabla^* : \mathcal{V} &\rightarrow \mathcal{L}, & \nabla^* u &:= \sum_{k \in \mathcal{U}} u_k = -\frac{1}{2} \sum_{k \in \mathcal{U}} \partial_{-k} u_k \end{aligned}$$

$$\begin{aligned} R : \mathcal{V} &\rightarrow \mathcal{V}, & (Ru)_k &:= R_k u_k \\ H : \mathcal{V} &\rightarrow \mathcal{V}, & (Hu)_k &:= \frac{1}{4} \sum_{l \in \mathcal{U}} (T_{-l} + I) H_{k,l} (T_k + I) u_l \end{aligned}$$

$$S = \nabla^* R^2 \nabla = (\nabla^* R)(R \nabla)$$

$$A = \nabla^* H \nabla = (\nabla^* R)(R^{-1} H R^{-1})(R \nabla)$$

Key facts (concrete - valid under the assumed conditions):

(1) $\mathcal{H}_- := \mathcal{H}_{-1}(S) \subset \mathcal{L}^1$ and, for $f \in \mathcal{L}^1$,

$$\|f\|_-^2 = \sup_{g \in \mathcal{L}^\infty} (2\langle f, g \rangle - \|R\nabla g\|_2^2)$$

(2) Hilbert space isometries:

$$(\mathcal{L}^2, \|\cdot\|_2) \xrightarrow{R\nabla S^{-1/2}} (\mathcal{K}^2, \|\cdot\|_2) \xrightarrow{S^{-1/2}\nabla^* R} (\mathcal{L}^2, \|\cdot\|_2),$$

Reminiscent of *Riesz kernels* of harmonic analysis:

$$\mathcal{L}^2(\mathbb{R}^d, \text{Leb}) \xrightarrow{\text{grad } |\text{lap}|^{-1/2}} \underbrace{\mathcal{R}^2(\mathbb{R}^d, \text{Leb})}_{\text{Ker(rot)}} \xrightarrow{|\text{lap}|^{-1/2} \text{div}} \mathcal{L}^2(\mathbb{R}^d, \text{Leb}).$$

Proof of Thm 1. Step 1: Prove $B^ = -B$:*

$$B = S^{-1/2} A S^{-1/2} = \underbrace{S^{-1/2} \nabla^* R}_{\Lambda^*} \underbrace{R^{-1} H R^{-1}}_{\Lambda} \underbrace{R \nabla S^{-1/2}}_{\Lambda}$$

Reduces to proving essential skew-self-adjointness (on an appropriate dense subspace) of $D : \mathcal{K}^2 \rightarrow \mathcal{K}^2$,

$$D := \Lambda \Lambda^* R^{-1} H R^{-1} \Lambda \Lambda^*, \quad \Lambda \Lambda^* : \mathcal{V}^2 \rightarrow \mathcal{K}^2 \text{ orth. proj.}$$

However, D is (essentially) a multiplication operator. The proof is (essentially) routine. In this step only (**STATI-STREAM**) matters, and not the integrability conditions.

Step 2: Prove $\varphi, \psi \in \mathcal{H}_-$ for $\varphi, \psi : \Omega \rightarrow \mathbb{R}^d$,

$$\varphi(\omega) := \sum_{k \in \mathcal{U}} k s_k(\omega) = \frac{1}{2} \sum_{k \in \mathcal{U}} k \partial_{-k} s_k(\omega) \quad \psi(\omega) := \sum_{k \in \mathcal{U}} k b_k(\omega)$$

$$\begin{aligned}
\|\partial_{-k} s_k\|_-^2 &= \sup_{\chi \in \mathcal{L}^\infty} (2\langle \chi, \partial_{-k} s_k \rangle - \|R \nabla \chi\|_2^2) \\
&\leq \sup_{\chi \in \mathcal{L}^\infty} (2\langle \chi, \partial_{-k} s_k \rangle - \|R_k \partial_k \chi\|_2^2) \\
&= \sup_{\chi \in \mathcal{L}^\infty} (2\langle R_k \partial_k \chi, r_k \rangle - \|R_k \partial_k \chi\|_2^2) \\
&\leq \sup_{\chi \in \mathcal{L}^2} (2\langle \chi, r_k \rangle - \|\chi\|_2^2) = \underbrace{\|r_k\|_2^2 < \infty}_{(\text{UPPER})}
\end{aligned}$$

