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Random Walk in Random Environment (RWRE)
(Q,w, (12 1>,z € Zd)) probab. sp., ergodic 7% action

U={kez%: |kl =1} n.n. steps of the r.w.
p:Q —[0,00), jump rates of the r.w.

RWRE: Given w € Q, t — X (t) € Z% cont. time Markov chain:

Puo(X({+dt) =+ kX)) =2) = Ek(mw) dt + o(dt)
pr(z,w)
Separate symmetric and skew-symmetric part of jump rates:

V/conductances 7i(w) = \/(pk(w) +p_r(rw))/2 =r_p(Tw)

flows b(w) = (pp(w) — p_p(1w)) /2 = —b_p(1w)
Major issue in probability theory since the 1970s.




[Overwhelming majority of the RWRE literature is about
‘random walk among random conductances’: b=0 a.s. —
reversible, self-adjoint .. .]

Assumptions I. (minimal)

> bp(w)=0 a.s. (DIV-FREE)
kel

r. € L2(S2, ) (UPPER)
/Q b(w)dm(w) =0 (NO-DRIFT)
(r,)~ 1 e £2(2, ) (LOWER)

Rather than strong ellipticity
rp(w) > re > 0. (ELLIP)
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First consequences:
o (DIV-FREE) = The environment process:
t—mp 1= TX ()W
is stationary and ergodic Markov process in (2, 7).
o (UPPER) & (NO-DRIFT) = zero (annealed) drift & SLLN:

B(X(1) = [ Bu(X(8) dn(w) = 0

t71Xx(t) -0, a.s.

o (LOWER) = diffusive lower bound (not totally straightforward):

lim ¢ 'B (|x(8)[%) > 0
t—00
Questions left open:
Diffusive upper bound? CLT? Superdiffusive lower bound?
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Analogous: diffusion in div-free rnd drift field ¢ — X (t) € R

1
dX(t) = (EV 2 (X (1) 4+ b(X (1)) dt + (X (1)) dB(t)
with infinitesimal generator
L:= %V-TQV—I—I)-V,
where

r=r(w):Rd—>RC_l|_Xd b= b(w) : RY - RY

are space-wise stationary & ergodic,

divb =0 m-a.8s. (DIV-FREE)
with conditions analogous to (UPPER), (NO-DRIFT), (LOWER).

Phyisical motivation: ... passsive tracer in turbulent flow ...
Historic notes: .. .later ...



Martingale decomposition:

X0 =20+ [ (p0) + ) ds

4

?
where o, 1 Q2 — R?,
p(w):= Y kri(w)  Y(w):= kby(w)

keld kel
p(w)+o(w)=> kpr(w)
kel

Then t+— Z(t) € R? is a quenched martingale whose increments
are statioanry, ergodic and £2 in the annealed setting, and thus
obeys the martingale CLT.

Blueprint: Martingale approx. of additive functionals (integrals
above) of ergodic Markov processes — a la Kipnis-Varadhan.
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Helmholtz: " div-free vector field = curl of vector potential’ —
cum grano salis

Setting:
(Q,w, (r: Q> Q,z€ Zd)) erg. Z%action, b: Q — RY s.t. 7-a.s.

b(w) + b_p(Tpw) =0 (FLOW)
S by(w) = % S (b(w) — by(r_jw)) = O (DIV-FREE)
kel kel

Lift to Z4:  Z9xU S (x,k) — bi(z,w) = bp(rzw)  is a
stationary & ergodic divergence-free flow/vector field on Z¢:

b (z,w) +b_g(z + k,w) =0 (FLOW)

S by (2, w) = % S~ (by(w,w) — by(e — k,w)) =0 (DIV-FREE)
keld kel



Proposition 1. [‘Helmholtz’s thm’] [K-L-O(2012), K-T(2017), T(2025
Let b : Q — RY be a div-free flow/vf as above, bec L1(Q, 7).
There exists a stream tensor field (z,k,1) — Hy (z,w), H € LIV(Q, ),

H y(z+kw)=H (z+1,w)=H p(z,w)=—Hy (z,w) (STREAM)
with stationary increments, a.k.a. a cocycle

Hy, (y,w) — Hy (z,w) = Hy, (y — =, yw) — Hy, (0, 7zw),  (COCY)
such that Helmholtz's relation holds

bk(ﬂ?,w) — Z Hk,l(ajaw) — % Z(Hk,l(xaw) - Hk,l(x —lw))
leu =7
= > Hy (0, 7zw) (HELMHOLTZ)
leU
Ifbe LP(Q2,7), pe (1,2] than also H € LP(2, 7).

