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(A) Martingale approx. - Kipnis-Varadhan theory:

t — m¢,my stationary and ergodic continuous-time Markov Chain
and its time reversal, on (€2, F, 7). Assume sufficient regularity.

Its semigroup, resolvent, and infinitesimal generator, acting on
LP(2, ), p € [1,00]:

Pif(w) :=Eu (f(ne)) | Pel[p—p < 1
o0
Ry = /o e M Py dt |BAllp>p < AT

I = st—tlin?)t_l(Pt—I) P=el R =0I-1)1
%

Recall Hille-Yosida theory of strongly continuous contraction
semigroups on Banach spaces. We assume that on L2

L=(-S+ A)/2 L*= (=S —A)/2

That is; L and L* have a common core of definition.



Given ¢ € £2 we want to understand CLT for t~1/2 [ x(ns) ds.
[Recall Doeblin’s Thm for #Q < c0.]

The variance: Denote

o(t) :=E (e(nio) e (ng++) ) = (¢, Pip)
t — S
d(t) := Var <t 1/2/ go(ns))ds> :2/0 ! (s (HW)

d(\) = 2/000 e e(s) = 2(p, Ryp)

(¢ for covariance, d for diffusivity). Note that (HW)

R ©.@)
d(\) = )\2/ e sd(s)ds,

0

and hence (HW)
0 < lim d(t) < lim d()\) < I|m d(\) < I|m d(t) < oo (1)

t— 00 A—0



We are primarily interested in o2 := lim;_ o d(t) (assuming the
limit exists) but we can better juggle with d(\).

If t — m isreversible, L = L* = —§S, then ¢(s) = (Psjop, Pgjow) >
0, and t — d(t) is monotone increasing (HW). Thus

o2 = lim d(¢) € (0, oo]
t—00

exists. Otherwise, anything in (1) could happen.

Proposition 1. [Variational Formulal] [HT Yau (2000)]
The following variational formula holds, for o € £2,

(¢, Ryp) :5u£[)2{2(¢, 0y — (¥, A+ 8)y) — (A, M+ ) T Ay)},
Lo
(2)



Proof of Proposition 1:

(o, Rap) = (Ryp, M = L)Ry\p) = (Ryp, (A — L)R\op)

(Rap, (M + S)Ryp)

= sup {2<¢M-RA¢>-—<¢M QXI+-S)_1¢>} (selfadj. var. form

YELS

= sup {2(4, ¢) = (AT = LY, M+ 8) 7200 = L))}
YELS

= sup {24, 0) — (¥, AT+ 5)%) — (A, (M + ) 4y))
YELS

_IProposition 1

In particular

(o, M — L) 1p) < (¢, A+ 8)"1p) (3)



Probabilistic meaning: —S is the IG of the £2-semigroup of the
"symmetrized” (and thus reversible) MP &. (3) means that

/OOO e MVar (/Ot sﬁ(ns)ds> dt < /OOO e MVar (/Ot gp(fs)ds> dt

The subspace H_4

. 22
Hor:=1p €Ly el =)

= Dom(S~1/2) = Ran(S1/?)

where ST1/2 are defined in terms of the spectral theorem.

im (¢, (A +8) 1) = 1571/2¢)? < oo}

Remark: Unboundedness of L,L* S, A is a nuisance — but not

an essential problem. The main issue is unboundedness of
s—1/2,



Proposition 2. [H_q1 rules!] [Varadhan (1995)]
If p € H_q then for all t € [0, c0)

t
Var ( / w(ns)d8> < 2187202t
0

Proof of Proposition 2: Let

gy =+ 951
and for t € [0,T] (T < oo fixed)

t

M ::9)\(7775)_9)\(770)_/0 Lgy(ns)ds,

T
M i=gx (1) — gx (1) — /t L*gx(ns)ds

Then M and M;* are forward, respectively, backward (Dynkin)
martingales and for 0 < s <t <T.