$$\begin{aligned}
\|b_k\|_-^2 &= \sup_{\chi \in \mathcal{L}^\infty} (\langle \chi, \sum_{l \in \mathcal{U}} \partial_{-l} h_{k,l} \rangle - \|R \nabla \chi\|_2^2) \\
&= \sup_{\chi \in \mathcal{L}^\infty} \sum_{l \in \mathcal{U}} (\langle R_l \partial_l \chi, r_l^{-1} h_{k,l} \rangle - \|R_l \partial_l \chi\|_2^2) \\
&\leq \sum_{l \in \mathcal{U}} \sup_{\chi \in \mathcal{L}^2} (\langle \chi, r_l^{-1} h_{k,l} \rangle - \|\chi\|_2^2) = \underbrace{\sum_{l \in \mathcal{U}} \|r_l^{-1} h_{k,l}\|_2^2 < \infty}_{(\text{H-1})} . \quad \square \text{Thm1}
\end{aligned}$$

Harmonic coordinates. [S Kozlov (1985)]: Find a random field $\mathbb{Z}^d \ni x \mapsto V(x, \omega) \in \mathbb{R}^d$ with *stationary increments* (i.e, a *cocycle*)

$$V(y, \omega) - V(x, \omega) = V(y - x, \tau_x \omega) \quad (\text{COCY})$$

and $\mathbf{E}(V(x)) \equiv 0$, such that

$$\sum_{k \in \mathcal{U}} \frac{p_k(x, \omega)}{p_k(\tau_x \omega)} \left(k + \underbrace{V(x + k, \omega) - V(x, \omega)}_{V_k(\tau_x \omega)} \right) = 0 \quad \pi\text{-a.s.}$$

Then $t \mapsto Y(t) := X(t) + V(X(t))$ is a quenched martingale (for π -a.a. ω) and it is plausible to expect that

$$\lim_{t \rightarrow \infty} t^{-1/2} V(X(t)) = 0 \quad \text{a.s.} \quad (\text{Q-ERR})$$

If this is done, the *quenched IP* follows.

The field $\mathbb{Z}^d \ni x \mapsto x + V(x, \omega) \in \mathbb{R}^d$ is called (for obvious reasons) *harmonic coordinates*. Geometric meaning:

Bonus - from the proof of Theorem 1:

Proposition 3. [$\exists!$ of harmonic coordinates] [BT (2025)]

Given $\phi \in \mathcal{H}_- \cap \mathcal{L}^1$ there exists a unique solution $v \in R^{-1}\mathcal{K}^2 \subset \mathcal{U}^1$ (\mathcal{L}^1 rot-free field) of the equation

$$\sum_{k \in \mathcal{U}} p_k(\omega) v_k(\omega) = \phi(\omega). \quad (\text{HARM-COORD})$$

Proof sketch. The solution is

$$v = R^{-1} (I + B)^{-1} S^{-1/2} \phi$$

$$\|v\|_1 \leq \underbrace{\|r^{-1}\|_2 \|\phi\|_-}_{(\text{LOWER})} < \infty \quad \square$$

$$\|v\|_2 \leq \underbrace{\|r^{-1}\|_\infty \|\phi\|_-}_{(\text{ELLIP})} < \infty$$

Proof of Theorem 2:

Step 1: [Harmonic coordinates + error term]

Solve (HARM-COORD) for $\phi := \sum_{k \in \mathcal{U}} k p_k = \varphi + \psi \in \mathcal{H}_- \cap \mathcal{L}^1$ (component-wise) and let $\mathbb{Z}^d \ni x \mapsto V(x, \omega) \in \mathbb{R}^d$ be the (COCY) field defined by the gradients

$$V(0, \omega) = 0 \quad V(x + k, \omega) - V(x, \omega) = v_k(\tau_x \omega)$$

Write

$$X(t) = \overbrace{X(t) + V(X(t))}^{Y(t)} - V(X(t))$$

Then, $t \mapsto Y(t)$ is a *quenched* martingale with stat&erg annealed increments with covariance computable

$$\mathbf{E} (Y_i(t) Y_j(s)) = \delta_{i,j} \sigma^2 \min\{t, s\}, \quad \sigma^2 = \text{????}$$

By the MIP, for π -a.a. ω , $N^{-1/2} Y(N \cdot) \Rightarrow W_\sigma(\cdot)$ in $D([0, 1], \mathbb{R}^d)$, under the *quenched* measure $\mathbf{P}_\omega(\cdot)$.