Proof: b e £2; soft / be £1: relies on Calderén-Zygmund.
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Remarks/comments:
o This is not the ‘usual’ Helmholtz Thm.
o (STREAM) means that (z,k,l) — Hj ()

is a function of the
oriented plaquettes of 74

X

o In 2-dim H is a height function on the dual Z2.
In 3-dim H is a flow / vector field on the dual Z3.

o (HELMHOLTZ): ;mmmEE

o Yt

‘) -

o (STREAM), (COCY), (HELMHOLTZ) determine H uniquely, up to
the additive Hy;(0). The standard choice is: Hy ;(0) = 0.
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o Subtle q.: Is the (cocY) stream field actually stationary?

Hy ((z,w) = hy (Taw) — hy (W) (STATI-STREAM)
with some (k,[) = hy ;(w), such that

h_p(mpw) = hy —_(mw) = hy p(w) = —hy (W) (STATI-STREAM)
Could be
oo (Y1) Yes, with h in the same L-class as H
oo (Y2) Yes, with h in weaker L-class as H
oo (N) No.

Given b € LP, p € [1,2], div-free, it can be hard to see
whether the case (Y1), (Y2) or (N) holds.

Except: be £2: he £2 (i.e. (Y1) holds) iff be H_1(A).
More about this - later.
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Back to the RWRE: Recall notation:
rp(w) == /(e (W) + k() /2 bp(w) = (pp(w) — p_k(rw)) /2

Assumptions II. (final form)
e (UPPER)- (LOWER):

ri € L2(2,T) (rp) "t e £2(Q, )
e (STATI-STREAM): 3 h: Q2 — RNV*N st
hi(w) = —h_p(Tpw) = —hy, _(Tw) = —hy (W)

b(w) = > hy(w)
leN

o (H-1): (new!)
(ri) " thyy € £2(2,7) (H-1)
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Remarks:
o Bonus: (LOWER)+ (UPPER)+4(H-1) imply

hiy € L1(2,7) (ri) "t hyy (r) "t € £ (2, )
o Assuming (ELLIP) [rather than (LOWER)] (H-1) reduces to
hiy € L2(S2,7) & beH_1(AN) (H-1/ELLIP)

More on this - later.
o Examples - on next three slides . ..
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Examples r,b € L(2,7) + (ELLIP)

Dym&t C(ljc»@lm \ Mcwd\r\aﬁmm {Six —WJrC% /
/\N’\'ﬂm &/\Q(:t- “5 Wow€_ \CL .
(Tuge ohf&\akew/ i
. AmemEamE amnan B oo mam m -
91y o1H B aTE JHL RIE MK ANP NECCRP and another
SISO L Ly Lyl A 4 ¥4 example
QI |9 5;3 A A Yoy ",]V f\jj\,f\ on the next slide
d GVSAO N\ //\ \'% ,/\J\ \/\/ /*// //L
| SRaRE

AN CRA@% XHT\L‘“&QL&J
the alloved licectown

Q'. ﬂof:)e scole Aehasiowr Z éd“ﬁi‘fiu:ge%

and also in higher dimension ...
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i \?"”"g\ >+ - This example is
" s due to Ron Peled.
Do the same on Z2

<E5H

Let (&),cz2 ii.d., & €N, and h: 72 — N,

h(z) :=sup{ (& — |z —y))y 1y €22}

By Borel-Cantelli: h(z) < oo a.s. iff E(§2> < 0o. In this case,
x — h(x) is (obviously) stationary and Lip(1). Furthermore,

E (|h(z)|P) < oo iff E (J¢]77) < oo
Let bp(x) = h(z + (1 +9)k/2) — h(z + (1 — )k/2)
Then (z,k) — bi(x) is (DIV-FREE) and |b,(x)| < 1 a.s. Finally,

pr(x) =14 by(x).
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Examples ctd. Why bother with non-ellipticity?

