

# **Variational Gaussian Processes For Linear Inverse Problems**

**Joint work with Botond Szabo**

**Thibault Randrianarisoa**

## Inverse problems

# Statistical inverse regression models

---

**Model** Consider observations  $(X_i, Y_i)$  arising from

$$Y_i = \mathcal{A}f_0(X_i) + \epsilon_i, \quad i = 1, \dots, n,$$

- $\mathcal{A}: L^2(\mathcal{T}, \mu) \mapsto L^2(\mathcal{X}, \nu)$  known injective continuous linear operator
- $X_1, \dots, X_n \sim \nu$  iid
- $\epsilon_1, \dots, \epsilon_n \sim \mathcal{N}(0, 1)$  iid, independent of  $X_i$ 's

Ex: Volterra operator, Radon transform, heat equation, deconvolution...

**Goal** Estimate  $f_0$  in  $L^2(\mu)$ -loss  $\ell(f, g) = \int_{\mathcal{T}} (f - g)^2(t) d\mu(t)$

**Twofold challenge**

- Inverting  $\mathcal{A}$  (inverse problem theory)
- Denoising observations (statistics)

# Ill-posedness

---

*Non-continuous inverse*

No *naive* plug-in estimator

Need for regularization in statistical approaches

e.g. Tikhonov regularization

$$\min_f \sum_i (\mathcal{A}f(X_i) - Y_i)^2 + \gamma \|f\|^2$$

# Ill-posedness

---

*Non-continuous inverse*

No *naive* plug-in estimator

Need for regularization in statistical approaches

e.g. Tikhonov regularization

$$\min_f \sum_i (\mathcal{A}f(X_i) - Y_i)^2 + \gamma \|f\|^2$$

Other choice: [Bayesian procedures](#)

MAP with GP prior

$$\min_f \sum_i (\mathcal{A}f(X_i) - Y_i)^2 + \sigma^2 \|f\|_{\mathbb{H}}^2$$

## Bayesian approaches

# Posterior contraction rates

---

*Bayesian setting*

**Given:** data  $(x_i, Y_i)_{i=1}^n$

**Infer:** **posterior**  $\Pi[\cdot | X]$  from **prior**  $\Pi$

Frequentist analysis of Bayesian procedures:

- Assume there exists  $f_0$  such that  $X \sim P_{f_0}$
- study the behaviour of  $\Pi[\cdot | X]$  under  $P_{f_0}$ :
  - convergence to  $f_0$
  - rate of convergence

$$E_{f_0} \Pi [f: \|f - f_0\| \geq M_n \varepsilon_n | X] \rightarrow 0, \quad M_n \rightarrow \infty, \quad (1)$$

# Bayesian linear inverse problems

---

Growing interest in asymptotics of Bayesian approaches in last decade

- conjugate priors in mildly ill-posed problems [Knapik et al '14, Agapiou et al '13, Florens and Simoni '12]
- severely ill-posed problems [Knapik et al '14, Agapiou et al '14], e.g. initial condition heat equation
- rate adaptive Bayesian procedure [Knapik '13 & '16]
- non-conjugate priors [Ray '15]
- Uncertainty quantification [Szabó et al '15]
- General approach to Bayesian inversion [Knapik and Salomond '18]

# SVD

---

Assuming  $\mathcal{A}^* \mathcal{A}$  compact,

$$\mathcal{A}^* \mathcal{A} f = \sum_I \kappa_I^2 \langle f, e_I \rangle e_I$$

Second basis  $f_I$  of  $L^2(\mathcal{X})$  given by  $\mathcal{A}e_I = \kappa_I f_I$

- **mildly** ill-posed:  $\kappa_I \asymp I^{-p}$
- **severely** ill-posed:  $\kappa_I \asymp e^{-cI^p}$

