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(A) Martingale approx. - Kipnis-Varadhan theory:

t 7→ ηt, η
∗
t stationary and ergodic continuous-time Markov Chain

and its time reversal, on (Ω,F , π). Assume sufficient regularity.

Its semigroup, resolvent, and infinitesimal generator, acting on

Lp(Ω, π), p ∈ [1,∞]:

Ptf(ω) := Eω (f(ηt)) ∥Pt∥p→p ≤ 1

Rλ :=

ˆ ∞

0
e−λtPt dt ∥Rλ∥p→p ≤ λ−1

L := st- lim
t→0

t−1(Pt − I) Pt = etL Rλ = (λI − L)−1

Recall Hille-Yosida theory of strongly continuous contraction

semigroups on Banach spaces. We assume that on L2

L = (−S +A)/2 L∗ = (−S −A)/2

That is: L and L∗ have a common core of definition.
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Given φ ∈ L2
0 we want to understand CLT for t−1/2

´ t
0φ(ηs) ds.

[Recall Doeblin’s Thm for #Ω <∞.]

The variance: Denote

c(t) := E
(
φ(ηt0)φ(ηt0+t)

)
= ⟨φ , Ptφ ⟩

d(t) := Var

(
t−1/2

ˆ t

0
φ(ηs))ds

)
= 2

ˆ t

0

t− s

t
c(s)ds (HW)

d̂(λ) := 2

ˆ ∞

0
e−λsc(s) = 2⟨φ , Rλφ ⟩

(c for covariance, d for diffusivity). Note that (HW)

d̂(λ) = λ2
ˆ ∞

0
e−λssd(s)ds,

and hence (HW)

0 ≤ lim
t→∞

d(t) ≤ lim
λ→0

d̂(λ) ≤ lim
λ→0

d̂(λ) ≤ lim
t→∞

d(t) ≤ ∞ (1)
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We are primarily interested in σ2 := limt→∞ d(t) (assuming the

limit exists) but we can better juggle with d̂(λ).

If t 7→ ηt is reversible, L = L∗ = −S, then c(s) = ⟨Ps/2φ , Ps/2φ ⟩ ≥
0, and t 7→ d(t) is monotone increasing (HW). Thus

σ2 := lim
t→∞

d(t) ∈ (0,∞]

exists. Otherwise, anything in (1) could happen.

Proposition 1. [Variational Formula] [HT Yau (2000)]

The following variational formula holds, for φ ∈ L2,

⟨φ , Rλφ ⟩ = sup
ψ∈L2

0

{
2⟨ψ , φ ⟩ − ⟨ψ , (λI + S)ψ ⟩ − ⟨Aψ , (λI + S)−1Aψ ⟩

}
.

(2)
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Proof of Proposition 1:

⟨φ , Rλφ ⟩ = ⟨Rλφ , (λI − L∗)Rλφ ⟩ = ⟨Rλφ , (λI − L)Rλφ ⟩

= ⟨Rλφ , (λI + S)Rλφ ⟩

= sup
ψ∈L2

0

{
2⟨ψ , Rλφ ⟩ − ⟨ψ , (λI + S)−1ψ ⟩

}
(selfadj. var. form.)

= sup
ψ∈L2

0

{
2⟨ψ , φ ⟩ − ⟨ (λI − L∗)ψ , (λI + S)−1(λI − L∗)ψ ⟩

}

= sup
ψ∈L2

0

{
2⟨ψ , φ ⟩ − ⟨ψ , (λI + S)ψ ⟩ − ⟨Aψ , (λI + S)−1Aψ ⟩

}
Proposition 1

In particular

⟨φ , (λI − L)−1φ ⟩ ≤ ⟨φ , (λI + S)−1φ ⟩ (3)
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Probabilistic meaning: −S is the IG of the L2-semigroup of the

”symmetrized” (and thus reversible) MP ξt. (3) means that
ˆ ∞

0
e−λtVar

(ˆ t

0
φ(ηs)ds

)
dt ≤

ˆ ∞

0
e−λtVar

(ˆ t

0
φ(ξs)ds

)
dt

The subspace H−1

H−1 := {φ ∈ L2
0 : ∥φ∥2−1 := lim

λ→0
⟨φ , (λI + S)−1φ ⟩ = ∥S−1/2φ∥2 <∞}

= Dom(S−1/2) = Ran(S1/2)

where S±1/2 are defined in terms of the spectral theorem.

Remark: Unboundedness of L,L∗, S, A is a nuisance – but not

an essential problem. The main issue is unboundedness of

S−1/2.
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Proposition 2. [H−1 rules!] [Varadhan (1995)]

If φ ∈ H−1 then for all t ∈ [0,∞)

Var

(ˆ t

0
φ(ηs)ds

)
≤ 2∥S−1/2φ∥2t.