Let t — X (t) be a RWRE as on page 2. Without (DIV-FREE) the
environment process ¢ — n; 1= Ty )w won't be stationary.

The equation for stationary RN derivative:
> pop(mpw)o(mw) = > pr(w)o(w)
keN keN

This is a hard problem! See, e.g. [Sabot (2013)].
Assume sin p € £1(, ) exists. Then, t — X(t) with jump rates

pr(w) 1= pr(w)eo(w)
will be (obviously) (DIV-FREE).

However, this is a time-changed version of the original RWRE.
So, proving CLT /non-CLT for t — X (t) reduces to checking/refuting
the stated conditions for the rates (pp(w))rcys- - - -
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Theorem 1. [CLT in probability w.r.t. the environment]
[G Kozma, BT (2017)], [BT (2025)]
Assume (UPPER) & (LOWER) & (STATI-STREAM) & (H-1). Then

X)) =Y (@) + Err(t)

so that the following limits hold as N — oo.

(i) For m-almost all w € 2, t — Y (t) is a square integrable martin-
gale whose increments are stationary and ergodic in the annealed
setting. Thus (due to the martingale IP) for m-almost all w € €2,

N7Y2Y (N = Wo ()
in D([0,1]) under the quenched probab. measure P, (...), where
Wy (-) is a BM with o2 € (0, 00).
(ii) For any t € [0,1] and 6 > O,
im w({weQ: N"'E, (|Err(Nt)|?) > 6}) = 0.

N—00
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Theorem 2. [quenched CLT w-a.s. w.r.t. the envi.] [BT (2018)]
Assume (UPPER) & (ELLIP) & (STATI-STREAM) & (H-1+c/ELLIP)

hiy € L2T€ (H-1+e/ELLIP)
Then the statement of Theorem 1 holds with

im N~ Y2|Err(Nt)]=0 a.s.

N —o0

Comments.

o Theorem 1: CLT in probability w.r.t. w ("semi-quenched").
Theorem 2: CLT for ma.a. w. ("quenched”)

o Proof of Theorem 1: martingale approx. 4+ functional analysis.
Proof of Theorem 2: extra ingredients: Nash-type arguments

(therefore (ELLIP) needed)
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Martingale approx, Kipnis-Varadhan theory - in a nutshell: (5 slides)

t— g, nf € Q2 stat&erg MP on (£2,7) and its time-reversal.
Assume suff. regularity. Their semigroups P, P/, resolvents R, Rf\,
infinitesimal generators L, L* act on LP(S2,7), p € [1, o0].

Pif(w) :=Ew (f(nt)) [ Pellp—p =1

oo
R, ::/O e P, dt IRAllp—sp = A1

L:i=st-limt (P -1)
t—0

On £2($2, ), assume
L=-S4+A S:=—(L+L%/2 A:=(L-L"/2,
define S~1/2 in terms of the Spectral Theorem, and H_ = H_1(S):
_ _ cl—
(f, AT+ 8)71f) = [|STY2f|I3 < oof

18
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t
WANTED: Efficient martingale approx. tn—>/o w(ns) ds.

Theorem 3. [non-reversible KV] [KV (1986)], [T (1986)]

Let ¢ € L1 such that [ edr =0 and for all A > 0, Ryp € L?.
If the following two conditions hold

(A) lim A2 Rypll2 = 0,
(B) Jim ISY2Ryp —v]p =0, ve L2

then there exists a sq-integrable martingale t — Z(t) (adapted
to the natural filtration), with stat&erg increments and variance

2 2
E(12(t)%) = 2|lv|5t,
such that

im ¢ 1E (|/Ot¢(n8) ds — Z(t)|2> —0.

t—00
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Comments, remarks:
o The self-adjoint case [Kipnis-Varadhan (1986)], L = —S,

{peH } = (A <= (B)

o General, non-self-adjoint case:
Proposition 2. [H_q rules!] [Varadhan (1995)]