¢
M — M2 = gx(m) — ga(ns) — / Lgy(nr)dr,
S

t
M — M = gx(ns) — ga(m) — / L*gy(nyr)dr,
S
Adding the two eqgs we get

t
2/ Sga(np)dr = (M = M) + (MZA — M),
S
By Schwarz

t
2Var (/ SgA(nf,a)d’r> <Var (Mt)‘—MS)‘)—I—Var <M;'<>‘—Mt*)‘> Hév4(g>\, Sgy)(t—s)

S

By the Spectral Theorem:
im Sgy = im ( gy, Sgy) = [|S~1/2y|2
lim Sgx = /\_>O<g/\ gx) = || ol
__IProposition 2
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Reversible setting: L=1L*"=-5<0, A=0
What is H_17 1. in terms of spectral measure: Denote
by v, the spectral measure (for the operator S = S* > 0) of .
Then
o
{go < 7—[_1} & {/ x_ldy¢(x) < oo}

0
(only the singularity at 0 matters). Except for very special cases

(e.g. RW in random scenery ) the spectral integral is not ex-
plicitly computable, but the spectral integrals are very useful for
qualitative arguments.

What is H_1?7 2. in terms of variance: This is the main
point!

{90 S 7'[—1} = { lim Var (t_l/z /Ot@(ns)ds> < oo}

t— 00



Theorem 1. [C Kipnis, SRS Varadhan (1986)]

(i) Discrete time. Assume P = P* (that is: n — nn is re-
versible). If o € H_q1 then there exists an L2-martingale n — My,
with stationary and ergodic increments, adapted to the filtration
Fn =o0c(nm : 0<m <n), with variance

Var (M) = o2n, o2 = 2||(I — P)"2|% = |loll?.

and such that

N—1
im N1V _ Mx | =o0.
Jim ar (kZ::O (M) N)

In particular, the finite dimensional marginal distributions of the

scaled process [turn page]

[NE]

t— N2 3 o) (4)
k=0
10



Theorem. 1 — ctd

converge to those of a BM of variance o2 — in the following

sense (written for 1-d marginals): Let ' : R — R be bdd and
continuous, and £ ~ N(0,1), then

T— 00 E—0

(ii) Continuous time. Assume L = L* = —S (that is: t — mn;
reversible). If o € H_q1 then there exists an L£2-martingale t — My,

with stationary and ergodic increments, adapted to the filtration
Fr=o(ns:0<s<t), with variance

[N]
im_ | B (F(NW > so(nk») ~E(F(oVi©))|dr(w) =0 (5)

Var (M) = o°t, o2 =2|S /2|2,
and such that [turn page]
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Theorem. 1 — ctd

T
im T~ !Var </O w(ns)ds — MT> = 0.

T—o00

In particular, the finite dim. marginals of the scaled process

Tt
{12 /O o(1s)ds (6)

2

converge to those of a BM of variance o<, in the sense of (5).

12



Remarks/Comments:

1. Comment on (5): Here are three ways to formulate the CLT
for (4)/(6) — in ascending order of strength

T
/Q <Ew (F(T—l/Q/O tgo(ns) ds)) —E (F(J\/gg)) )dw(w) T—00 4 (7)

Tt
[ B (P72 [T o as) ) - B (Plovi)lan) "H 0 @
2 0
Tt
|Ee (F(T—l/Q/O o(ns) ds)) —E (F(O‘\/%f))| T — a.s. (9)
Wording:

(7) = averaged/annealed wrt the initial condition

(8) = in probability wrt the initial condition

(9) = almost sure/quenched wrt the initial condition.
Theorem 1 states the CLT in the sense of (8).

13



2. Tightness in D(R) of the scaled processes (4), respectively,
(6) is also proved in the reversible case. Thus, full invariance
principle holds. I will not cover the tightness part.

3. Theorem 1 is optimal for the reversible setting in the sense
that it proves the CLT under the minimal condition of finite
asymptotic variance. Check finite asymptotic variance,
get CLT! (However, checking the finiteness of the
asymptotic variance in concrete cases may be tricky.)

4. Applications: Whenever the underlying MP is reversible.
(However, checking finiteness of the asymptotic variance may
be tricky!) E.g. RW in random scenery, RW among random
conductances, tagged particle diffusion in SEP (and other
symmetric interacting particle systems), traditional MCMC.

