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(Rényi Institute Budapest and University of Bristol)

LARGE-SCALE BEHAVIOUR OF
RANDOM MOTIONS WITH LONG MEMORY

-2-
RANDOM WALK IN

DIVERGENCE-FREE RANDOM ENVIRONMENT

PDE AND PROBABILITY - SUMMER SCHOOL
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Random Walk in Random Environment (RWRE)(
Ω, π, (τz : Ω → Ω, z ∈ Zd)

)
probab. sp., ergodic Zd-action

U = {k ∈ Zd : |k| = 1} n.n. steps of the r.w.

p : Ω → [0,∞)U , jump rates of the r.w.

RWRE: Given ω ∈ Ω, t 7→ X(t) ∈ Zd cont. time Markov chain:

Pω (X(t+ dt) = x+ k|X(t) = x) = pk(τxω)︸ ︷︷ ︸
pk(x, ω)

dt+ o(dt)

Separate symmetric and skew-symmetric part of jump rates:
√
conductances rk(ω) :=

√
(pk(ω) + p−k(τkω))/2 = r−k(τkω)

flows bk(ω) := (pk(ω)− p−k(τkω))/2 = −b−k(τkω)

Major issue in probability theory since the 1970s.
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[Overwhelming majority of the RWRE literature is about

‘random walk among random conductances’: b ≡ 0 a.s. –

reversible, self-adjoint . . . ]

Assumptions I. (minimal)∑
k∈U

bk(ω) ≡ 0 a.s. (DIV-FREE)

rk ∈ L2(Ω, π) (UPPER)∫
Ω
bk(ω)dπ(ω) = 0 (NO-DRIFT)

(rk)
−1 ∈ L2(Ω, π) (LOWER)

Rather than strong ellipticity

rk(ω) ≥ r∗ > 0. (ELLIP)
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First consequences:

◦ (DIV-FREE) ⇒ The environment process:

t 7→ ηt := τX(t)ω

is stationary and ergodic Markov process in (Ω, π).

◦ (UPPER) & (NO-DRIFT) ⇒ zero (annealed) drift & SLLN:

E (X(t)) :=
∫
Ω
Eω (X(t)) dπ(ω) = 0

t−1X(t) → 0, a.s.

◦ (LOWER) ⇒ diffusive lower bound (not totally straightforward):

lim
t→∞

t−1E
(
|X(t)|2

)
> 0

Questions left open:

Diffusive upper bound? CLT? Superdiffusive lower bound?
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Analogous: diffusion in div-free rnd drift field t 7→ X(t) ∈ Rd

dX(t) =
(1
2
∇ · r2(X(t)) + b(X(t))

)
dt+ r(X(t)) dB(t)

with infinitesimal generator

L :=
1

2
∇ · r2∇+ b · ∇,

where

r = r(ω) : Rd → Rd×d+ b = b(ω) : Rd → Rd

are space-wise stationary & ergodic,

div b ≡ 0 π-a.s. (DIV-FREE)

with conditions analogous to (UPPER), (NO-DRIFT), (LOWER).

Phyisical motivation: . . . passsive tracer in turbulent flow . . .

Historic notes: . . . later . . .
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Martingale decomposition:

X(t) = Z(t)︸ ︷︷ ︸
✓

+
∫ t

0

(
φ(ηs) + ψ(ηs)

)
ds︸ ︷︷ ︸

?

where φ,ψ : Ω → Rd,

φ(ω):=
∑
k∈U

kr2k(ω) ψ(ω):=
∑
k∈U

kbk(ω)

φ(ω)+φ(ω)=
∑
k∈U

kpk(ω)

Then t 7→ Z(t) ∈ Rd is a quenched martingale whose increments

are statioanry, ergodic and L2 in the annealed setting, and thus

obeys the martingale CLT.

Blueprint: Martingale approx. of additive functionals (integrals

above) of ergodic Markov processes – à la Kipnis-Varadhan.
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Helmholtz: ”div-free vector field = curl of vector potential” –

cum grano salis

Setting:(
Ω, π, (τz : Ω → Ω, z ∈ Zd)

)
erg. Zd-action, b : Ω → RU s.t. π-a.s.

bk(ω) + b−k(τkω) = 0 (FLOW)∑
k∈U

bk(ω) =
1

2

∑
k∈U

(bk(ω)− bk(τ−kω)) = 0 (DIV-FREE)

Lift to Zd: Zd × U ∋ (x, k) 7→ bk(x, ω) = bk(τxω) is a

stationary & ergodic divergence-free flow/vector field on Zd:

bk(x, ω) + b−k(x+ k, ω) = 0 (FLOW)∑
k∈U

bk(x, ω) =
1

2

∑
k∈U

(bk(x, ω)− bk(x− k, ω)) = 0 (DIV-FREE)
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Proposition 1. [‘Helmholtz’s thm’] [K-L-O(2012), K-T(2017), T(2025)]

Let b : Ω → RU be a div-free flow/vf as above, b ∈ L1(Ω, π).