VoeH NnLl, te[0,00)

t
Var ( | e ds) < 2|2t

Hwvr, ¢ € H_ is too little (for CLT) & too much (for o2 < o).

o non-self-adjoint case: (A) & (B) are too implicit to be
checked directly. (Though, exceptions exist.)

o Sufficient: Strong Sector Condition [Varadhan (1995)];
Graded Sector Condition [Sethuraman-Varadhan-Yau (2000)]
notoriously technical. Appl. restricted to graded structure ...
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A handy sufficient condition: Let
B:={feH nc?2: S V2fcDom(A) & AS Y2fecH_nrc?)
B:B— L2 Bf:= S 1/245-1/2¢

Comments: B : B — £2 is obviously skew-symmetric. However,
B C £2 could be too thin .... Even if B is dense in £2 it could
still happen that B < B = —B*.

Theorem 4. [relaxed sector condition] [Horvath-T-Vetd (2012)]
(streamlined)

Assume that B is dense in £? and the operator B : B — L2

is essentially skew-self-adjoint: B < B = —B*. Then for any

o € H_NLl the conditions of Theorem KV (and hence the mar-

tingale approximation) hold.
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Proof sketch. [Details in separate set of notes.]
For simplicity assume ||L|[o_s» < oo and let

By = (M 4+ 8)" Y2401+ 5)71/2, B = —B,
Ky :=(I+ By, 1K < 1.
Ry= 4+ S) V2K, (\ [+ 5)1/2

If by some miracle: K, S0 K, then, for ¢ € H_,

(A) A\V2R o =220 4+ 9) V2K, (0T + 9) V2 =0

(B) SY2Ryp =SP4+ 9) V2K (M 4+ 8) 120 —» KS71/%p
v

Under the conditions of the Thm, by an argument reminiscent

of Trotter-Kurtz, K, S0t [ ]

22



Back to the main issue. Spaces.
L: scalars; V: vectors; R: rot-free vects; D: div-free vects; IC: 77.

= {f1Q R ||f||g:=/Q|f|Pd7r<oo, /Qfdw:O}

W= {u: Q= RY tup € £P, up(w) +u_p(nw) =0, ullh =3 |lugllb]
keld
RP = {u c VP up(w) + y(rpw) = yy(w) + uk(le)} [R for rot-free]
DP = {u eVP: Y wup(w) = O} [D for div-free]
keld

1
KPP .= {u e VP (Tk_luk)kel/{ € R}C P

Helmholtz-Hodge: V2 =R? @ D2
L, V, R, D, K: same, without integrability conditions.
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Back to the main issue. Operators.

T f(w) = f(rw), O =T} — 1,
Ry f(w) 1= rp(w) f(w), Hi 1 f(w) 1= hy (w) f(w)
V:iL—=YV, (V) :=0f
ViV — L, V*u:zZuk:—lza_kuk
kel QkEM
R:V =YV, (Ru)k ‘= Rpuy
H:V—)V, (Hu)k Ile(T_l—FI)Hk,l(Tk—I—I)ul
4ZEU

S = V*R?’V = (V*R)(RV)
A=V*HV = (V'R)Y(R"THR V) (RV)
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Key facts (concrete - valid under the assumed conditions):
(1) H_:=H_1(S) c £l and, for f e 1,
2 2
IFII? = sup (2(f,9) — IRVg|3)
geEL®
(2) Hilbert space isometries:

—1/2 —1/2*
2 Rvs/\Kz_ S/V\£2.
( 7|| ||2) 4 ( 7|| ||2) 4 ( 7|| ||2)7

Reminiscent of Riesz kernels of harmonic analysis:

grad||a|o|_1/2 |Iap|_1/2div
L£2(RY Leb) > R%(RY, Leb) sy L2(R?, Leb).

Ker(rot)
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Proof of Thm 1. Step 1: Prove B* = —B:

B — S—l/QAs—l/Q :5_1/QV*R R—]_HR—]. Rvs—l/%
N* A
Reduces to proving essential skew-self-adjointness (on an appro-
priate dense subspace) of D : K2 — ICQ,

D = AN RYHRTIAAY, AN* 1 V2 — K2 orth. proj.