Intersteps:

It remains to quenched-bound the error term $V(X(t))$:
for π -a.a. ω , and all $\delta > 0$,

$$\lim_{t \rightarrow \infty} \mathbf{P}_\omega \left(t^{-1/2} |V(X(t))| > \delta \right) = 0. \quad (\text{Q-ERR-BOUND})$$

Philosophy and why it fails . . .

To prove (Q-ERR-BOUND), we'll assume

$$r_k(\omega) \geq r_* > 0. \quad (\text{ELLIP})$$

$$h_{k,l} \in \mathcal{L}^{2+\varepsilon} \quad (\text{H-1+\varepsilon/ELLIP})$$

[rather than (LOWER)&(H-1)].

Step 2: [Ergodic theorem for cocycles]

Proposition 4. [an ergodic theorem] [BT (2018)]

Let $(\Omega, \pi, (\tau_z : \Omega \rightarrow \Omega, z \in \mathbb{Z}^d))$ be an ergodic \mathbb{Z}^d -action and $\mathbb{Z}^d \ni x \mapsto \Psi(x, \omega) \in \mathbb{R}$ a cocycle (i.e. stationary increments) such that $\Psi \in \mathcal{L}^1 \log^{d-1} \mathcal{L}$ and $\mathbf{E}(\Psi) = 0$. Then π -a.s.

$$\lim_{N \rightarrow \infty} N^{-(d+1)} \sum_{|x| \leq N} |\Psi(x)| = 0 \quad (\text{COCY-ERG})$$

The proof of Proposition 4 (see later) relies on

Theorem 5. [Multidim. unrestricted erg. thm. [Zygmund (1951)]]

Let (Ω, π, τ) be as above, and $f \in \mathcal{L}^1 \log^{d-1} \mathcal{L}$. Then

$$\lim_{N_1, \dots, N_d \rightarrow \infty} (N_1 \dots N_d)^{-1} \sum_{z \in [0, N_1-1] \times \dots \times [0, N_d-1]} f(\tau_z \omega) = \int_{\Omega} f \, d\pi \quad \text{a.s.}$$

Step 3: ["Nash theory"]

Proposition 5.

(i) [Heat kernel bound] [Nash (1958)]

Assume (ELLIP). There exists a constant $C = C(\|r^{-1}\|_\infty)$ such that for π -a.a. ω ,

$$\sup_{\substack{x \in \mathbb{Z}^d \\ 0 < t < \infty}} t^{d/2} \mathbf{P}_\omega(X(t) = x) \leq C \quad (\text{NASH-HKB})$$

(ii) [quenched tightness] [BT (2018)] following [Nash (1958)]

Assume (ELLIP), (UPPER), (H-1+ ε /ELLIP). There exists a constant $M = M(\|r^{-1}\|_\infty, \|r\|_2, \varepsilon, \|h\|_{2+\varepsilon}) < \infty$ such that for π -a.a. ω

$$\overline{\lim}_{t \rightarrow \infty} t^{-1/2} \mathbf{E}_\omega(|X(t)|) \leq M \quad (\text{NASH-MB})$$

$$\overline{\lim}_{t \rightarrow \infty} \mathbf{P}_\omega(t^{-1/2}|X(t)| > K) \leq \frac{M}{K} \quad (\text{Q-TIGHT})$$

Comments:

- The diagonal heat kernel upper bound (**NASH-HKB**) is, actually, a deterministic statement about *any* strictly elliptic (**ELLIP**) divergence-free (**DIV-FREE**) environment. It is a consequence of *Nash's inequality*. See separate notes.
- Note that from (**UPPER**), (**H-1**) we get the annealed bound

$$\overline{\lim}_{t \rightarrow \infty} t^{-1} \mathbf{E}(|X(t)|^2) < \infty.$$

- In [Nash (1958)] the moment bound (**NASH-MB**) is proved for deterministic strictly elliptic, (**ELLIP**), divergence-free (**DIV-FREE**) environments which in addition are *bounded* and have a *bounded* stream tensor. The proof of (**NASH-MB**)/(**Q-TIGHT**) as stated relies on not fully straightforward adaptation of ideas from [J Nash (1958)] and on an ergodic theorem due to [RV Chacon, DS Ornstein (1960)].