Proof of Proposition 2: Let

gλ := (λI + S)−1φ

and for t ∈ [0, T ] (T <∞ fixed)

Mλ
t :=gλ(ηt)− gλ(η0)−

ˆ t

0
Lgλ(ηs)ds,

M∗λ
t :=gλ(ηt)− gλ(ηT )−

ˆ T

t
L∗gλ(ηs)ds

Then Mλ
t and M∗λ

t are forward, respectively, backward (Dynkin)

martingales and for 0 ≤ s ≤ t ≤ T .
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Mλ
t −Mλ

s = gλ(ηt)− gλ(ηs)−
ˆ t

s
Lgλ(ηr)dr,

M∗λ
s −M∗λ

t = gλ(ηs)− gλ(ηt)−
ˆ t

s
L∗gλ(ηr)dr,

Adding the two eqs we get

2

ˆ t

s
Sgλ(ηr)dr =

(
Mλ
t −Mλ

s

)
+
(
M∗λ
s −M∗λ

t

)
.

By Schwarz

2Var

(̂
t

s
Sgλ(ηr)dr

)
≤Var

(
Mλ
t −Mλ

s

)
+Var

(
M∗λ
s −M∗λ

t

)HW
= 4⟨ gλ , Sgλ ⟩(t−s)

By the Spectral Theorem:

lim
λ→0

Sgλ = φ lim
λ→0

⟨ gλ , Sgλ ⟩ = ∥S−1/2φ∥2

Proposition 2
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Reversible setting: L = L∗ = −S ≤ 0, A = 0

What is H−1? 1. in terms of spectral measure: Denote

by νφ the spectral measure (for the operator S = S∗ ≥ 0) of φ.

Then {
φ ∈ H−1

}
⇔

{ ˆ ∞

0
x−1dνφ(x) <∞

}
(only the singularity at 0 matters). Except for very special cases

(e.g. RW in random scenery ) the spectral integral is not ex-

plicitly computable, but the spectral integrals are very useful for

qualitative arguments.

What is H−1? 2. in terms of variance: This is the main

point! {
φ ∈ H−1

}
⇔

{
lim
t→∞

Var

(
t−1/2

ˆ t

0
φ(ηs)ds

)
<∞

}
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Theorem 1. [C Kipnis, SRS Varadhan (1986)]

(i) Discrete time. Assume P = P ∗ (that is: n 7→ ηn is re-

versible). If φ ∈ H−1 then there exists an L2-martingale n 7→Mn,

with stationary and ergodic increments, adapted to the filtration

Fn = σ(ηm : 0 ≤ m ≤ n), with variance

Var (Mn) = σ2n, σ2 = 2∥(I − P )−1/2φ∥2 − ∥φ∥2,

and such that

lim
N→∞

N−1Var

N−1∑
k=0

φ(ηk)−MN

 = 0.

In particular, the finite dimensional marginal distributions of the

scaled process [turn page]

t 7→ N−1/2
[Nt]∑
k=0

φ(ηk) (4)
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Theorem. 1 – ctd

converge to those of a BM of variance σ2 – in the following

sense (written for 1-d marginals): Let F : R → R be bdd and

continuous, and ξ ∼ N (0,1), then

lim
T→∞

ˆ
Ω
|Eω

F (N−1/2
[Nt]∑
k=0

φ(ηk))

− E
(
F (σ

√
tξ)

)
| dπ(ω) = 0 (5)

(ii) Continuous time. Assume L = L∗ = −S (that is: t 7→ ηt
reversible). If φ ∈ H−1 then there exists an L2-martingale t 7→Mt,

with stationary and ergodic increments, adapted to the filtration

Ft = σ(ηs : 0 ≤ s ≤ t), with variance

Var (Mt) = σ2t, σ2 = 2∥S−1/2φ∥2,

and such that [turn page]
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Theorem. 1 – ctd

lim
T→∞

T−1Var

(ˆ T

0
φ(ηs)ds−MT

)
= 0.