However, D is (essentially) a multiplication operator. The proof
is (essentially) routine. In this step only (STATI-STREAM) matters,
and not the integrability conditions.

Step 2: Prove ¢, € H_ for ¢,v : Q — RY,

o) = 3 ksp(w) = o 3 Ko_gsp(@)  $(w) = Y k(@)

kel kel keld
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|0_kskll? = sup, (2(x, 0_ksk) — RV XII3)

< sup (2 (X, O_kSK) — ||Rk8kX||2>

XELX
= sup (2(Ru0x, ) — || RkOkx|I3)
XEL>X
>~ XoTk) — 2] — UTk -
< sup (2{x,7x) IXI13) = [lr&ll® < oo
XL (UPPER)
2 2
lokll2 = sup ((x, > 0_ihyy) — [RVXII3)
XELZ ey
~1 2
= sup > (R0, Thiy) — 1Ri9yx|13)
XEL ey
< h ) — Ixl3) = “Lhy 13 I Thm1
<D sup (O6ry then) = Ixlz) = D llry “higlls < oo m
leU XEL? leu

4
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Harmonic coordinates. [S Kozlov (1985)]: Find a random field
7% 5 2 — V(z,w) € R? with stationary increments (i.e, a cocycle)
V(y,w) = V(z,w) =V(y — z, zw) (cocy)
and E (V(x)) = 0, such that
o pr(z,w) (k +V(r+kw)— V(az,w)j) =0 m-a.S.
kel pr(Tzw) Vi (Tzw)

Thent— Y () := X&)+ V(X(t)) is a quenched martingale (for
m-a.a. w) and it is plausible to expect that

Jlim t=12v(x (@) =0 a.s. (Q-ERR)

If this is done, the quenched IP follows.
The field 2% 5 z — 2+ V (2, w) € R% is called (for obvious reasons)
harmonic coordinates. Geometric meaning:
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Bonus - from the proof of Theorem 1:

Proposition 3. [3! of harmonic coordinates] [BT (2025)]
Given ¢ € H_N LY there exists a unique solution v € R~1K2 c y1
(L1 rot-free field) of the equation

> prp(w)vp(w) = ¢(w). (HARM-COORD)
kel

Proof sketch. The solution is
v=R (I +B)"1s 12y

—1
Jolly < Jrtl2 ll¢ll- < oo L
(LOWER)

—1
loll2 < [l oo llgll- < oo
(Eﬁfip)
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Proof of Theorem 2:

Step 1: [Harmonic coordinates 4 error term]

Solve (HARM-COORD) for ¢ := Y ey kpr = ¢+ € H_NLY (component-
wise) and let Z% 5 z — V(z,w) € R? be the (cocy) field defined
by the gradients

V(O,w)=20 Vie+k,w) —V(r,w) = v (12w)

Write
Y (t)

X)) =X@)+V(X®)-V(X®))

Then, t — Y (t) is a quenched martingale with stat&erg annealed
increments with covariance computable

E (n(t)yj(s)) = §; jo? min{t, s}, 02 = 7777

By the MIP, for r-a.a. w, N=12y(N-) = Wy (")
in D([0,1],R%), under the quenched measure P, ().
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Intersteps:

It remains to quenched-bound the error term V(X (t)):
for m-a.a. w, and all § > 0,

lim Py, (¢ 1/2|V(X(£))] > 6) = 0. (Q-ERR-BOUND)
t—00

Philosophy and why it fails . ..

To prove (Q-ERR-BOUND), we'll assume

re.(w) > rs« > 0. (ELLIP)

hiy € L2T¢ (H-1+e/ELLIP)
[rather than (LOWER)& (H-1)].
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Step 2: [Ergodic theorem for cocycles]

Proposition 4. [an ergodic theorem] [BT (2018)]

Let (Q,w, (rz : Q = Q,z € Zd)) be an ergodic 7Z%-action and
7% 35z — W(z,w) € R a cocycle (i.e. stationary increments) such
that W € £11og?~ 1L and E (W) = 0. Then r-a.s.

im N~ETD S w(z)| =0 (COCY-ERG)
N—o00 Z|<N

The proof of Proposition 4 (see later) relies on
Theorem 5. [Multidim. unrestricted erg. thm. [Zygmund (1951)]
Let (Q,ﬂ',’]’) be as above, and f € £ 1og?12. Then

lim (Ny...Ny) ! > f(rw) = /Qfdw a.s.