Step 4. (completion of proof): $(\text{COCY-ERG}) \& (\text{Q-TIGHT}) \Rightarrow (\text{Q-ERR-BOUND})$:

$$\begin{aligned}
& \mathbf{P}_\omega \left(|V(\omega, X_t)| \geq \delta t^{1/2} \right) \leq \\
& \stackrel{1}{\leq} \mathbf{P}_\omega \left(\{|V(\omega, X_t)| \geq \delta t^{1/2}\} \wedge \{|X_t| \leq Kt^{1/2}\} \right) + \mathbf{P}_\omega \left(|X_t| > Kt^{1/2} \right) \\
& \stackrel{2}{\leq} \delta^{-1} t^{-1/2} \mathbf{E}_\omega \left(|V(\omega, X_t)| \mathbf{1}_{\{|X_t| \leq Kt^{1/2}\}} \right) + K^{-1} t^{-1/2} \mathbf{E}_\omega (|X_t|) \\
& \stackrel{3}{\leq} C \delta^{-1} t^{-(d+1)/2} \sum_{|x| \leq Kt^{1/2}} |\Theta(\omega, x)| + M(\omega) K^{-1} \\
& \stackrel{4}{\rightarrow} 0 \quad \pi\text{-a.s. as first } t \rightarrow \infty, \text{ then } K \rightarrow \infty
\end{aligned}$$

1: straightforward decomposition

2: Markov's inequality (x2)

3: Nash's heat kernel bound (??) and moment bound (NASH-MB)

4: cocycle ergodic theorem (COCY-ERG)

□ Thm 2

Diffusion in div-free random drift field $t \mapsto X(t) \in \mathbb{R}^d$

$$dX(t) = \left(\frac{1}{2} \nabla \cdot r^2(X(t)) + b(X(t)) \right) dt + r(X(t)) dB(t)$$

with infinitesimal generator

$$L := \frac{1}{2} \nabla \cdot r^2 \nabla + b \cdot \nabla,$$

where

$$r = r(\omega) : \mathbb{R}^d \rightarrow \mathbb{R}_+^{d \times d} \quad b = b(\omega) : \mathbb{R}^d \rightarrow \mathbb{R}^d$$

sufficiently (locally) regular, space-wise stationary & ergodic.

Conditions analogous to (UPPER), (LOWER)/(ELLIP), (STATI-STREAM), (H-1)/(H-1/ELLIP)/(H-1+ ε /ELLIP).

The analogous theorems should hold - though, the details not fully worked out yet.

Historical comments (sketchy, far from complete):

- [SM Kozlov (1979)], [G Papanicolaou, SRS Varadhan (1981)]:
 $s \in \mathcal{L}^\infty$ $v \equiv 0$, self-adjoint, diffusion, initiation of the problem
- [H Osada (1983)], [SM Kozlov (1985)]:
 $s \in \mathcal{L}^\infty$, $h \in \mathcal{L}^\infty$, [O]: quenched diffusion; [K]: annealed walk
- [K Oelschläger (1988)], [A Fannjiang, G Papanicolaou (1996)]:
 $s = \text{const.}$, $h \in \mathcal{L}^2$, annealed, diffusion, with some restrictions
- [A Fannjiang, T Komorowski (1997)]:
 $s = \text{const.}$, $h \in \mathcal{L}^{d+\varepsilon}$, quenched diffusion.
- [T Komorowski, S Olla (2003)], [J-D Deuschel, H Kösters (2008)]:
 $s \in \mathcal{L}^\infty$, $h \in \mathcal{L}^\infty$, [K,O]: annealed walk, [D,K]: quenched walk
- [T Komorowski, C Landim, S Olla (2012)]:
 $s \in \mathcal{L}^\infty$, $h \in \mathcal{L}^d$, annealed walk, + diffusion with s, h Gaussian

Recall the trichotomy about (STATI-STREAM) (page 10).

Theorems 1&2 provide CLT/IP for case (Y1).

What happens in cases (Y2) and (N)?

When (STATI-STREAM) fails - case (N): expect *superdiffusive* (faster than $t^{1/2}$) large scale behaviour.