In particular, the finite dim. marginals of the scaled process

t 7→ T−1/2
ˆ Tt

0
φ(ηs)ds (6)

converge to those of a BM of variance σ2, in the sense of (5).
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Remarks/Comments:

1. Comment on (5): Here are three ways to formulate the CLT

for (4)/(6) – in ascending order of strength
ˆ
Ω

(
Eω

(
F (T−1/2

ˆ Tt

0
φ(ηs) ds)

)
− E

(
F (σ

√
tξ)

) )
dπ(ω)

T→∞→ 0 (7)

ˆ
Ω
|Eω

(
F (T−1/2

ˆ Tt

0
φ(ηs) ds)

)
− E

(
F (σ

√
tξ)

)
|dπ(ω) T→∞→ 0 (8)

|Eω
(
F (T−1/2

ˆ Tt

0
φ(ηs) ds)

)
− E

(
F (σ

√
tξ)

)
| π − a.s. (9)

Wording:

(7) = averaged/annealed wrt the initial condition

(8) = in probability wrt the initial condition

(9) = almost sure/quenched wrt the initial condition.

Theorem 1 states the CLT in the sense of (8).
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2. Tightness in D(R) of the scaled processes (4), respectively,

(6) is also proved in the reversible case. Thus, full invariance

principle holds. I will not cover the tightness part.

3. Theorem 1 is optimal for the reversible setting in the sense

that it proves the CLT under the minimal condition of finite

asymptotic variance. Check finite asymptotic variance,

get CLT! (However, checking the finiteness of the

asymptotic variance in concrete cases may be tricky.)

4. Applications: Whenever the underlying MP is reversible.

(However, checking finiteness of the asymptotic variance may

be tricky!) E.g. RW in random scenery, RW among random

conductances, tagged particle diffusion in SEP (and other

symmetric interacting particle systems), traditional MCMC.

6. Proof: tour-de-force of Hilbert sp. calculus & SpecThm.
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General - non-reversible setting:
Theorem 2. [B Tóth (1986)], following [K&V (1986)] Contin-

uous time. Let φ ∈ L2
0. If the following conditions hold

(A) lim
λ→0

λ1/2∥Rλφ∥ = 0 (10)

(B) lim
λ→0

S1/2Rλφ =: v ∈ L2
0 exists, (11)

then

(C) σ2 := 2 lim
λ→0

(φ,Rλφ) = 2∥v∥2 ∈ (0,∞) exists, (12)

and there exists an L2-martingale t 7→ Mt, with stationary and

ergodic increments, adapted to the filtration Ft = σ(ηs : 0 ≤ s ≤
t), with variance

Var (Mt) = σ2t,

and such that [turn page]
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Theorem. 2 – ctd.

lim
T→∞

T−1Var

(ˆ T

0
φ(ηs)ds−MT

)
= 0. (13)

In particular, the finite dim. marginals of the scaled process in

(6) converge to those of a BM of variance σ2 – in the sense (5).

Remarks/Comments:

1. From general ”abstract nonsense” it follows that

lim
λ→0

λ∥Rλφ∥ = 0. (HW)

Compare this with condition (A) in (10).
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2. λ∥Rλφ∥2 + ∥S1/2Rλφ∥2
(HW)
= ⟨φ , Rλφ ⟩

(3)
≤ ⟨φ , (λI + S)−1φ ⟩

and hence

(A & B) ⇒ (C) ⇒ lim
λ→0

⟨φ , Rλφ ⟩ <∞︸ ︷︷ ︸
(C′)

⇐ {φ ∈ H−1}.

3. In [T (1986)] the following condition is set

(D) lim
λ,µ→0

(λ+ µ)⟨Rλφ , Rµφ ⟩ = 0. (14)

It is, however, straightforward that

(λ+ µ)⟨Rλφ , Rµφ ⟩
(HW)
= ∥S1/2(Rλφ−Rµφ)∥2 + λ∥Rλφ∥2 + µ∥Rµφ∥2.

and thus,

(A & B) ⇔ (D)
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4. In the reversible setting L = L∗ = −S, due to the Spectral

Theorem, we have (HW)

{φ ∈ H−1} ⇔ (C) ⇔ (C′) ⇔ (B) ⇒ (A)

5. Conditions (A) and (B) (in the non-reversible cases) are

subtle and difficult to check. We’ll see computationally friendlier

sufficient conditions.

Proof of Theorem 2. (3.5 slides)

The proof in [T (1986)] follows the main steps of [K&V (1986)].

Replacing, however, spectral calculus (not available in non-reversible

cases) with resolvent calculus and modifying appropriately the

conditions.
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Denote

uλ := Rλφ.

To prove (12) note that

lim
λ→0

⟨φ , uλ ⟩ = lim
λ→0

⟨ (λI − L)uλ , uλ ⟩

= lim
λ→0

λ∥uλ∥2 + lim
λ→0

∥S1/2uλ∥2

= ∥v∥2.