Nl,...,Nd—>OO ZE[O,Nl—l]X”'X[OaNd_l]

32



Step 3: ["Nash theory”]

Proposition 5.

(i) [Heat kernel bound] [Nash (1958)]

Assume (ELLIP). There exists a constant C = C(||r—1||x) such
that for m-a.a. w,

sup t¥2P,(X(t) =z) < C (NASH-HKB)

rcZd
O<t<oo

(ii) [quenched tightness] [BT (2018)] following [Nash (1958)]
Assume (ELLIP), (UPPER), (H-1+¢/ELLIP). There exists a constant
M= M(|r Yoo, lI7ll2, &, |Rlloas) < 0o such that for n-a.a. w

Jim t=1/2E, (IX(@®)|) < M (NASH-MB)

m ~1/2 M _
Tim Py, (21X (@) > K) < = (Q-TIGHT)
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Comments:

o The diagonal heat kernel upper bound (NASH-HKB) is, actually,
a deterministic statement about any strictly elliptic (ELLIP)
divergence-free (DIV-FREE) environment. It is a consequence of
Nash’s inequality. See separate notes.

o Note that from (UPPER), (H-1) we get the annealed bound
im ¢ B (X)) < oo.
t—00

o In [Nash (1958)] the moment bound (NASH-MB) is proved for
deterministic strictly elliptic, (ELLIP), divergence-free (DIV-FREE)
environments which in addition are bounded and have a bounded
stream tensor. The proof of (NASH-MB)/(Q-TIGHT) as stated
relies on not fully straightforward adaptation of ideas from

[J Nash (1958)] and on an ergodic theorem due to
[RV Chacon, DS Ornstein (1960)].
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Step 4. (completion of proof): (COCY-ERG)& (Q-TIGHT)=-(Q-ERR-BOUND):

Py |V (w, Xp)| 2 617/2) <
< P, ({IV(w, X0)| = 812} A {IX0] < Kt/2}) 4 Py, (1] > Kt12)
2
=0T RE, ('V(W’Xt)'1{|xt|sml/2}) + K1Y ZE (1)

3
<o drD/2 N 1o(w,z)| 4+ M(W)K !
2| <Kt1/2

i O m-a.s. as first t - o0, then K —
straightforward decomposition
Markov's inequality (x2)

Nash’'s heat kernel bound (??) and moment bound (NASH-MB)
cocycle ergodic theorem (COCY-ERG) _Thm 2

wnE
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Diffusion in div-free random drift field ¢ — X (t) € R?

AX(8) = (5 r2(X(0) + bX(®))) db + r(X(1)) dB ()

with infinitesimal generator

1
L:=§V-r2V—|—b-V,

where

rzr(w):Rd%Rfl'_Xd b= b(w) : R — R?

sufficiently (locally) regular, space-wise stationary & ergodic.

Conditions analogous to (UPPER), (LOWER)/(ELLIP), (STATI-STREAM),
(H-1)/(H-1/ELLIP)/(H-1+c/ELLIP).

The analogous theorems should hold - though, the details not
fully worked out yet.
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Historical comments (sketchy, far from complete):

o [SM Kozlov (1979)], [G Papanicolaou, SRS Varadhan (1981)]:
s € L v =0, self-adjoint, diffusion, initiation of the problem

o [H Osada (1983)], [SM Kozlov (1985)]:
s € L, he L [O]: quenched diffusion; [K]: annealed walk

o [K Oelschlager (1988)], [A Fannjiang, G Papanicolaou (1996)]:
s = const., h € £2, annealed, diffusion, with some restrictions

o [A Fannjiang, T Komorowski (1997)]:
s = const., h € £3T€ quenched diffusion.

o [T Komorowski, S Olla (2003)], [J-D Deuschel, H Kosters (2008)]:
s € L, heL° [KO]: annealed walk, [D,K]: quenched walk

o [T Komorowski, C Landim, S Olla (2012)]:
s€ L®, he £ annealed walk, 4+ diffusion with s, h Gaussian
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Recall the trichotomy about (STATI-STREAM) (page 10).
Theorems 1&2 provide CLT /IP for case (Y1).
What happens in cases (Y2) and (N)?