Two examples:

Manhattan: (see fig. on page 13) [Ledger-T-Valkó (2018)]

$$d = 2 : t^{5/4} \ll \mathbf{E}(|X_t|^2) \ll t^{3/2} \quad \text{conj: } \mathbf{E}(|X_t|^2) \asymp t^{4/3}$$

$$d = 3 : t \log \log t \ll \mathbf{E}(|X_t|^2) \ll t \log t \quad \text{conj: } \mathbf{E}(|X_t|^2) \asymp t \sqrt{\log t}$$

$$d \geq 4 : (\text{ELLIP}) \& (\text{H-1/ELLIP}) \text{ hold} \quad \text{Thm: quenched CLT}$$

Diffusion in the curl of GFF $d = 2$: (rel. to 6-vertex on p. 13):

$$H(x, \omega) = \phi * GFF(x) \quad b(x, \omega) = (\nabla \times H)(x, \omega)$$

$b : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ zero-mean Gaussian vector field with covariances

$$\widehat{c}(p) = \widehat{\phi}(p)^2 \begin{pmatrix} \frac{p_2^2}{p_1^2 + p_2^2} & -\frac{p_1 p_2}{p_1^2 + p_2^2} \\ -\frac{p_1 p_2}{p_1^2 + p_2^2} & \frac{p_1^2}{p_1^2 + p_2^2} \end{pmatrix}$$

The diffusion: $dX(t) = b(X(t)) dt + dB(t)$

The problem has some notoriety in the physics literature, starting with [Bouchaud-Comtet-Georges-LeDoussal (1987)].

Math results: [T-Valkó (2012)]:

$$t \log \log t \ll \mathbf{E}(|X_t|^2) \ll t \log t \quad \text{conj: } \mathbf{E}(|X_t|^2) \asymp t \sqrt{\log t}$$

More recent: [Cannizzaro-Haunschmid-Sibitz-Toninelli (2022)], [Chatzigeorgiou-Morfe-Otto-Wang(2023+)]:

$$\mathbf{E}(|X_t|^2) \asymp t\sqrt{\log t} \quad \checkmark$$

Moreover, [Armstrong-Bou-Rabee-Kuusi (2024+)]: for π -a.a. ω

$$(N\sqrt{\log N})^{-1/2}X(N\cdot) \Rightarrow W_\sigma(\cdot) \quad \checkmark$$

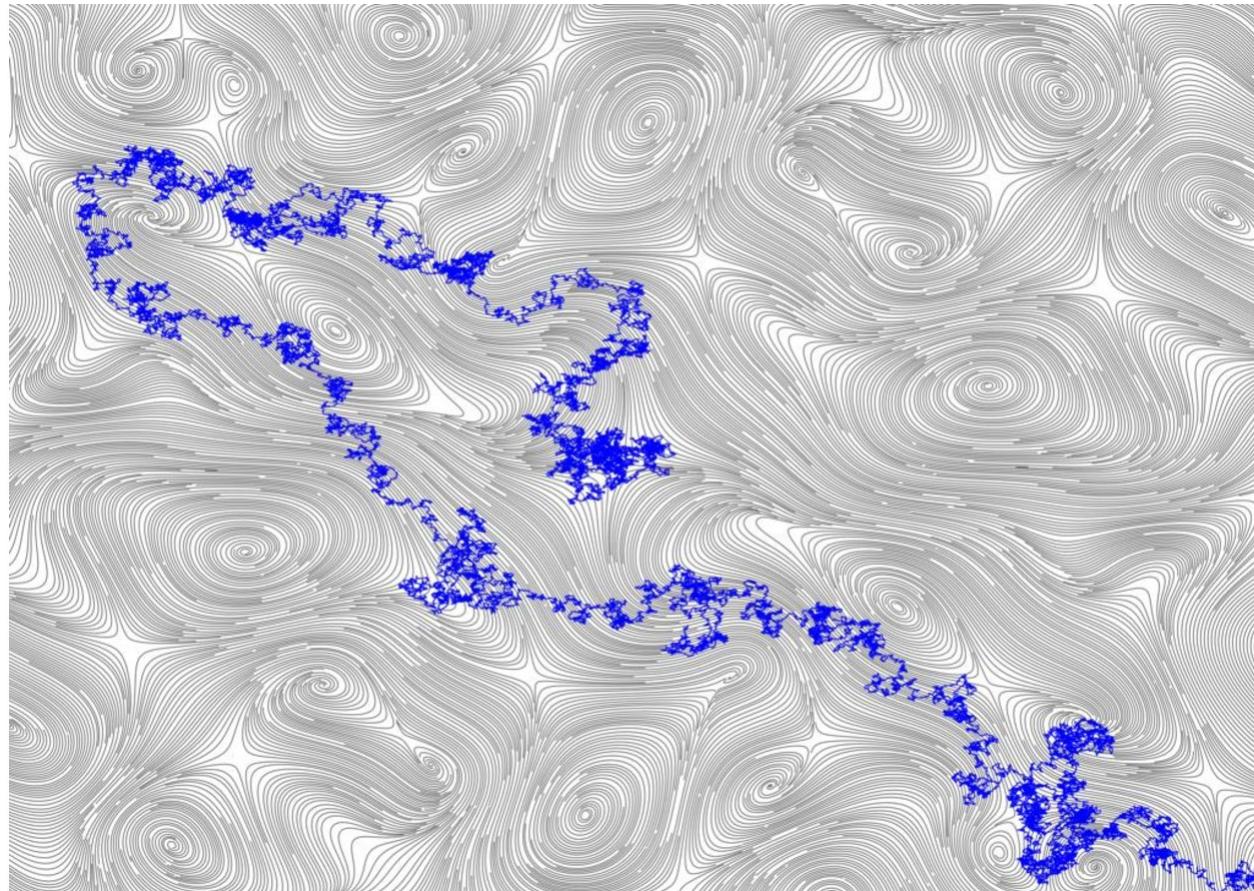
under the quenched measure $\mathbf{P}_\omega(\cdot)$.