Let

Mλ
t := uλ(ηt)− uλ(η0)−

ˆ t

0
Luλ(ηs)ds,

with

E
(
Mλ
t

)
= 0, Var

(
Mλ
t

) (HW)
= 2∥S1/2uλ∥2t.
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Then, by Doob’s inequality

E

(
sup

0≤s≤t
|Mλ

s −Mµ
s |2

)
≤ 2E

(
|Mλ

t −M
µ
t |

2
)
= 4∥S1/2(uλ − uµ)∥2t

and hence, due to (B) in (11) there exists an L2-martingale

t 7→Mt (adapted to the same filtration) such that

E

(
sup

0≤s≤t
|Mλ

s −Ms|2
)
≤ 4∥S1/2uλ − v∥2t.

Furthermore,

E (Mt) = 0, Var (Mt) = lim
λ→0

Var
(
Mλ
t

)
= 2∥v∥2t.

We writeˆ t

0
φ(ηs)ds =Mt+ (Mλ

t −Mt)− uλ(ηt) + uλ(η0) +

ˆ t

0
λuλ(ηs)ds

and bound the error terms. In turn we get
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E

(
sup

0≤s≤t
|Mλ

s −Ms|2
)

Doob
≤ 4t∥S1/2uλ − v∥2

E
(
|uλ(η0)|2

)
= E

(
|uλ(ηt)|2

) stat.
= t(tλ)−1λ∥uλ∥2

E

(
sup

0≤s≤t
|
ˆ s

0
λuλ(ηr)dr|2

)
Schwarz

≤ tE

(ˆ t

0
λ2|uλ(ηr)|2dr

)

= t(tλ)λ∥uλ∥2

Choosing λ = t−1 and letting t → ∞, due to conditions (A) and

(B) in (10), respectively, (11), we readily get (13).

Theorem 2
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A direct application. The conditions (A & B) of Theo-

rem 2 are essentially optimal, but hard to check directly. We’ll

see sufficient conditions soon. However, here is a RWRE model

where the theorem applies directly.

RW among Random Scatterers in Zd, or randomized Lorentz

gas.

((γu,v(x))u,v∈U)x∈Zd random scattering matrices, spatially ergodic.

Assume

BISTOCH :
∑
v∈U

γu,v(x) = 1 =
∑
u∈U

γu,v(x) ELLIPT : γu,v(x) ≥ a > 0

The walk:

Pω
(
Xn+1 = x+ v|Xn = x,Xn−1 = x− u

)
= γu,v(x)

[BT (1986)]: n−1/2Xn ⇒ N (0, σ2), with 0 < σ <∞.

22



The Strong Sector Condition (SSC) [Varadhan (1996)]

There exists C <∞, such that for any f, g ∈ L2
0:

|⟨ f , Ag ⟩|2 ≤ C2⟨ f , Sf ⟩⟨ g , Sg ⟩ (SSC)

or, equivalently

∥S−1/2AS−1/2∥ ≤ C. (SSC)

Theorem 3. [Varadhan (1996)] Assume (SSC) and φ ∈ H−1.

Then conditions (A & B) of Theorem 2 hold.

Applications:

1. Tagged particle diffusion in 0-mean ASEP [Varadhan (1996)]

2. RW/diffusion in divergence-free drift field with bounded stream

tensor (e.g. finite loops on Zd) [SM Kozlov (1985)],

[T Komorowski, S Olla (2003)]
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The Graded Sector Condition (GSC):

[S Sethuraman, SRS Varadhan, H-T Yau (2000)]

Structural assumption: grading

L2 =
∞⊕
n=0

Hn, L =
∑

m,n≥0
|m−n|≤r

Lm,n, Lm,n : Hm → Hn

Lm,n = −Sm,n+Am,n, S∗
m,n = Sn,m, A∗

m,n = −An,m

The GSC: There exists a diagonal minoriser D : L2 → L2

D = D∗ =
∑
n≥0

Dn, Dn : Hn → Hn, 0 ≤ D ≤ S

such that the following bounds hold

[turn page]
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There exist C <∞, β < 1 such that for all f, g ∈ L2

|⟨ f , An,mg ⟩|2 ≤ C2n2β⟨ f , Dnf ⟩⟨ g , Dmg ⟩ (GSC)

or, equivalently

∥D−1/2
n An,mD

−1/2
m ∥ ≤ C2nβ (GSC)

Theorem 4. [S Sethuraman, SRS Varadhan, H-T Yau (2000)]

Assume (GSC) and φ ∈ H−1(D). Then (A & B) of Thm 2 hold.