When (STATI-STREAM) fails - case (N): expect superdiffusive
(faster than t1/2) large scale behaviour.

Two examples:

Manhattan: (see fig. on page 13) [Ledger-T-Valko (2018)]
d=2: t°/* < B (|X,]?) < 3/ conj: E (|X¢[?) < t*/3
d=3: tloglogt < E (|Xt|2) <L tlogt conj: E (|Xt|2> = tv/010gt

d>4: (ELLIP)&(H-1/ELLIP) hold Thm: quenched CLT
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Diffusion in the curl of GFF d = 2: (rel. to 6-vertex on p. 13):

H(z,w) = ¢x GFF(x) b(x,w) = (V x H)(xz,w)
b:R2 5 R? zero-mean Gaussian vector field with covariances
[ p5  pip2 )
R 2 2 2 2
&(p) = d(p)? PitP3 pljpz
__p1p2 p7
\ p?+p3 pi+p3 )
The diffusion: dX (t) = b(X(t)) dt + dB(t)

T he problem has some notoriety in the physics literature, starting
with [Bouchaud-Comtet-Georges-LeDoussal (1987)].
Math results: [T-Valko (2012)]:

tloglogt < E (|Xt|2) L tlogt conj: E (|Xt|2) = tv/I10gt
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More recent: [Cannizzaro-Haunschmid-Sibitz-Toninelli (2022)],
[Chatzigeorgiou-Morfe-Otto-Wang(2023+)]:

B (|X:/?) =< tVlogt ve

Moreover, [Armstrong-Bou-Rabee-Kuusi (20244 )]: for m-a.a. w

(NVIog N)"Y2x(N) = W, (") v

under the quenched measure P, ().

Superdiffusive bounds ( of [TV (2012)], [CHST (2022)]): by
[HT Yau (2000)]'s variational method:

Proposition 6.

(¢, Ryp) = sup {20, 0) = (1, AT + S)¥) — (Avh, (AT + 8) L Ay) |
€L0
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A picture from [Armstrong-Bou-Rabee-Kuusi (20244 )] illustrat-
ing convective (super-)diffusion in random incompressible flow:
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Proof of Proposition 1. Due to the Spectral Theorem,

A7 0mdy [l2—2 < oo, m,l € U.
For b € D? define
: — 2
Im;k,l -— A 18m(8lbk — 8kbl> c L.

Then, g is rot-free in m, tensor in (k,1), and Helmholtz for 9,,b:

gm;k,l(w) + gn;k,l(me) — gn;k,l(w) + gm;k,l(an)

Im:—k 1 (Tew) = gk —1(Tw) = g1 k(W) = =gk (w)
> 9meki(w) = bp(Tmw) — by (w)
=Y

Let (x,k,1) — Hy (z,w) be defined by its gradients:

Hy(0,w) =0, Hp(z+m,w)— Hy (z,w) = gp 1 (Taw).
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Wanted: |A|710,0; : LP — LP, p € [1,2)?. Formally,

A7 oo f (W) = Y Kpm(2) f(rew)
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= —d ipo (€7 — 1) (! — 1))
’Cl,m(z) = (2m) /[_W’W]de Z;.i:l(l — COSpj)

Theorem 6. [Calderén-Zygmund thm, Z%-version]
Let K:7%— C, and K : [-m,7]? — C its FT. Assume

dp

(A) Rl <00, (B) supmax 3 [K(z— ) — K(y)| < oo.
L Wl=tyyisar

Define, for f € ¢1(z2%), (K f)(z) := > yezd K(x —y) f(y) Then

IKflliw = sup A{zezZ:|Kf(z)| >} <C|fllL  (c-2)
O< A\ <0
with some C < oo, depending on (A)&(B).
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Proposition 7. [Calderén-Zygmund theorem, ergodic version]
Let (Q,w, (r 1 N> Q,z¢€ Zd)) be an ergodic 7Z%-action,