6. Proof: tour-de-force of Hilbert sp. calculus & SpecThm.

14



General - non-reversible setting:
Theorem 2. [B Toth (1986)], following [K&V (1986)] Contin-
uous time. Let p € L%. If the following conditions hold

(A) lim A2 Ryl = 0 (10)
A—0

(B) )I\imo Sl/QR/\go —=:v € [,8 exists, (11)
_>

then
(C) o2:= 2 lim (¢, Ryp) = 2||v||? € (0,00) exists, (12)
o

and there exists an £2-martinga/e t — M, with stationary and
ergodic increments, adapted to the filtration F; = o(ns : 0 < s <
t), with variance

Var (M) = o2t

and such that [turn page]
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Theorem. 2 — ctd.

T—o00

T
im T~ 1Var </O o(ns)ds — MT> = 0. (13)

In particular, the finite dim. marginals of the scaled process in
(6) converge to those of a BM of variance 2 — in the sense (5).

Remarks/Comments:

1. From general "abstract nonsense” it follows that
lim A||Ryp|| = 0. (HW)
A—0

Compare this with condition (A) in (10).
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(HW) (3) B
2. MRyel? + 1S2Rypl?2 =" (@, Ryp) < (9, M+ 9)"1p)
and hence
(A&B) = (O) = [m(p, Ryp)<oo « {peH 1}
\_> )
()
3. In [T (1986)] the following condition is set
(D) lim (A + ) {Ryp, Rup) = 0. (14)
=0

It is, however, straightforward that

HW
A+ )(Rae, Rug) "2 1512(Ryp — Ru) |12 + M Raoll? + ull Rl 2.

and thus,
(A& B) & (D)

17



4. In the reversible setting L = L* = —5, due to the Spectral
Theorem, we have (HW)

{peH 1} & (O) & (C) & (B) = (A)

5. Conditions (A) and (B) (in the non-reversible cases) are
subtle and difficult to check. We'll see computationally friendlier
sufficient conditions.

Proof of Theorem 2. (3.5 slides)

The proofin [T (1986)] follows the main steps of [K&V (1986)].
Replacing, however, spectral calculus (not available in non-reversible
cases) with resolvent calculus and modifying appropriately the
conditions.

18



Denote

Uy = R)\QO.

To prove (12) note that

Let

with

lim = lim{((\ — L :
/\_>O<90,UA> >\—>O<( Juy, uy)

= lim AlJuy[|? + lim [[S1/2u, )|
A—0 A—0

2
= [Jv]|*.

¢
M} = uy(ny) — uy(ng) — /o Luy(ns)ds,

19



Then, by Doob’s inequality

E( sup | M7 — M5|2) < 9B (1M — MF?) = 45V (uy — )Pt
0<s<t

and hence, due to (B) in (11) there exists an £2-martingale
t — M; (adapted to the same filtration) such that

E ( sup |M7 — MS|2> < 4|5 20, — )%t
0<s<t
Furthermore,
E (M) =0, Var (M;) = lim Var (Mg‘) = 2||v||%¢.
A—0
We write

¢ ¢
/o p(ns)ds = My + (M — M) — uy(ne) + uy(no) + /o Auy(ns)ds

and bound the error terms. In turn we get
20



Doob
E(sup |M§\—MS|2> < 4¢||SY/ %0, —v||?
0<s<t

E (Jux(10)1?) = E (Jua(m)2) "= (tA) 1A Juy||?

5 Schwarz t 5 5
sup | / iy ()dr2) TCE T R / 72y () 2
0<s<t 0

= t(tA) ||y |2

Choosing A =t~ 1 and letting ¢t — oo, due to conditions (A) and
(B) in (10), respectively, (11), we readily get (13).

_ I Theorem 2
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A direct application. The conditions (A & B) of Theo-
rem 2 are essentially optimal, but hard to check directly. We’'ll
see sufficient conditions soon. However, here is a RWRE model
where the theorem applies directly.

RW among Random Scatterers in 72, or randomized Lorentz
gas.