There exists a stream tensor field (x, k, l) 7→ Hk,l(x, ω), H ∈ L1w(Ω, π),

H−k,l(x+ k, ω)=Hk,−l(x+ l, ω)=Hl,k(x, ω)=−Hk,l(x, ω) (STREAM)

with stationary increments, a.k.a. a cocycle

Hk,l(y, ω)−Hk,l(x, ω) = Hk,l(y − x, τyω)−Hk,l(0, τxω), (COCY)

such that Helmholtz’s relation holds

bk(x, ω) =
∑
l∈U

Hk,l(x, ω) =
1

2

∑
l∈U

(Hk,l(x, ω)−Hk,l(x− l, ω))

=
∑
l∈U

Hk,l(0, τxω) (HELMHOLTZ)

If b ∈ Lp(Ω, π), p ∈ (1,2] than also H ∈ Lp(Ω, π).

Proof: b ∈ L2: soft / b ∈ L1: relies on Calderón-Zygmund.
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Remarks/comments:

◦ This is not the ‘usual’ Helmholtz Thm.

◦ (STREAM) means that (x, k, l) 7→ Hk,l(x)

is a function of the

oriented plaquettes of Zd

◦ In 2-dim H is a height function on the dual Z2.

In 3-dim H is a flow / vector field on the dual Z3.

◦ (HELMHOLTZ):

◦ (STREAM), (COCY), (HELMHOLTZ) determine H uniquely, up to

the additive Hk,l(0). The standard choice is: Hk,l(0) = 0.
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◦ Subtle q.: Is the (COCY) stream field actually stationary?

Hk,l(x, ω) = hk,l(τxω)− hk,l(ω) (STATI-STREAM)

with some (k, l) 7→ hk,l(ω), such that

h−k,l(τkω) = hk,−l(τlω) = hl,k(ω) = −hk,l(ω) (STATI-STREAM)

Could be

◦◦ (Y1) Yes, with h in the same L-class as H

◦◦ (Y2) Yes, with h in weaker L-class as H

◦◦ (N) No.

Given b ∈ Lp, p ∈ [1,2], div-free, it can be hard to see

whether the case (Y1), (Y2) or (N) holds.

Except: b ∈ L2: h ∈ L2 (i.e. (Y1) holds) iff b ∈ H−1(∆).

More about this - later.
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Back to the RWRE: Recall notation:

rk(ω) :=
√
(pk(ω) + p−k(τkω))/2 bk(ω) := (pk(ω)− p−k(τkω))/2

Assumptions II. (final form)

• (UPPER)+(LOWER):

rk ∈ L2(Ω, π) (rk)
−1 ∈ L2(Ω, π)

• (STATI-STREAM): ∃ h : Ω → RN×N s.t.

hk,l(ω) = −h−k,l(τkω) = −hk,−l(τlω) = −hl,k(ω)

bk(ω) =
∑
l∈N

hk,l(ω)

• (H-1): (new!)

(rk)
−1hk,l ∈ L2(Ω, π) (H-1)
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Remarks:

◦ Bonus: (LOWER)+(UPPER)+(H-1) imply

hk,l ∈ L1(Ω, π) (rk)
−1 hk,l (rl)

−1 ∈ L1(Ω, π)

◦ Assuming (ELLIP) [rather than (LOWER)] (H-1) reduces to

hk,l ∈ L2(Ω, π) ⇔ b ∈ H−1(∆) (H-1/ELLIP)

More on this - later.

◦ Examples - on next three slides . . .
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Examples r, b ∈ L∞(Ω, π) + (ELLIP)

and another

example

on the next slide
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This example is

due to Ron Peled.

Do the same on Z2
∗

Let (ξy)y∈Z2∗
i.i.d., ξy ∈ N, and h : Z2

∗ → N,

h(x) := sup
{
(ξy − |x− y|)+ : y ∈ Z2

∗
}
.

By Borel-Cantelli: h(x) < ∞ a.s. iff E
(
ξ2

)
< ∞. In this case,

x 7→ h(x) is (obviously) stationary and Lip(1). Furthermore,

E (|h(x)|p) <∞ iff E
(
|ξ|??

)
<∞.

Let bk(x) := h(x+ (1+ i)k/2)− h(x+ (1− i)k/2)

Then (x, k) 7→ bk(x) is (DIV-FREE) and |bk(x)| ≤ 1 a.s. Finally,

pk(x) := 1+ bk(x).
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Examples ctd. Why bother with non-ellipticity?

Let t 7→ X(t) be a RWRE as on page 2. Without (DIV-FREE) the

environment process t 7→ ηt := τX(t)ω won’t be stationary.

The equation for stationary RN derivative:∑
k∈N

p−k(τkω)ϱ(τkω) =
∑
k∈N

pk(ω)ϱ(ω)

This is a hard problem! See, e.g. [Sabot (2013)].