Applications:

1. Tagged particle diffusion in ASEP, d ≥ 3. [S-V-Y (2000)]

2. Diffusion in div-free Gaussian drift field in Rd, d ≥ 3.

[T Komorowski, S Olla (2003)]

3. Self-repelling Brownian polymer and ”myopic” self-avoiding

random walk in d ≥ 3 [I Horváth, BT, B Vető (2012)]
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Relaxed Sector Condition [I Horváth, BT, B Vető (2012)]

Define the bounded operators

Bλ := (λI + S)−1/2A(λI + S)−1/2, ∥Bλ∥ ≤ λ−1∥A∥, B∗
λ = −Bλ

Kλ := (I +Bλ)
−1, ∥Kλ∥ ≤ 1.

Then

Rλ = (λI + S)−1/2Kλ(λI + S)−1/2

Assume that by some miracle (
s.o.t.−→ = cvg. in strong op. top.)

Kλ
s.o.t.−→ K. (15)

Then, for φ ∈ H−1, φ = S1/2ψ

uλ = (λI + S)−1/2Kλ(λI + S)−1/2︸ ︷︷ ︸
Rλ

S1/2ψ︸ ︷︷ ︸
φ

,
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and, since, by the Spectral Theorem

λ1/2(λI + S)−1/2 s.o.t.−→ 0, S1/2(λI + S)−1/2 s.o.t.−→ I,

we readily get

(A): λ1/2uλ = λ1/2(λI + S)−1/2Kλ(λI + S)−1/2S1/2ψ → 0

(B): S1/2uλ = S1/2(λI + S)−1/2Kλ(λI + S)−1/2S1/2ψ → Kψ =: v

So, we look after sufficient conditions of (15).
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The Relaxed Sector Condition Assume that there exists an

(possibly unbounded!) essentially skew-self-adjoint B : C → L2
0

such that

(∀f ∈ C), (∀λ > 0), (∃fλ ∈ L2
0) :

lim
λ→0

∥fλ − f∥ = 0, lim
λ→0

∥Bλfλ −Bf∥ = 0
(RSC)

In plain words: there exists a skew-self-adjoint operator

B := ” S−1/2AS−1/2 ” which is the graph-limit, as λ→ 0, of the

sequence Bλ := (λI + S)−1/2A(λI + S)−1/2.

Theorem 5. [I Horváth, BT, B Vető (2012)]

Assume that the Relaxed Sector Condition (RSC) holds and φ ∈
H−1. Then (A & B), and thus the efficient martingale approxi-

mation in Theorem 2 hold.
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Remarks:

1. In application one can naturally define B := ” S−1/2AS−1/2 ”

as a skew-Hermitian (skew-symmetric) operator on a dense

subspace C. The point (and difficulty!) is to prove that its

closure is indeed skew-self-adjoint. One must, e.g., check

von Neumann’s criterion

Ran(I ±B) = L2

2. (SSC) =⇒︸ ︷︷ ︸
straightforward

(GSC) =⇒︸ ︷︷ ︸
[HTV (2012)]

(RSC)

Applications:

1. Conceptual: Streamlined proof of [SVY (2000)]’s Thm. 4

2. RW/Diffusion in div-free random drift: (”weak”)

[Kozma, T (2017)], [T (2025)], (quenched) [T (2018)]
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Proof of Theorem 5:

Lemma 1. (No surprizes.) Let H be a separable Hilbert space,

Bn ∈ B(H), 1 ≤ n <∞, and B∞ = B densely defined, closed over

H with a core of definition C. Assume

(i) µ ∈ C is such that sup
1≤n≤∞

∥(µI −Bn)
−1∥ <∞.

(ii) For all f ∈ C there exists a sequence fn ∈ H, 1 ≤ n <∞, s.t.

lim
n→∞ ∥fn − f∥ = 0, and ∥Bnfn −Bf∥ = 0

Then

(µI −Bn)
−1 s.o.t.−→ (µI −B)−1.

30



Proof of Lemma 1. [Reminiscent of [Trotter-Kurtz] Let

Ĉ := {g = (µI −B)f : f ∈ C}

and note that Ĉ is dense in H. Indeed, since C is a core of B

and Ran(µI −B) = H (due to (i)), for any g ∈ H and ε > 0 there

exists f ∈ C so that ∥g − (µI −B)f∥ < ε.