Superdiffusive bounds (of [TV (2012)], [CHST (2022)]): by [HT Yau (2000)]'s variational method:

Proposition 6.

$$\langle \varphi, R_\lambda \varphi \rangle = \sup_{\psi \in \mathcal{L}_0^2} \left\{ 2\langle \psi, \varphi \rangle - \langle \psi, (\lambda I + S)\psi \rangle - \langle A\psi, (\lambda I + S)^{-1}A\psi \rangle \right\}.$$

A picture from [Armstrong-Bou-Rabee-Kuusi (2024+)] illustrating convective (super-)diffusion in random incompressible flow:



Proof of Proposition 1. Due to the Spectral Theorem,

$$\| |\Delta|^{-1} \partial_m \partial_l \|_{2 \rightarrow 2} < \infty, \quad m, l \in \mathcal{U}.$$

For $b \in \mathcal{D}^2$ define

$$g_{m;k,l} := |\Delta|^{-1} \partial_m (\partial_l b_k - \partial_k b_l) \in \mathcal{L}^2.$$

Then, g is rot-free in m , tensor in (k, l) , and Helmholtz for $\partial_m b$:

$$g_{m;k,l}(\omega) + g_{n;k,l}(\tau_m \omega) = g_{n;k,l}(\omega) + g_{m;k,l}(\tau_n \omega)$$

$$g_{m;-k,l}(\tau_k \omega) = g_{m;k,-l}(\tau_l \omega) = g_{m;l,k}(\omega) = -g_{m;k,l}(\omega)$$

$$\sum_{l \in \mathcal{U}} g_{m;k,l}(\omega) = b_k(\tau_m \omega) - b_k(\omega)$$

Let $(x, k, l) \mapsto H_{k,l}(x, \omega)$ be defined by its gradients:

$$H_{k,l}(0, \omega) = 0, \quad H_{k,l}(x + m, \omega) - H_{k,l}(x, \omega) = g_{m;k,l}(\tau_x \omega). \quad \checkmark$$

Wanted: $|\Delta|^{-1} \partial_m \partial_l : \mathcal{L}^p \rightarrow \mathcal{L}^p$, $p \in [1, 2)$? Formally,

$$|\Delta|^{-1} \partial_m \partial_l f(\omega) = \sum_{z \in \mathbb{Z}^d} \mathcal{K}_{l,m}(z) f(\tau_z \omega)$$

$$\mathcal{K}_{l,m}(z) := (2\pi)^{-d} \int_{[-\pi, \pi]^d} e^{ip \cdot z} \frac{(e^{iz \cdot m} - 1)(e^{iz \cdot l} - 1)}{\sum_{j=1}^d (1 - \cos p_j)} dp$$