Assume sln ϱ ∈ L1(Ω, π) exists. Then, t 7→ X̃(t) with jump rates

p̃k(ω) := pk(ω)ϱ(ω)

will be (obviously) (DIV-FREE).

However, this is a time-changed version of the original RWRE.

So, proving CLT/non-CLT for t 7→ X(t) reduces to checking/refuting

the stated conditions for the rates (p̃k(ω))k∈U . . . .
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Theorem 1. [CLT in probability w.r.t. the environment]

[G Kozma, BT (2017)], [BT (2025)]

Assume (UPPER) & (LOWER) & (STATI-STREAM) & (H-1). Then

X(t) = Y (t) + Err(t)

so that the following limits hold as N → ∞.

(i) For π-almost all ω ∈ Ω, t 7→ Y (t) is a square integrable martin-

gale whose increments are stationary and ergodic in the annealed

setting. Thus (due to the martingale IP) for π-almost all ω ∈ Ω,

N−1/2Y (N ·) ⇒Wσ(·)

in D([0,1]) under the quenched probab. measure Pω (. . .), where

Wσ(·) is a BM with σ2 ∈ (0,∞).

(ii) For any t ∈ [0,1] and δ > 0,

lim
N→∞

π
({
ω ∈ Ω : N−1Eω

(
|Err(Nt)|2

)
> δ

})
= 0.
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Theorem 2. [quenched CLT π-a.s. w.r.t. the envi.] [BT (2018)]

Assume (UPPER) & (ELLIP) & (STATI-STREAM) & (H-1+ε/ELLIP)

hk,l ∈ L2+ε (H-1+ε/ELLIP)

Then the statement of Theorem 1 holds with

lim
N→∞

N−1/2|Err(Nt)| = 0 a.s.

Comments.

◦ Theorem 1: CLT in probability w.r.t. ω (”semi-quenched”).

Theorem 2: CLT for π-a.a. ω. (”quenched”)

◦ Proof of Theorem 1: martingale approx. + functional analysis.

Proof of Theorem 2: extra ingredients: Nash-type arguments

(therefore (ELLIP) needed)
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Martingale approx, Kipnis-Varadhan theory - in a nutshell: (5 slides)

t 7→ ηt, η
∗
t ∈ Ω stat&erg MP on (Ω, π) and its time-reversal.

Assume suff. regularity. Their semigroups Pt, P ∗
t , resolvents Rλ, R

∗
λ,

infinitesimal generators L,L∗ act on Lp(Ω, π), p ∈ [1,∞].

Ptf(ω) := Eω (f(ηt)) ∥Pt∥p→p = 1

Rλ :=
∫ ∞

0
e−λtPt dt ∥Rλ∥p→p = λ−1

L := st-lim
t→0

t−1(Pt − I)

On L2(Ω, π), assume

L = −S +A S := −(L+ L∗)/2 A := (L− L∗)/2,

define S−1/2 in terms of the Spectral Theorem, and H− := H−1(S):

H− :=
{
f ∈ L2 : ∥f∥2− := lim

λ→0
⟨f, (λI + S)−1f⟩ = ∥S−1/2f∥22 <∞

}cl−
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WANTED: Efficient martingale approx. t 7→
∫ t

0
φ(ηs) ds.

Theorem 3. [non-reversible KV] [KV (1986)], [T (1986)]

Let φ ∈ L1 such that
∫
Ωφdπ = 0 and for all λ > 0, Rλφ ∈ L2.

If the following two conditions hold

(A) lim
λ→0

λ1/2∥Rλφ∥2 = 0,

(B) lim
λ→0

∥S1/2Rλφ− v∥2 = 0, v ∈ L2,

then there exists a sq-integrable martingale t 7→ Z(t) (adapted

to the natural filtration), with stat&erg increments and variance

E
(
|Z(t)|2

)
= 2∥v∥22 t,

such that

lim
t→∞

t−1E
(
|
∫ t

0
φ(ηs) ds− Z(t)|2

)
= 0.
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Comments, remarks:

◦ The self-adjoint case [Kipnis-Varadhan (1986)], L = −S,
{φ ∈ H−} ⇐⇒ (A) ⇐⇒ (B)

◦ General, non-self-adjoint case:
Proposition 2. [H−1 rules!] [Varadhan (1995)]

∀ φ ∈ H− ∩ L1, t ∈ [0,∞)

Var
(∫ t

0
φ(ηs) ds

)
≤ 2∥φ∥2−t.

Hwvr, φ ∈ H− is too little (for CLT) & too much (for σ2 <∞).

◦ non-self-adjoint case: (A)& (B) are too implicit to be

checked directly. (Though, exceptions exist.)

◦ Sufficient: Strong Sector Condition [Varadhan (1995)];

Graded Sector Condition [Sethuraman-Varadhan-Yau (2000)]

notoriously technical. Appl. restricted to graded structure . . .
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A handy sufficient condition: Let

B := {f ∈ H− ∩ L2 : S−1/2f ∈ Dom(A) & AS−1/2f ∈ H− ∩ L2}

B : B → L2, Bf := S−1/2AS−1/2f.