Let g ∈ Ĉ, f = (µI −B)−1g ∈ C and fn ∈ Ĥ as in (ii). Then

((µI −Bn)
−1 − (µI −B)−1)g =

(µ(µI −Bn)
−1 − I)(f − fn) + (µI −Bn)

−1(Bnfn −Bf) → 0, as n→ ∞

Since Ĉ is dense in H, this extends to all g ∈ H. Lemma 1

Apply Lemma 1 with Bλ, λ→ 0, and µ = ±1 to get (15)

Thm 5
31



Take home message:

If B := S
−1/2
0 AS

−1/2
0 makes sense as a well-defined skew-self-

adjoint (not merely densely defined skew-symmetric) operator,

(checked through von Neumann’s criterion Ran(B ± I) = L2),

then conditions (A) and (B) hold for φ ∈ H−1.
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Three theorems from [JF Nash (1958)]

In the forthcoming section

ℓp := {f : Zd → R : ∥f∥p :=
( ∑
x∈Zd

|f(x)|p
)1/p

<∞}, p ∈ [1,∞]

⟨ f , g ⟩ :=
∑
x∈Zd

f(x)g(x), f ∈ ℓp, g ∈ ℓq,
1

p
+

1

q
= 1

f̂(θ) :=
∑
x∈Zd

eix·θf(x), θ ∈ [−π, π]d

∆ : ℓp → ℓp, ∆f(x) :=
1

2

∑
k∈U

(f(x+ k)− f(x)),

∆̂f(θ) = −D̂(θ)f̂(θ) D̂(θ) =
d∑

i=1

(1− cos(θi))

I will use basic facts about the B-spaces ℓp and about the FT.
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Theorem 6. [Nash Inequality] [J Nash (1958)]

There exists a constant c = c(d) > 0 such that:

⟨ f , −∆f ⟩ ≥ c ∥f∥2(d+2)/d
2 ∥f∥−4/d

1 . (NASH-INEQ)

Theorem 7. [Nash Heat Kernel Bound] [J Nash (1958)]

Let
(
(pk(x))k∈U

)
x∈Zd

be doubly stochastic (DIV-FREE) and strongly

elliptic (ELLIPT) n.n. rw jump rates on Zd:∑
l∈U

pl(x) =
∑
l∈U

p−l(x+ l) (DIV-FREE)

pk(x) + p−k(x+ k) ≥ 2s∗ > 0, (ELLIPT)

and Xt the rw on Zd with these jump rates. Then, there exists

a constant C = C(d, s∗) <∞ such that ∀t ∈ (0,∞), ∀x, y ∈ Zd

P (Xt = y|X0 = x) < Ct−
d
2. (NASH-HKB)
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Proof of Theorem 7. Due to (DIV-FREE) the counting measure

on Zd is stationary for Xt. Denote Pt : ℓp → ℓp the semigroup

Ptf(x) := E (f(Xt)|X0 = x)

and note that (due to stationarity of the counting measure)

∥Pt∥p→p ≤ 1 (HW). Then

Ṗt = LPt = PtL with Lf(x) :=
∑
k∈U

pk(x)(f(x+ k)− f(x))

Denote its self-adjoint and anti-self-adjoint parts

S := −(L+ L∗)/2 A := (L− L∗)/2

Sf(x)
(HW)
= −

∑
k∈U

sk(x)(f(x+ k)− f(x))

Af(x)
(HW)
=

∑
k∈U

vk(x)(f(x+ k)− f(x))
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Lemma 2. There exists C = C(d, s∗) <∞ such that

∥Pt∥1→2 ≤ Ct−d/4 ∥P ∗
t ∥1→2 ≤ Ct−d/4 (16)

Proof of Lemma 2. Fix f : Zd → R and let u : [0,∞) → R+

u(t) := ∥Ptf∥22 = ⟨Ptf , Ptf ⟩.

Then

−u̇(t) = 2⟨Ptf , SPtf ⟩
(ELLIPT)

≥ 4s∗ ⟨Ptf , −∆Ptf ⟩

(NASH-INEQ)
≥ c ∥Ptf∥

2(d+2)/d
2︸ ︷︷ ︸

= u(t)(d+2)/d

∥Ptf∥
−4/d
1︸ ︷︷ ︸

≥ ∥f∥−4/d
1

≥ c u(t)(d+2)/d ∥f∥−4/d
1

Thus

−u(t)−(d+2)/du̇(t) ≥ c∥f∥−4/d
1 .
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Integrate both sides to get:

u(t)−2/d ≥ c∥f∥−4/d
1 t or u(t) ≤ C∥f∥21 t

−d/2

We have proved:

∀f : Zd → R : ∥Ptf∥22 ≤ C∥f∥21t
−d/2.

This is exactly (16). The same argument holds for the adjoint

semigroup P ∗
t . Lemma 2

To conclude (NASH-HKB) note that

∥Pt∥1→∞ ≤ ∥Pt/2∥1→2 ∥Pt/2∥2→∞ = ∥Pt/2∥1→2 ∥P ∗
t/2∥1→2 ≤ Ct−d/2

and

P (Xt = y|X0 = x) = (Ptδy)(x), ∥δy∥1 = 1.