((yvuw(#))yveu) ,eza Fandom scattering matrices, spatially ergodic.
Assume

BISTOCH : » ~uw(z) =1= ) ~uw(zx) ELLIPT: yyo(z) >a>0
veld ueld

The walk:
Py (Xn—l—l =z+v[Xn=2,X, 1 =17— u) = Yuw(x)
BT (1986)]: n~1/2X,, = N(0,02), with 0 < ¢ < co.
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The Strong Sector Condition (SSC) [Vvaradhan (1996)]
There exists C' < oo, such that for any f,g € £3:

(f, Ag)|? < C?(f,Sf)(g,Sg) (SSC)

or, equivalently
1S~1/24871/2) < C. (SSC)

Theorem 3. [VVaradhan (1996)] Assume (SSC) and ¢ € H_1.
Then conditions (A & B) of Theorem 2 hold.

Applications:
1. Tagged particle diffusion in O-mean ASEP [Varadhan (1996)]

2. RW/diffusion in divergence-free drift field with bounded stream
tensor (e.g. finite loops on Z%) [SM Kozlov (1985)],
[T Komorowski, S Olla (2003)]

23



The Graded Sector Condition (GSC):
[S Sethuraman, SRS Varadhan, H-T Yau (2000)]
Structural assumption: grading

00
£2 — @ Hn, L = Z Lm,n, Lm,n : Hm — Hn
n=0 m,n>0
im—n|<r
Lm,n — —Sm,n + Am,n, S;@,n — Sn,m, A;kn,n — —An,m
The GSC: There exists a diagonal minoriser D : L2 — L2
n>0

such that the following bounds hold
[turn page]
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There exist C' < oo, 8 < 1 such that for all f,g € £?

(f, Anmg)|? < C?n2P(f, Dnf){g, Dmg) (GSC)

or, equivalently

1DR Y2 Ap D 2| < C20P (GSC)

Theorem 4. [S Sethuraman, SRS Varadhan, H-T Yau (2000)]
Assume (GSC) and o € H_1(D). Then (A & B) of Thm 2 hold.

Applications:
1. Tagged particle diffusion in ASEP, d > 3. [S-V-Y (2000)]

2. Diffusion in div-free Gaussian drift field in R, d > 3.
[T Komorowski, S Olla (2003)]

3. Self-repelling Brownian polymer and "myopic’ self-avoiding
random walk in d > 3 [I Horvath, BT, B Vetd (2012)]

25



Relaxed Sector Condition [I Horvath, BT, B Vetd (2012)]
Define the bounded operators

By =+ 8)"Y2A014+ 572, |B\| <A A|, Bi=-B,
Ky:={+B)) [ K < 1.
Then

Ry = (M + S) 12K, (A + §)~1/2

Assume that by some miracle (S’O't' — cvg. in strong op. top.)
K, ¥2% K. (15)

Then, for p € H_1, ¢ = S1/2y
uy = (M + 8) V2K, (A + 8) /2 51/2y

~))
~~

Ry ¥

26



and, since, by the Spectral Theorem

M2+ 8)"12 %% o §Y20r49)"1/2 %2 1,

we readily get
(A): M 20, = 2\V200 4+ 9) V2K, (AW + 8) Y252 0

(B): SY2u, = SY2(\1+ 8) V2K, (M + 8) 1282y 5 Kop =1 v

So, we look after sufficient conditions of (15).

27



The Relaxed Sector Condition Assume that there exists an
(possibly unbounded!) essentially skew-self-adjoint B : C — L%
such that

(Vf €C), (YA>0), (3f\ € L3) :
A”_"po | — fll =0, ,{“—To |Bxfy— Bfll=0

In plain words: there exists a skew-self-adjoint operator
B:=" 81/245-1/2 " which is the graph-limit, as A — 0, of the
sequence By = (M + S)~1/2A\T + 5)~1/2.

(RSC)

Theorem 5. [ Horvath, BT, B Vetd (2012)]
Assume that the Relaxed Sector Condition (RSC) holds and ¢ €
H_q1. Then (A & B), and thus the efficient martingale approxi-

mation in Theorem 2 hold.
28



Remarks:
1. In application one can naturally define B :=" §~1/245-1/2»

as a skew-Hermitian (skew-symmetric) operator on a dense
subspace C. The point (and difficulty!) is to prove that its
closure is indeed skew-self-adjoint. One must, e.g., check
von Neumann’s criterion

Ran(I + B) = £?