Comments: B : B → L2 is obviously skew-symmetric. However,

B ⊂ L2 could be too thin . . . . Even if B is dense in L2 it could

still happen that B ≺ B ⪵ −B∗.

Theorem 4. [relaxed sector condition] [Horváth-T-Vető (2012)]

(streamlined)

Assume that B is dense in L2 and the operator B : B → L2

is essentially skew-self-adjoint: B ≺ B = −B∗. Then for any

φ ∈ H− ∩L1 the conditions of Theorem KV (and hence the mar-

tingale approximation) hold.
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Proof sketch. [Details in separate set of notes.]

For simplicity assume ∥L∥2→2 <∞ and let

Bλ := (λI + S)−1/2A(λI + S)−1/2, B∗
λ = −Bλ

Kλ := (I +Bλ)
−1, ∥Kλ∥ ≤ 1.

Rλ = (λI + S)−1/2Kλ(λI + S)−1/2

If by some miracle: Kλ
s.o.t.−→ K, then, for φ ∈ H−,

(A) λ1/2Rλφ = λ1/2(λI + S)−1/2Kλ(λI + S)−1/2φ→ 0

(B) S1/2Rλφ = S1/2(λI + S)−1/2Kλ(λI + S)−1/2φ→ KS−1/2φ︸ ︷︷ ︸
v

Under the conditions of the Thm, by an argument reminiscent

of Trotter-Kurtz, Kλ
s.o.t.−→ K .
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Back to the main issue. Spaces.

L: scalars; V: vectors; R: rot-free vects; D: div-free vects; K: ??.

Lp :=
{
f : Ω → R : ∥f∥pp :=

∫
Ω
|f |p dπ <∞,

∫
Ω
f dπ = 0

}
Vp :=

{
u : Ω → RU : uk ∈ Lp, uk(ω) + u−k(τkω) = 0, ∥u∥pp =

∑
k∈U

∥uk∥pp
}

Rp :=
{
u ∈ Vp : uk(ω) + ul(τkω) = ul(ω) + uk(τlω)

}
[R for rot-free]

Dp :=
{
u ∈ Vp :

∑
k∈U

uk(ω) = 0
}

[D for div-free]

Kp :=
{
u ∈ Vp : (r−1

k uk)k∈U ∈ R
}cl p

Helmholtz-Hodge: V2 = R2 ⊕D2.

L, V, R, D, K: same, without integrability conditions.
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Back to the main issue. Operators.

Tzf(ω) := f(τzω), ∂k := Tk − I,

Rkf(ω) := rk(ω)f(ω), Hk,lf(ω) := hk,l(ω)f(ω)

∇ : L → V, (∇f)k := ∂kf

∇∗ : V → L, ∇∗u :=
∑
k∈U

uk = −
1

2

∑
k∈U

∂−kuk

R : V → V, (Ru)k := Rkuk

H : V → V, (Hu)k :=
1

4

∑
l∈U

(T−l + I)Hk,l (Tk + I)ul

S = ∇∗R2∇ = (∇∗R)(R∇)

A = ∇∗H∇ = (∇∗R)(R−1HR−1)(R∇)
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Key facts (concrete - valid under the assumed conditions):

(1) H− := H−1(S) ⊂ L1 and, for f ∈ L1,

∥f∥2− = sup
g∈L∞

(
2⟨f, g⟩ − ∥R∇g∥22

)
(2) Hilbert space isometries:

(L2, ∥·∥2)
R∇S−1/2

−−−−−−−→ (K2, ∥·∥2)
S−1/2∇∗R
−−−−−−−→ (L2, ∥·∥2),

Reminiscent of Riesz kernels of harmonic analysis:

L2(Rd,Leb)
grad |lap |−1/2

−−−−−−−→ R2(Rd,Leb)︸ ︷︷ ︸
Ker(rot )

|lap |−1/2div
−−−−−−−→ L2(Rd,Leb).
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Proof of Thm 1. Step 1: Prove B∗ = −B:

B = S−1/2AS−1/2 = S−1/2∇∗R︸ ︷︷ ︸
Λ∗

R−1HR−1 R∇S−1/2︸ ︷︷ ︸
Λ

Reduces to proving essential skew-self-adjointness (on an appro-

priate dense subspace) of D : K2 → K2,

D := ΛΛ∗R−1HR−1ΛΛ∗, ΛΛ∗ : V2 → K2 orth. proj.

However, D is (essentially) a multiplication operator. The proof

is (essentially) routine. In this step only (STATI-STREAM) matters,

and not the integrability conditions.