Theorem 7
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Proof of Theorem 6. Notation:
ffl
. . . dθ := (2π)−d

´
[−π,π]d . . . dθ

For β ∈ (0, π] fixed (Using Parceval’s identity) we can write

∥f∥22 =

 
|f̂(θ)|211{|θ|∞≤β} dθ+

 
|f̂(θ)|211{|θ|∞>β} dθ

≤
(2β)d

(2π)d
∥f̂∥2∞︸ ︷︷ ︸
≤ ∥f∥21

+
C

β2

 
|f̂(θ)|2D̂(θ) dθ ≤

(2β)d

(2π)d
∥f∥21 +

C

β2
⟨ f , −∆f ⟩

where

C = C(d) := sup
θ

|θ|2

D̂(θ)
<∞

Hence, with some constant C = C(d) <∞

∥f∥22 ≤ C
(
∥f∥21β

d+ ⟨ f , −∆f ⟩β−2
)
. (17)
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Now, optimize for β.

β∗ =

(
2⟨ f , −∆f ⟩

d∥f∥21

)1/(d+2)

If β∗ < π, then insert in (17) and get

∥f∥22 ≤ C⟨ f , −∆f ⟩d/(d+2)∥f∥4/(d+2)
1 ✓

If β∗ > π then

d

dβ
{RHS of (17)}|β=π < 0

and hence

∥f∥22 ≤ ∥f∥21 ≤ C⟨ f , −∆f ⟩ ✓
Theorem 6
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Remarks and comments on Theorems 6 and 7:

◦ Theorem 6 is equally valid in Lp(R, dx) and ∆ the Rd-Laplacian.
(Actually, the original formulation is like that.)

◦ Theorem 7 is equally valid in Rd for the diffusion

dX(t) = a(X(t))1/2dB(t) + (
1

2
∇ · a(X(t)) + v(X(t)))dt

Lf(x) =
1

2

d∑
i,j=1

∂

∂xi
ai,j(x)

∂

∂xj
f(x) +

d∑
i=1

vi(x)
∂

∂xi
f(x)

where

∀x ∈ Rd : 0 < a∗I ≤ a(x)︸ ︷︷ ︸
(ELLIPT)

= a(x)†, ∇ · v(x) ≡ 0︸ ︷︷ ︸
(DIV-FREE)

with no more regularity assumed than necessary to ensure

strong solution to the SDE.
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◦ Note that in Theorem 6 only the conditions (DIV-FREE) and

(ELLIPT) are assumed. No boundedness, no more regularity.

◦ Relaxing (somewhat) ELL is very important and very subtle.

See, e.g., [J-C Mourrat, F Otto (2016)]

* * *

Theorem 8. [Nash Moment Bound] [J Nash (1958)]

Let
(
(sk(x) = s−k(x + k))k∈U

)
x∈Zd

be conductances which are

strongly elliptic & bounded

0 < s∗ ≤ sk(x) < s∗ <∞, (ELL & BDD)

and t 7→ Xt the the n.n. random walk on Zd with jump rates

pk(x) = sk(x). Then, there exists a constant C = C(d, s∗, s∗) <∞
such that ∀t ∈ (0,∞),

E (|Xt||X0 = 0) ≤ C
√
t. (NASH-MB)
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Proof of Theorem 8. Notation throughout the proof:

qt(x) := P (Xt = x|X0 = 0)

Mt := E (|Xt||X0 = 0)

Ht := −
∑
x∈Zd

qt(x) log qt(x)

= H(qt) = entropy of the distribution qt

Lemma 3. There exists c = c(d) > 0 such that for all t > 0, if

Mt > 1 then

Mt ≥ c eHt/d (18)

This statement follows from the entropy inequality and it is valid

for any probability distribution q on Zd. See proof below.
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Lemma 4.There exists C = C(d, s∗) <∞ such that for all t > 0

Ht

d
≥

1

2
log t− C (19)

The lower bound (19) follows from (NASH-HKB). See proof below.

Denote Gt :=
Ht

d
−

1

2
log t+ C > 0.

Then (18) of Lemma 3 reads: with some c = c(d, s∗) > 0,

M(t) ≥ 1 ⇒ t−1/2Mt ≥ ceG(t) (20)

Lemma 5. There exists C = C(d, s∗, s∗) such that for all t > 0

t−1/2Mt ≤ C(G(t) + 1) (21)

This is somewhat more tricky. See proof below.

The bounds (20) and (21) imply (NASH-MB). Theorem 8
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Proof of Lemma 3. Let V be a countable set (e.g. Zd) and q a

probability distribution on it (e.g. qt). Define the entropy of the

distribution q as

H(q) := −
∑
x∈V

q(x) log q(x).