2. (8SC) = (GSC) = (RSC)
straightforward [HTV (2012)]
Applications:

1. Conceptual: Streamlined proof of [SVY (2000)]'s Thm. 4
2. RW/Diffusion in div-free random drift: (" weak’)
[IKozma, T (2017)], [T (2025)], (quenched) [T (2018)]
29



Proof of Theorem 5:
Lemma 1. (No surprizes.) Let H be a separable Hilbert space,

Bn € B(H), 1 <n < oo, and B = B densely defined, closed over
H with a core of definition C. Assume
(i) p € C is such that sup |[(ul — Bp)~ ! < oo.

<

1<n

(ii) For all f € C there exists a sequence fn € H, 1 <n < oo, S.t.

im ||lfn—fIl=0, and  ||Bnfn—Bf||=0

n—oo

T hen
(ul — Bp)~ 1 2% (ur — BY~1,

30



Proof of Lemma 1. [Reminiscent of [Trotter-Kurtz] Let

C:={g=ul—-B)f: feC}
and note that C is dense in . Indeed, since C is a core of B

and Ran(ul — B) = H (due to (i)), for any g € H and € > 0 there
exists f € C so that ||g — (uIl — B) f]| < e.

Let geC, f=(ul —B)"lgeC and f, € H as in (ii). Then

(I = Bp) ™t — (uI — B) 1)g =
(n(pd — Bn>_1 —I)(f — fn) + (I — Bn)_l(ann — Bf) =+ 0, as n— o0
Since C is dense in H, this extends to all g e H. _JLemma 1

Apply Lemma 1 with By, A — 0, and u = %1 to get (15)
I Thm 5
31



Take home message:

If B = 551/214551/2 makes sense as a well-defined skew-self-
adjoint (not merely densely defined skew-symmetric) operator,
(checked through von Neumann's criterion Ran(B + 1) = £2),
then conditions (A) and (B) hold for o € H_1.

32



Three theorems from [JF Nash (1958)]

In the forthcoming section

=2 SRl = (X @) <o}, pe Lol

xeZ4
1 1
(f.9):= ) [f(@)qg(x), fetgerd, —4+-—=1
reZd p q
F0) = Y e@lf(a), 6 € [—m,m]?
xeZ4

ANy Af(z) :=% Y (flz+k) - f(x)),
kel

d
Af(0) = —D(0)F(0) D(0) = Y (1 —cos(6;))
=1

I will use basic facts about the B-spaces /P and about the FT.
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Theorem 6. [Nash Inequality] [J Nash (1958)]
There exists a constant ¢ = ¢(d) > 0 such that:

(fs =8y z el fIZ 2, (NASH-TNEQ)

Theorem 7. [Nash Heat Kernel Bound] [J Nash (1958)]
Let <<pk(x>)k€“>xezd be doubly stochastic (DIV-FREE) and strongly

elliptic (ELLIPT) n.n. rw jump rates on 74

Y p(z)=> p_(z+1) (DIV-FREE)
= =
pr(z) +p_p(x + k) > 254 > 0, (ELLIPT)

and X; the rw on 72 with these Jjump rates. Then, there exists
a constant C = C(d, ss+) < oo such that vt € (0,0), Vz,y € Z¢4

d
P(Xy=y|Xg=2) <Ct 2. (NASH-HKB)
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Proof of Theorem 7. Due to (DIV-FREE) the counting measure
on Z% is stationary for X;. Denote P, : /P — ¢P the semigroup

P f(x) = E(f(Xy)|Xo = z)
and note that (due to stationarity of the counting measure)
[Ptllp—p <1 (HW). Then

P=LP=PL with Lf(z):= ) pp(z)(f(z+k) - f(z))
kel

Denote its self-adjoint and anti-self-adjoint parts

S:=—(L+ L*)/2 A:=(L—-L%)/2

Si@) "X LS @) (f@ k) — f(2))
kel

Af@) "B @@+ k) - f@)
keld
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Lemma 2. There exists C = C(d, s«) < oo such that

||Pt||1—>2 < Ct_d/4 ||Pt*H1—>2 < Ct_d/4 (16)