Step 2: Prove φ,ψ ∈ H− for φ,ψ : Ω → Rd,

φ(ω) :=
∑
k∈U

ksk(ω) =
1

2

∑
k∈U

k∂−ksk(ω) ψ(ω) :=
∑
k∈U

kbk(ω)
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∥∂−ksk∥2− = sup
χ∈L∞

(
2⟨χ, ∂−ksk⟩ − ∥R∇χ∥22

)
≤ sup
χ∈L∞

(
2⟨χ, ∂−ksk⟩ − ∥Rk∂kχ∥22

)
= sup

χ∈L∞

(
2⟨Rk∂kχ, rk⟩ − ∥Rk∂kχ∥22

)
≤ sup
χ∈L2

(
2⟨χ, rk⟩ − ∥χ∥22

)
= ∥rk∥2 <∞︸ ︷︷ ︸

(UPPER)

∥bk∥2− = sup
χ∈L∞

(
⟨χ,

∑
l∈U

∂−lhk,l⟩ − ∥R∇χ∥22
)

= sup
χ∈L∞

∑
l∈U

(
⟨Rl∂lχ, r−1

l hk,l⟩ − ∥Rl∂lχ∥22
)

≤
∑
l∈U

sup
χ∈L2

(
⟨χ, r−1

l hk,l⟩ − ∥χ∥22
)
=

∑
l∈U

∥r−1
l hk,l∥22 <∞︸ ︷︷ ︸
(H-1)

. Thm1
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Harmonic coordinates. [S Kozlov (1985)]: Find a random field

Zd ∋ x 7→ V (x, ω) ∈ Rd with stationary increments (i.e, a cocycle)

V (y, ω)− V (x, ω) = V (y − x, τxω) (COCY)

and E (V (x)) ≡ 0, such that∑
k∈U

pk(x, ω)︸ ︷︷ ︸
pk(τxω)

(
k+ V (x+ k, ω)− V (x, ω)︸ ︷︷ ︸

Vk(τxω)

)
= 0 π-a.s.

Then t 7→ Y (t) := X(t) + V (X(t)) is a quenched martingale (for

π-a.a. ω) and it is plausible to expect that

lim
t→∞

t−1/2V (X(t)) = 0 a.s. (Q-ERR)

If this is done, the quenched IP follows.

The field Zd ∋ x 7→ x+V (x, ω) ∈ Rd is called (for obvious reasons)

harmonic coordinates. Geometric meaning:
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Bonus - from the proof of Theorem 1:

Proposition 3. [∃! of harmonic coordinates] [BT (2025)]

Given ϕ ∈ H− ∩L1 there exists a unique solution v ∈ R−1K2 ⊂ U1

(L1 rot-free field) of the equation∑
k∈U

pk(ω)vk(ω) = ϕ(ω). (HARM-COORD)

Proof sketch. The solution is

v = R−1 (I +B)−1 S−1/2 ϕ

∥v∥1 ≤ ∥r−1∥2 ∥ϕ∥− <∞︸ ︷︷ ︸
(LOWER)

∥v∥2 ≤ ∥r−1∥∞ ∥ϕ∥− <∞︸ ︷︷ ︸
(ELLIP)
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Proof of Theorem 2:

Step 1: [Harmonic coordinates + error term]

Solve (HARM-COORD) for ϕ :=
∑
k∈U kpk = φ+ψ ∈ H−∩L1 (component-

wise) and let Zd ∋ x 7→ V (x, ω) ∈ Rd be the (COCY) field defined

by the gradients

V (0, ω) = 0 V (x+ k, ω)− V (x, ω) = vk(τxω)

Write

X(t) =

Y (t)︷ ︸︸ ︷
X(t) + V (X(t))−V (X(t))

Then, t 7→ Y (t) is a quenched martingale with stat&erg annealed

increments with covariance computable

E
(
Yi(t)Yj(s)

)
= δi,jσ

2min{t, s}, σ2 = ????

By the MIP, for π-a.a. ω, N−1/2Y (N ·) ⇒Wσ(·)
in D([0,1],Rd), under the quenched measure Pω (·).
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Intersteps:

It remains to quenched-bound the error term V (X(t)):

for π-a.a. ω, and all δ > 0,

lim
t→∞

Pω
(
t−1/2|V (X(t))| > δ

)
= 0. (Q-ERR-BOUND)

Philosophy and why it fails . . .

To prove (Q-ERR-BOUND), we’ll assume

rk(ω) ≥ r∗ > 0. (ELLIP)

hk,l ∈ L2+ε (H-1+ε/ELLIP)

[rather than (LOWER)&(H-1)].
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Step 2: [Ergodic theorem for cocycles]

Proposition 4. [an ergodic theorem] [BT (2018)]

Let
(
Ω, π, (τz : Ω → Ω, z ∈ Zd)

)
be an ergodic Zd-action and

Zd ∋ x 7→ Ψ(x, ω) ∈ R a cocycle (i.e. stationary increments) such

that Ψ ∈ L1 logd−1L and E (Ψ) = 0. Then π-a.s.

lim
N→∞

N−(d+1) ∑
|x|≤N

|Ψ(x)| = 0 (COCY-ERG)

The proof of Proposition 4 (see later) relies on

Theorem 5. [Multidim. unrestricted erg. thm. [Zygmund (1951)]

Let
(
Ω, π, τ

)
be as above, and f ∈ L1 logd−1L. Then

lim
N1,...,Nd→∞

(N1 . . . Nd)
−1 ∑

z∈[0,N1−1]×···×[0,Nd−1]

f(τzω) =
∫
Ω
f dπ a.s.
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Step 3: [”Nash theory”]

Proposition 5.

