Exercise 1 (Rescaling the Central Path) Let $z(\mu) = (x(\mu), s(\mu), y(\mu))$ be the central path for the primal-dual LP with data (\mathbf{A}, b, c) , $\mathbf{A} \in \mathbb{R}^{m \times n}$, rank $(\mathbf{A}) = m, b \in \mathbb{R}^m, c \in \mathbb{R}^n$. Let $w, z > 0_n$ satisfy $WZ = \alpha \mathbf{I}_n$, where W = diag(w), Z = diag(z). Examine the rescaled LP with data $(\bar{\mathbf{A}}, \bar{b}, \bar{c}) := (\mathbf{A}W, b, Z^{-1}c)$, and let $\bar{z}(\mu) = (\bar{x}(\mu), \bar{s}(\mu), \bar{y}(\mu))$ denote its central path.

1. Prove that $\bar{z}(\mu) = (W^{-1}x(\alpha\mu), Z^{-1}s(\alpha\mu), \frac{y(\alpha\mu)}{\alpha})$. (Hint: Show that the right hand side satisfies the central path equations.)

2. Let $(w, z) = (x(\alpha), s(\alpha))$. What is $(\bar{x}(1), \bar{s}(1))$?

Exercise 2 (Interpretation of Step Equations)

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, rank $(\mathbf{A}) = m$, $t \in \mathbb{R}^n$, $r > 0_n$. Examine the linear system:

 $r\Delta x + r^{-1}\Delta s = t \tag{1}$

$$\mathbf{A}\Delta x = b \tag{2}$$

$$\mathbf{A}^{\top} \Delta y + \Delta s = c. \tag{3}$$

Prove that Δx above is a minimizer of:

$$\min_{\mathbf{A}z=b} \|t-rz\|_2^2/2 + \langle c,z\rangle.$$

(Hint: Use Δy as Lagrange multiplier for Az = b.) **Remark:** It can similarly be shown that $(\Delta s, \Delta y)$ is a minimizer (in fact, unique) of $\min_{\mathbf{A}^\top v + w = c} ||t - r^{-1}w||_2^2 - \langle b, v \rangle$.