K : 7% — C a kernel like in Thm 6 and, for o € L£L2(2,w), let

(K¢)(w) =% cza K@)p(myw). (Nb. ||Kell2 < |[Kllllell2.) Then

|Kolliw = sup Ar({w e Q2 |Kp(w)| > A}) < Cligl, (C-z-ERG)
O<A<0

with some C < oo, depending on (A)&(B). The operator K

extends to K : £LY(Q, 7)) — £IW(Q, 7).

Proof of Proposition 7: Assume first that supp(KX) C By and
with slight abuse of notation denote by the same symbol K the
operators K : £(Z%) — £(Z%) and K : £(Q,7) — L(, ),

(Kf)(@) = ) Kz—y)f(y) (Kp)(w) :== ) K(y)e(ryw)

ycZd ycZ4
The meaning will be clear from the context.
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Let ¢ € LQ(Q,T('), and fy € gl(Zd), fN(w) L= QO(Tg;w)lﬂx‘SN}.

1By "' A{z € By [K fn(@)] > A}

~1 d (c2) ~1
< [Byl" Az € Z° 1 |[Kfn(2)| > A < CIBN[[fnlle

On the other hand, by the ergodic theorem, =w-a.s.

Jim By Tz € By ¢ [Kfn(@)] > M = 7({w : [Ke(w)| > A})

. —1
Aim BN Nl = el
— 00

Putting these together we obtain exactly the bound (C-Z-ERG).
Since the constant C does not depend on L the condition supp(KC) C
By can be lifted. _IProposition 7
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Corollary 1.
A28 11w < 00, 1A]710md) |1—1w < oo,

HATY20 lpsp < 00, (AT 08 llp—p < 00), p € (1,2]

The p € (1,2) cases follow from Marcinkiewicz interpolation.

Proposition 1 is proved exactly as in the b € £2 case. [ IProp. 1
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Proof of Proposition 4 By induction on d.

od=1: Birkhoff

o Notation: A% :=1[0,N —1]¢%  (n,m) € A% x Ak,
o L € N fixed (at the end of the proof L — o0)

L—1[N/L]-1
YD Wem)| < D> D> D> W(n, L4
meNl nend, =0 ;5=0 ne/\d

<(N4+1) ) |W(n, 0)|+ Z (N+L) > |wv(nl) —Ww(n,0)|

nE/\d l—O nE/\d

1 2
L L-1 [N/L]-1j-1
+ = ZL > > > Wi, G+ DL+ - W(n,iL + 1)

=1 ) — d
7 1 OQE/\N

7

7

\ .
-~

3
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First term:

: _ : _ ©
]\}lnooN (d—|—2)(N_|_ 1) Zd W (n,0)| = ]\/!TOON (d+1) Zd W (n,0)] =0
neNy neNy

®: use the induction hypothesis

Second term: use the multidimensional a.s. ergodic theorem
(1 € [0,L — 1] is fixed)

im N"UF2(N+ L) Y |w(n,l) - W(n,0)
N — o0 cnd
RSN

<2 lim N1 S (D) — w(n,0) 20
N—o0
QEA%

©®: use the multidimensional a.s. ergodic theorem
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Third term:

[N/L]-1j-1
lim N—(d+2) Yoo DY W, G+ 1)L41) —V(n,iL+ )| =

N—=o0 j=1 =0 QE/\d

g2 INo=t W(n, (i + 1L +1) — W(n,iL +1)
N N2 .ZJ(]N) ZZ L

1=0 nE/\d

\ .

-~

€ L-'E(w(0,L) - w(0,0)]).

©: multidim. unrestricted erg. thm. cf [Zygmund (1951)].

Finally, letting L — oo, by the multidimensional version of the
mean (£1) ergodic theorem we obtain (COCY-ERG) in dimension
d-+1. _IProp. 4
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Proof of Proposition 5.
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