(i) [Heat kernel bound] [Nash (1958)]

Assume (ELLIP). There exists a constant C = C(∥r−1∥∞) such

that for π-a.a. ω,

sup
x∈Zd

0<t<∞

td/2Pω (X(t) = x) ≤ C (NASH-HKB)

(ii) [quenched tightness] [BT (2018)] following [Nash (1958)]

Assume (ELLIP), (UPPER), (H-1+ε/ELLIP). There exists a constant

M =M(∥r−1∥∞ , ∥r∥2 , ε , ∥h∥2+ε) <∞ such that for π-a.a. ω

lim
t→∞

t−1/2Eω (|X(t)|) ≤M (NASH-MB)

lim
t→∞

Pω
(
t−1/2|X(t)| > K

)
≤
M

K
(Q-TIGHT)
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Comments:

◦ The diagonal heat kernel upper bound (NASH-HKB) is, actually,

a deterministic statement about any strictly elliptic (ELLIP)

divergence-free (DIV-FREE) environment. It is a consequence of

Nash’s inequality. See separate notes.

◦ Note that from (UPPER), (H-1) we get the annealed bound

lim
t→∞

t−1E
(
|X(t)|2

)
<∞.

◦ In [Nash (1958)] the moment bound (NASH-MB) is proved for

deterministic strictly elliptic, (ELLIP), divergence-free (DIV-FREE)

environments which in addition are bounded and have a bounded

stream tensor. The proof of (NASH-MB)/(Q-TIGHT) as stated

relies on not fully straightforward adaptation of ideas from

[J Nash (1958)] and on an ergodic theorem due to

[RV Chacon, DS Ornstein (1960)].

34



Step 4. (completion of proof): (COCY-ERG)&(Q-TIGHT)⇒(Q-ERR-BOUND):

Pω
(
|V (ω,Xt)| ≥ δt1/2

)
≤

1
≤ Pω

(
{|V (ω,Xt)| ≥ δt1/2} ∧ {|Xt| ≤ Kt1/2}

)
+Pω

(
|Xt| > Kt1/2

)
2
≤ δ−1t−1/2Eω

(
|V (ω,Xt)|11{|Xt|≤Kt1/2}

)
+K−1t−1/2Eω (|Xt|)

3
≤ Cδ−1t−(d+1)/2 ∑

|x|≤Kt1/2
|Θ(ω, x)| +M(ω)K−1

4→ 0 π-a.s. as first t→ ∞, then K → ∞

1: straightforward decomposition

2: Markov’s inequality (x2)

3: Nash’s heat kernel bound (??) and moment bound (NASH-MB)

4: cocycle ergodic theorem (COCY-ERG) Thm 2

35



Diffusion in div-free random drift field t 7→ X(t) ∈ Rd

dX(t) =
(1
2
∇ · r2(X(t)) + b(X(t))

)
dt+ r(X(t)) dB(t)

with infinitesimal generator

L :=
1

2
∇ · r2∇+ b · ∇,

where

r = r(ω) : Rd → Rd×d+ b = b(ω) : Rd → Rd

sufficiently (locally) regular, space-wise stationary & ergodic.

Conditions analogous to (UPPER), (LOWER)/(ELLIP), (STATI-STREAM),

(H-1)/(H-1/ELLIP)/(H-1+ε/ELLIP).

The analogous theorems should hold - though, the details not

fully worked out yet.
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Historical comments (sketchy, far from complete):

◦ [SM Kozlov (1979)], [G Papanicolaou, SRS Varadhan (1981)]:

s ∈ L∞ v ≡ 0, self-adjoint, diffusion, initiation of the problem

◦ [H Osada (1983)], [SM Kozlov (1985)]:

s ∈ L∞, h ∈ L∞, [O]: quenched diffusion; [K]: annealed walk

◦ [K Oelschläger (1988)], [A Fannjiang, G Papanicolaou (1996)]:

s = const., h ∈ L2, annealed, diffusion, with some restrictions

◦ [A Fannjiang, T Komorowski (1997)]:

s = const., h ∈ Ld+ε, quenched diffusion.

◦ [T Komorowski, S Olla (2003)], [J-D Deuschel, H Kösters (2008)]:

s ∈ L∞, h ∈ L∞, [K,O]: annealed walk, [D,K]: quenched walk

◦ [T Komorowski, C Landim, S Olla (2012)]:

s ∈ L∞, h ∈ Ld, annealed walk, + diffusion with s, h Gaussian
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Recall the trichotomy about (STATI-STREAM) (page 10).