The variational formula (22), called the entropy inequality, holds:

(HW) : H(q) := inf
f≥0

(
log(

∑
x∈V

e−f(x)) +
∑
x∈V

q(x)f(x)
)

(22)

The infimum is realised by f(x) = − log q(x) + C.

Apply the entropy inequality with V = Zd, q arbitrary, f(x) = s|x|
with some s ∈ (0,1). Note that∑

x∈Zd
e−s|x| ≤ Cs−d
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Get: There exists C = C(d) <∞, such that for any s ∈ (0,1)

sM ≥ H + d log s− C

If H ≤ 2C then

M > 1 > e−2C/d︸ ︷︷ ︸
= c

eH/d.

If H ≥ 2C choose s = exp(−(H − 2C)/d) and get

M ≥ C e−2C/d︸ ︷︷ ︸
= c

eH/d.

Lemma 3

Proof of Lemma 4. This is immediate consequence of (NASH-HKB):

Ht = −
∑
x∈Zd

qt(x) log qt(x)︸ ︷︷ ︸
≤ Ct−d/2

≥
∑
x∈Zd

qt(x)(
d

2
log t− C) =

d

2
log t− C

Lemma 4
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Proof of Lemma 5 (somewhat computational /)

Ḣt = −
∑
x
q̇t(x) log qt(x) = −

∑
x,k

sk(x)(qt(x+ k)− qt(x)) log qt(x)

=
1

2

∑
x,k

sk(x)(qt(x+ k)− qt(x))(log qt(x+ k)− log qt(x))

≥
s∗
2

∑
x,k

(qt(x+ k)− qt(x))2

qt(x+ k) + qt(x)
= s∗

∑
x,k

(qt(x+ k)− qt(x))2

(qt(x+ k) + qt(x))2
qt(x)

Ṁt =
∑
x
q̇t(x)|x| =

∑
x,k

sk(x)(qt(x+ k)− qt(x))|x|

=
1

2

∑
x,k

sk(x)(qt(x+ k)− qt(x))(|x| − |x+ k|)

≤
s∗

2

∑
x,k

|qt(x+ k)− qt(x)| = s∗
∑
x,k

|qt(x+ k)− qt(x)|
qt(x+ k) + qt(x)

qt(x)
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Hence, by Schwarz,

Ṁt ≤
√
ds∗

√
s∗︸ ︷︷ ︸

=: C

(
Ḣt/d

)1/2
= C

(
Ġt+

1

2t

)1/2

Mt ≤ C

ˆ t

0
(2u)−1/2

(
1+ 2uĠu

)1/2
du

≤ C

ˆ t

0

(
(2u)−1/2 + (u/2)1/2Ġu

)
du

= C
(
(2t)1/2 + (t/2)1/2G(t)

)
−
C

2

ˆ t

0
(2u)−1/2G(u)︸ ︷︷ ︸

≥0

du

≤ C
(
(2t)1/2 + (t/2)1/2G(t)

)
= C

√
t(G(t) + 1).

Lemma 5, Theorem 8
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Remarks and comments on Theorem 8:

◦ Theorem 8 is equally valid in Rd for the diffusion

dX(t) = a(X(t))1/2dB(t) +
1

2
∇ · a(X(t))dt

with infinitesimal generator

Lf(x) =
1

2

d∑
i,j=1

∂

∂xi
ai,j(x)

∂

∂xj
f(x)

where

∀x ∈ Rd : 0 < a∗I ≤︸ ︷︷ ︸
(ELL)

a(x) = a(x)†≤ a∗I <∞︸ ︷︷ ︸
(BDD)

with no more regularity assumed than necessary to ensure

strong solution to the SDE. Actually, the original formulation

was like that.
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◦ Extension to diffusions with infinitesimal generator

in divergence form with bounded stream tensor

dX(t) = a(X(t))1/2dB(t) +
1

2

(
∇ · a(X(t)) +∇ · h︸ ︷︷ ︸

=: v
(X(t))

)
dt

Lf(x) =
1

2

d∑
i,j=1

∂

∂xi

(
ai,j(x) + hi,j(x)

) ∂

∂xj
f(x)

0 < a∗I ≤︸ ︷︷ ︸
(ELL)

a(x) = a(x)†≤ a∗I <∞︸ ︷︷ ︸
(BDD)

, h(x) = −h(x)†(BDD)

is essentially straightforward. h is called the stream tensor.

Same on the lattice Zd needs more notation only . . .

◦ Extensions to a = a(ω) and h = h(ω) stationary, ergodic,

L2+ε-integrable rather than bounded (L∞) is tricky

(see, [BT (2018)]).
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