Proof of Lemma 2. Fix f:7Z% — R and let u: [0,00) — R

w(t) := |PflI5 = (Pf , Pif).
Then

(ELLIPT)
—u(t) =2(Pf, SRf) > 4s«(Bf, —APRf)

(NASH-INEQ) B )
> c jIPtf||§(d+2)/d ||ptf||14/6f > Cu(t)(d—l—Q)/d ||f||14/d

A

= u(t) (/A 5 4/

Thus
—u(®) @Dy ) > o) flIT

36



Integrate both sides to get:

_ —4/d _
u@® V> 7 o w@) < O|f)R Y2
We have proved:
vzl s R:  |BfIB < ClfIIRY2.

This is exactly (16). The same argument holds for the adjoint
semigroup P. _lLemma 2

To conclude (NASH-HKB) note that

—d/2
1Pil1500 < 1P j2ll152 1P jall2—s00 = I1Pypalliosa 1 Pollimse < CEY
and

P (Xt = y|Xo = z) = (Bidy) (2), 16yl[1 = 1.

_ | Theorem 7
37



Proof of Theorem 6. Notation: f...d6 = (2r)~® [__ ... df

For B8 € (0, «] fixed (Using Parceval’'s identity) we can write

1713 = F 17O Lz d0 + £ 1FOPL g1 5) a0

. @) C [\ 5o 2H (28)
< oa U3 +@7[ FOPDO < 2517+ 50 A1)
< 114113
where
C =C(d) :=su o° <
IO

Hence, with some constant C = C'(d) < oo
IF13 < c(I£138%+ (F, —aF)B73). (17)
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Now, optimize for (.

v — <2<f, —Af>>1/(d+2)
d|f112
If 3* < m, then insert in (17) and get

113 < CLf, —Af ¥ @+ 54/ d+2)
If 8* > 7w then
%{RHS of (17)}g=r <O

and hence

IF13 < IFIZ < CUf, —AF)
_Theorem 6
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Remarks and comments on Theorems 6 and 7:

o Theorem 6 is equally valid in LP(R, dx) and A the RA-L_aplacian.
(Actually, the original formulation is like that.)

o Theorem 7 is equally valid in R for the diffusion

AX (1) = a(X()2AB(0) + (V- a(X (1)) + (X (1))t

1 3 5 o d o
Lf(x) = 5 Zzl a—%ai,j(:v)%jf (z) + Z; ’Ui(w)a—mif ()

J:
where

vz € R? : O0<axl <a(x) = a(x)T, V-v(x)=0
(ELLIPT) (DIV-FREE)

with no more regularity assumed than necessary to ensure
strong solution to the SDE.
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o Note that in Theorem 6 only the conditions (DIV-FREE) and
(ELLIPT) are assumed. No boundedness, no more regularity.

o Relaxing (somewhat) ELL is very important and very subtle.

See, e.g., [J-C Mourrat, F Otto (2016)]
* % ok

Theorem 8. [Nash Moment Bound] [J Nash (1958)]
Let ((sk(x) = s_p(xz + kaEU):ueZd be conductances which are
strongly elliptic & bounded

0 < sx < sp(x) < 8™ < o0, (ELL & BDD)

and t — Xy the the n.n. random walk on 72 with Jjump rates
pr(z) = s (x). Then, there exists a constant C = C(d, s«, s*) < oo
such that vVt € (0, c0),

E (| X¢||Xo = 0) < CV1. (NASH-MB)
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Proof of Theorem 8. Notation throughout the proof:
qt(z) ;=P (X = x| Xg = 0)
M; := E (| X{||Xo = 0)

Hy:=— ) qz)logq(x)
reZd
= H(q:) = entropy of the distribution ¢

Lemma 3. There exists ¢ = ¢(d) > 0 such that for all t > 0, if
My > 1 then

M; > cett/d (18)

This statement follows from the entropy inequality and it is valid
for any probability distribution g on 74, See proof below.
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Lemma 4. There exists C = C(d, s«) < oo such that for all t > 0O

H, 1
— > —logt—-C 19
7 = 5109 (19)

The lower bound (19) follows from (NASH-HKB). See proof below.