Theorems 1&2 provide CLT/IP for case (Y1).

What happens in cases (Y2) and (N)?

When (STATI-STREAM) fails - case (N): expect superdiffusive

(faster than t1/2) large scale behaviour.

Two examples:

Manhattan: (see fig. on page 13) [Ledger-T-Valkó (2018)]

d = 2 : t5/4 ≪ E
(
|Xt|2

)
≪ t3/2 conj: E

(
|Xt|2

)
≍ t4/3

d = 3 : t log log t≪ E
(
|Xt|2

)
≪ t log t conj: E

(
|Xt|2

)
≍ t

√
log t

d ≥ 4 : (ELLIP)&(H-1/ELLIP) hold Thm: quenched CLT
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Diffusion in the curl of GFF d = 2: (rel. to 6-vertex on p. 13):

H(x, ω) = ϕ ∗GFF (x) b(x, ω) = (∇×H)(x, ω)

b : R2 → R2 zero-mean Gaussian vector field with covariances

ĉ(p) = ϕ̂(p)2


p22

p21 + p22
−

p1p2

p21 + p22

−
p1p2

p21 + p22

p21
p21 + p22


The diffusion: dX(t) = b(X(t)) dt+ dB(t)

The problem has some notoriety in the physics literature, starting

with [Bouchaud-Comtet-Georges-LeDoussal (1987)].

Math results: [T-Valkó (2012)]:

t log log t≪ E
(
|Xt|2

)
≪ t log t conj: E

(
|Xt|2

)
≍ t

√
log t
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More recent: [Cannizzaro-Haunschmid·Sibitz-Toninelli (2022)],

[Chatzigeorgiou-Morfe-Otto-Wang(2023+)]:

E
(
|Xt|2

)
≍ t

√
log t ✓

Moreover, [Armstrong-Bou·Rabee-Kuusi (2024+)]: for π-a.a. ω

(N
√
logN)−1/2X(N ·) ⇒Wσ(·) ✓

under the quenched measure Pω (·).

Superdiffusive bounds ( of [TV (2012)], [CHST (2022)]): by

[HT Yau (2000)]’s variational method:

Proposition 6.

⟨φ,Rλφ⟩ = sup
ψ∈L2

0

{
2⟨ψ,φ⟩ − ⟨ψ, (λI + S)ψ⟩ − ⟨Aψ, (λI + S)−1Aψ⟩

}
.
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A picture from [Armstrong-Bou·Rabee-Kuusi (2024+)] illustrat-

ing convective (super-)diffusion in random incompressible flow:
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Proof of Proposition 1. Due to the Spectral Theorem,

∥ |∆|−1∂m∂l ∥2→2 <∞, m, l ∈ U .

For b ∈ D2 define

gm;k,l := |∆|−1∂m
(
∂lbk − ∂kbl

)
∈ L2.

Then, g is rot-free in m, tensor in (k, l), and Helmholtz for ∂mb:

gm;k,l(ω) + gn;k,l(τmω) = gn;k,l(ω) + gm;k,l(τnω)

gm;−k,l(τkω) = gm;k,−l(τlω) = gm;l,k(ω) = −gm;k,l(ω)∑
l∈U

gm;k,l(ω) = bk(τmω)− bk(ω)

Let (x, k, l) 7→ Hk,l(x, ω) be defined by its gradients:

Hk,l(0, ω) = 0, Hk,l(x+m,ω)−Hk,l(x, ω) = gm;k,l(τxω). ✓
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Wanted: |∆|−1∂m∂l : Lp → Lp, p ∈ [1,2)?. Formally,

|∆|−1∂m∂lf(ω) =
∑
z∈Zd

Kl,m(z)f(τzω)

Kl,m(z) := (2π)−d
∫
[−π,π]d

eip·z
(eiz·m − 1)(eiz·l − 1))∑d

j=1(1− cos pj)
dp

Theorem 6. [Calderón-Zygmund thm, Zd-version]
Let K : Zd → C, and K̂ : [−π, π]d → C its FT. Assume

(A) ∥K̂∥∞ <∞, (B) sup
L

max
|x|≤L

∑
|y|≥2L

|K(x− y)−K(y)| <∞.

Define, for f ∈ ℓ1(Zd), (Kf)(x) :=
∑
y∈ZdK(x− y)f(y) Then

∥Kf∥1w := sup
0<λ<∞

λ|{x ∈ Zd : |Kf(x)| > λ}| ≤ C∥f∥1 (C-Z)

with some C <∞, depending on (A)&(B).
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Proposition 7. [Calderón-Zygmund theorem, ergodic version]

Let
(
Ω, π, (τz : Ω → Ω, z ∈ Zd)

)
be an ergodic Zd-action,

K : Zd → C a kernel like in Thm 6 and, for φ ∈ L2(Ω, π), let

(Kφ)(ω) :=
∑
y∈ZdK(y)φ(τyω). (Nb. ∥Kφ∥2 ≤ ∥K̂∥∞∥φ∥2.) Then

∥Kφ∥1w := sup
0<λ<∞

λπ({ω ∈ Ω : |Kφ(ω)| > λ}) ≤ C∥φ∥1, (C-Z-ERG)

with some C < ∞, depending on (A)&(B). The operator K

extends to K : L1(Ω, π) → L1w(Ω, π).