Theorem 6. [Calderón-Zygmund thm, \mathbb{Z}^d -version]

Let $\mathcal{K} : \mathbb{Z}^d \rightarrow \mathbb{C}$, and $\widehat{\mathcal{K}} : [-\pi, \pi]^d \rightarrow \mathbb{C}$ its FT. Assume

$$(A) \quad \|\widehat{\mathcal{K}}\|_\infty < \infty, \quad (B) \quad \sup_L \max_{|x| \leq L} \sum_{|y| \geq 2L} |\mathcal{K}(x - y) - \mathcal{K}(y)| < \infty.$$

Define, for $f \in \ell^1(\mathbb{Z}^d)$, $(Kf)(x) := \sum_{y \in \mathbb{Z}^d} \mathcal{K}(x - y) f(y)$ Then

$$\|Kf\|_{1w} := \sup_{0 < \lambda < \infty} \lambda |\{x \in \mathbb{Z}^d : |Kf(x)| > \lambda\}| \leq C \|f\|_1 \quad (\text{C-Z})$$

with some $C < \infty$, depending on (A)&(B).

Proposition 7. [Calderón-Zygmund theorem, ergodic version]

Let $(\Omega, \pi, (\tau_z : \Omega \rightarrow \Omega, z \in \mathbb{Z}^d))$ be an ergodic \mathbb{Z}^d -action,

$\mathcal{K} : \mathbb{Z}^d \rightarrow \mathbb{C}$ a kernel like in Thm 6 and, for $\varphi \in \mathcal{L}^2(\Omega, \pi)$, let

$(K\varphi)(\omega) := \sum_{y \in \mathbb{Z}^d} \mathcal{K}(y) \varphi(\tau_y \omega)$. (Nb. $\|K\varphi\|_2 \leq \|\hat{\mathcal{K}}\|_\infty \|\varphi\|_2$.) Then

$$\|K\varphi\|_{1w} := \sup_{0 < \lambda < \infty} \lambda \pi(\{\omega \in \Omega : |K\varphi(\omega)| > \lambda\}) \leq C \|\varphi\|_1, \quad (\text{C-Z-ERG})$$

with some $C < \infty$, depending on (A)&(B). The operator K extends to $K : \mathcal{L}^1(\Omega, \pi) \rightarrow \mathcal{L}^{1w}(\Omega, \pi)$.

Proof of Proposition 7: Assume first that $\text{supp}(\mathcal{K}) \subset B_L$ and with slight abuse of notation denote by the same symbol K the operators $K : \ell(\mathbb{Z}^d) \rightarrow \ell(\mathbb{Z}^d)$ and $K : \mathcal{L}(\Omega, \pi) \rightarrow \mathcal{L}(\Omega, \pi)$,

$$(Kf)(x) := \sum_{y \in \mathbb{Z}^d} \mathcal{K}(x - y) f(y) \quad (K\varphi)(\omega) := \sum_{y \in \mathbb{Z}^d} \mathcal{K}(y) \varphi(\tau_y \omega)$$

The meaning will be clear from the context.

Let $\varphi \in \mathcal{L}^2(\Omega, \pi)$, and $f_N \in \ell^1(\mathbb{Z}^d)$, $f_N(x) := \varphi(\tau_x \omega) \mathbf{1}_{\{|x| \leq N\}}$.

$$|B_N|^{-1} \lambda |\{x \in B_{N-L} : |Kf_N(x)| > \lambda\}|$$

$$\leq |B_N|^{-1} \lambda |\{x \in \mathbb{Z}^d : |Kf_N(x)| > \lambda\}| \stackrel{(\text{C-Z})}{\leq} C |B_N|^{-1} \|f_N\|_1$$

On the other hand, by the ergodic theorem, π -a.s.

$$\lim_{N \rightarrow \infty} |B_N|^{-1} |\{x \in B_{N-L} : |Kf_N(x)| > \lambda\}| = \pi(\{\omega : |K\varphi(\omega)| > \lambda\})$$

$$\lim_{N \rightarrow \infty} |B_N|^{-1} \|f_N\|_1 = \|\varphi\|_1$$

Putting these together we obtain exactly the bound **(C-Z-ERG)**.