H 1
Denote Gt::Ft—Elogt—l—C>O.

Then (18) of Lemma 3 reads: with some ¢ = ¢(d, s«) > 0,
M@)>1 = ¢ 120 > G0 (20)
Lemma 5. There exists C = C(d, s«, s*) such that for all t > 0

t=1/20M; < O(G(t) + 1) (21)

This is somewhat more tricky. See proof below.
The bounds (20) and (21) imply (NASH-MB). _ | Theorem 8
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Proof of Lemma 3. Let V be a countable set (e.g. Z%) and ¢ a
probability distribution on it (e.g. ¢;). Define the entropy of the
distribution g as

H(g) :=— > _ q(z)logq(z).

eV
The variational formula (22), called the entropy inequality, holds:

(HW) :  H(q) := inf (log(Z e TN+ ¥ q@)f@)  (22)

720 eV
The infimum is realised by f(xz) = —logq(xz) + C.

Apply the entropy inequality with V = Z¢, ¢ arbitrary, f(z) = sz
with some s € (0,1). Note that

E: e—ﬂx|§(j8—d
r€Z4
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Get: There exists C' = C(d) < oo, such that for any s € (0,1)
sM > H 4+ dlogs —C
If H <2C then

M>1> ¢ 20/d Hjd
=c

If H> 2C choose s =exp(—(H —2C)/d) and get

M > Ce—20/d H/d

= c

_lLemma 3

Proof of Lemma 4. This is immediate consequence of (NASH-HKB):

d d
Hi=—- )Y gq(z)log gz) > > qt(x)(i logt — C) = 5 logt — C
reZd < p—4/2 r€Z4

_lLemma 4
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Proof of Lemma 5 (somewhat computational ®)

Hy=—> qi(x)logq(x) = =) sp(x)(q(z + k) — ¢ (x)) log g (x)
Z x,k

=2 Y sk(@) (@@ + k) — @) (0g e + k) — 109 ()
x,k

sx = (qt(z + k) —q(2))? (qe(z 4+ k) — qi(x))?
52wt Tal 2 a R T a2t

My => qi(x)|z| =) sp(x)(q(z + k) — g ()|
Z x,k

=2 Y sk @)@+ k) — @)zl — |+ k)
x,k

rx+ k) — g(x
Z|Qt( + k) — qi(z)|

o @@+ k) +q() ()

<Y la(a + k) - (@) = &
x,k 46



Hence, by Schwarz,

. * . /
i< Y2 (1ya) = 0 (604 1)
N —
=: C
M, < c/t(zu)—l/Q (1+ 2uct)"? du
0

<C / ()2 4 (u/2)H2¢) du

0
— C (202 + (/226G W) - g / " 2w)"126(u) du
O "~

>0
<C(@)Y2 +(t/2)Y26(1) = CVi(G(1) +1).

_lLemma 5, Theorem 8
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Remarks and comments on Theorem 8:

o Theorem 8 is equally valid in R for the diffusion

dX (1) = a(X())2dB(t) + %V ca(X(t))dt

with infinitesimal generator

1 L 9 d
Lf(xz)= 5 i,;l 8—%%,]'(35)87]_]0(50)

where

Vz € R? : 0 < axl ga(x)za(x)Tg a"I < oo
(ELL) (BDD)
with no more regularity assumed than necessary to ensure
strong solution to the SDE. Actually, the original formulation
was like that.

48



o Extension to diffusions with infinitesimal generator
in divergence form with bounded stream tensor

AX(8) = a(X (D) Y2dB@) + (V- a(X () + T AKX (1)) )de

1 &9 8
L@ =3 % 5y (455 (7) + i (@) 5 @)
0 <axl <a(x) = a(az)Té a"I < o0, h(z) = —h(z)T(BDD)
(ELL) (BDD)

is essentially straightforward. h is called the stream tensor.
Same on the lattice Z% needs more notation only ...

o Extensions to a = a(w) and h = h(w) stationary, ergodic,
L£21e_integrable rather than bounded (£) is tricky
(see, [BT (2018)]).
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