Proof of Proposition 7: Assume first that supp(K) ⊂ BL and

with slight abuse of notation denote by the same symbol K the

operators K : ℓ(Zd) → ℓ(Zd) and K : L(Ω, π) → L(Ω, π),

(Kf)(x) :=
∑
y∈Zd

K(x− y)f(y) (Kφ)(ω) :=
∑
y∈Zd

K(y)φ(τyω)

The meaning will be clear from the context.
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Let φ ∈ L2(Ω, π), and fN ∈ ℓ1(Zd), fN(x) := φ(τxω)11{|x|≤N}.

|BN |−1λ|{x ∈ BN−L : |KfN(x)| > λ}|

≤ |BN |−1λ|{x ∈ Zd : |KfN(x)| > λ}|
(C-Z)
≤ C|BN |−1∥fN∥1

On the other hand, by the ergodic theorem, π-a.s.

lim
N→∞

|BN |−1|{x ∈ BN−L : |KfN(x)| > λ}| = π({ω : |Kφ(ω)| > λ})

lim
N→∞

|BN |−1∥fN∥1 = ∥φ∥1

Putting these together we obtain exactly the bound (C-Z-ERG).

Since the constant C does not depend on L the condition supp(K) ⊂
BL can be lifted. Proposition 7
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Corollary 1.

∥ |∆|−1/2∂l ∥1→1w <∞, ∥ |∆|−1∂m∂l ∥1→1w <∞,

∥ |∆|−1/2∂l ∥p→p <∞,
(
∥ |∆|−1∂m∂l ∥p→p <∞

)
, p ∈ (1,2]

The p ∈ (1,2) cases follow from Marcinkiewicz interpolation.

Proposition1 is proved exactly as in the b ∈ L2 case. Prop. 1
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Proof of Proposition 4 By induction on d.

◦ d = 1: Birkhoff ✓.

◦ Notation: ΛdN := [0, N − 1]d; (n,m) ∈ ΛdN × Λ1
N ;

◦ L ∈ N fixed (at the end of the proof L→ ∞)

∑
m∈Λ1

N

∑
n∈ΛdN

|Ψ(n,m)| ≤
L−1∑
l=0

⌈N/L⌉−1∑
j=0

∑
n∈ΛdN

|Ψ(n, jL+ l)|

≤ (N +1)
∑

n∈ΛdN

|Ψ(n,0)|

︸ ︷︷ ︸
1

+
1

L

L−1∑
l=0

(N + L)
∑

n∈ΛdN

|Ψ(n, l)−Ψ(n,0)|

︸ ︷︷ ︸
2

+
1

L

L−1∑
l=0

L
⌈N/L⌉−1∑
j=1

j−1∑
i=0

∑
n∈ΛdN

|Ψ(n, (i+1)L+ l)−Ψ(n, iL+ l)|

︸ ︷︷ ︸
3
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First term:

lim
N→∞

N−(d+2)(N +1)
∑

n∈ΛdN

|Ψ(n,0)| = lim
N→∞

N−(d+1) ∑
n∈ΛdN

|Ψ(n,0)| ,= 0

,: use the induction hypothesis

Second term: use the multidimensional a.s. ergodic theorem

(l ∈ [0, L− 1] is fixed)

lim
N→∞

N−(d+2)(N + L)
∑

n∈ΛdN

|Ψ(n, l)−Ψ(n,0)|

≤ 2 lim
N→∞

N−d−1 ∑
n∈ΛdN

|Ψ(n, l)−Ψ(n,0)| ,= 0

,: use the multidimensional a.s. ergodic theorem
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Third term:

lim
N→∞

N−(d+2)L
⌈N/L⌉−1∑
j=1

j−1∑
i=0

∑
n∈ΛdN

|Ψ(n, (i+1)L+ l)−Ψ(n, iL+ l)| =

lim
N→∞

L2

N2

⌈N/L⌉−1∑
j=1

j (jNd)−1
j−1∑
i=0

∑
n∈ΛdN

|Ψ(n, (i+1)L+ l)−Ψ(n, iL+ l)|
L︸ ︷︷ ︸

,
= L−1E (|Ψ(0, L)−Ψ(0,0)|) .

,: multidim. unrestricted erg. thm. cf [Zygmund (1951)].

Finally, letting L → ∞, by the multidimensional version of the

mean (L1) ergodic theorem we obtain (COCY-ERG) in dimension

d+1. Prop. 4
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Proof of Proposition 5.
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