Since the constant C does not depend on L the condition $\text{supp}(\mathcal{K}) \subset B_L$ can be lifted. \square Proposition 7

Corollary 1.

$$\begin{aligned} & \| |\Delta|^{-1/2} \partial_l \|_{1 \rightarrow 1w} < \infty, \quad \| |\Delta|^{-1} \partial_m \partial_l \|_{1 \rightarrow 1w} < \infty, \\ & \| |\Delta|^{-1/2} \partial_l \|_{p \rightarrow p} < \infty, \quad \left(\| |\Delta|^{-1} \partial_m \partial_l \|_{p \rightarrow p} < \infty \right), \quad p \in (1, 2] \end{aligned}$$

The $p \in (1, 2)$ cases follow from Marcinkiewicz interpolation.

Proposition 1 is proved exactly as in the $b \in \mathcal{L}^2$ case. \square Prop. 1

Proof of Proposition 4 By induction on d .

- $d = 1$: Birkhoff ✓.
- Notation: $\Lambda_N^d := [0, N-1]^d$; $(\underline{n}, m) \in \Lambda_N^d \times \Lambda_N^1$;
- $L \in \mathbb{N}$ fixed (at the end of the proof $L \rightarrow \infty$)

$$\begin{aligned}
 \sum_{m \in \Lambda_N^1} \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, m)| &\leq \sum_{l=0}^{L-1} \sum_{j=0}^{\lceil N/L \rceil - 1} \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, jL + l)| \\
 &\leq \underbrace{(N+1) \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, 0)|}_{1} + \underbrace{\frac{1}{L} \sum_{l=0}^{L-1} (N+L) \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, l) - \Psi(\underline{n}, 0)|}_{2} \\
 &\quad + \underbrace{\frac{1}{L} \sum_{l=0}^{L-1} L \sum_{j=1}^{\lceil N/L \rceil - 1} \sum_{i=0}^{j-1} \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, (i+1)L + l) - \Psi(\underline{n}, iL + l)|}_{3}
 \end{aligned}$$

First term:

$$\lim_{N \rightarrow \infty} N^{-(d+2)}(N+1) \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, 0)| = \lim_{N \rightarrow \infty} N^{-(d+1)} \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, 0)| \stackrel{\odot}{=} 0$$

⊕: use the induction hypothesis

Second term: use the multidimensional a.s. ergodic theorem
($l \in [0, L-1]$ is fixed)

$$\begin{aligned} & \lim_{N \rightarrow \infty} N^{-(d+2)}(N+L) \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, l) - \Psi(\underline{n}, 0)| \\ & \leq 2 \lim_{N \rightarrow \infty} N^{-d-1} \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, l) - \Psi(\underline{n}, 0)| \stackrel{\odot}{=} 0 \end{aligned}$$

⊕: use the multidimensional a.s. ergodic theorem

Third term:

$$\begin{aligned}
 & \lim_{N \rightarrow \infty} N^{-(d+2)} L \sum_{j=1}^{\lceil N/L \rceil - 1} \sum_{i=0}^{j-1} \sum_{\underline{n} \in \Lambda_N^d} |\Psi(\underline{n}, (i+1)L + l) - \Psi(\underline{n}, iL + l)| = \\
 & \lim_{N \rightarrow \infty} \frac{L^2}{N^2} \sum_{j=1}^{\lceil N/L \rceil - 1} j (jN^d)^{-1} \underbrace{\sum_{i=0}^{j-1} \sum_{\underline{n} \in \Lambda_N^d} \frac{|\Psi(\underline{n}, (i+1)L + l) - \Psi(\underline{n}, iL + l)|}{L}}_{\text{brace}} \\
 & \stackrel{\text{☺}}{=} L^{-1} \mathbf{E} (|\Psi(\underline{0}, L) - \Psi(\underline{0}, 0)|).
 \end{aligned}$$

☺: multidim. unrestricted erg. thm. cf [Zygmund (1951)].

Finally, letting $L \rightarrow \infty$, by the multidimensional version of the mean (\mathcal{L}^1) ergodic theorem we obtain (**COCY-ERG**) in dimension $d+1$. \square Prop. 4

Proof of Proposition 5.