**Diagonalized operator**   Easier to work in spectral domain

# Gaussian processes

---

Gaussian processes are popular methods for inverse problems

**Given SVD** Centered GP  $W = \sum_I \sqrt{\lambda_I} Z_I e_I$  with covariance kernel

$$K(x, y) = E(W_s W_t) = \sum_I \lambda_I e_I(s) e_I(t)$$

# Gaussian processes

---

Gaussian processes are popular methods for inverse problems

**Given SVD** Centered GP  $W = \sum_I \sqrt{\lambda_I} Z_I e_I$  with covariance kernel

$$K(x, y) = E(W_s W_t) = \sum_I \lambda_I e_I(s) e_I(t)$$

Covariance operator

$$\Lambda f(t) = \int K(s, t) f(s) d\mu(s)$$

is of trace class  $\sum_I \lambda_I < \infty$

# Gaussian processes

---

Gaussian processes are popular methods for inverse problems

**Given SVD** Centered GP  $W = \sum_I \sqrt{\lambda_I} Z_I e_I$  with covariance kernel

$$K(x, y) = E(W_s W_t) = \sum_I \lambda_I e_I(s) e_I(t)$$

Covariance operator

$$\Lambda f(t) = \int K(s, t) f(s) d\mu(s)$$

is of trace class  $\sum_I \lambda_I < \infty$

Covariance operator of  $\mathcal{A}W$  also has discrete spectrum:

$$\mathcal{A} \Lambda \mathcal{A}^* f_I = \lambda_I \kappa_I^2 f_I$$

# Sobolev class

---

Difficulty of estimation is measured by the minimax risk over some regularity class

$$\bar{H}^\beta := \left\{ f \in L^2(T; \mu) : \|f\|_\beta < \infty \right\}, \quad \|f\|_\beta^2 = \sum_j j^{2\beta} |\langle f, e_j \rangle|^2,$$

Minimax rate  $r_n^*$  is

- $\asymp n^{-\beta/(1+2\beta+2p)}$  if mildly ill-posed
- $\asymp \log^{-\beta/p} n$  if severely

# GP Concentration result for inverse regression

Theorem (Posterior contraction)

For  $f_0 \in \bar{H}^\beta$  and

1. *Mildly*:  $\lambda_i \asymp i^{-1-2\beta}$ , for  $\beta$  large
2. *Severely*:  $\lambda_i \asymp i^{-\alpha} e^{-\xi i^\beta}$

There exists an event  $A_n$ ,  $P_0(A_n) \rightarrow 1$ , such that

$$E_{f_0} \Pi \left[ f: \|f - f_0\|_{L^2(\mathcal{T}; \mu)} \geq M_n r_n^* \mid X \right] \mathbb{1}_{A_n} \leq C e^{-cn(M_n r_n^*)^2}, \quad M_n \rightarrow \infty.$$

So, the SVD-related GP prior

- attains minimax rate if properly tuned
- works in both mildly and severely ill-posed settings

## Sparse variational GPs

# Time complexity

---

## Computational drawback

Posterior is the GP

$$\mathcal{GP} \left( K_{\cdot n} \left( K_{nn} + \sigma^2 I_n \right)^{-1} \mathbf{Y}, K(s, t) - K_{sn} \left( K_{nn} + \sigma^2 I_n \right)^{-1} K_{nt} \right)$$

- $K_{nn} = E_{\Pi} \mathcal{A}f \mathcal{A}f^T$  is the prior covariance at design points
- $K_{nt} = E_{\Pi} \mathcal{A}f \mathcal{A}f(t)$

# Time complexity

---

## Computational drawback

Posterior is the GP

$$\mathcal{GP} \left( K_{\cdot n} \left( K_{nn} + \sigma^2 I_n \right)^{-1} \mathbf{Y}, K(s, t) - K_{sn} \left( K_{nn} + \sigma^2 I_n \right)^{-1} K_{nt} \right)$$

- $K_{nn} = E_{\Pi} \mathcal{A}f \mathcal{A}f^T$  is the prior covariance at design points
- $K_{nt} = E_{\Pi} \mathcal{A}f \mathcal{A}f(t)$

**Issue:** matrix inversion scales as  $\mathcal{O}(n^3)$  in time

# Time complexity

---

## Computational drawback

Posterior is the GP

$$\mathcal{GP} \left( K_{\cdot n} \left( K_{nn} + \sigma^2 I_n \right)^{-1} \mathbf{Y}, K(s, t) - K_{sn} \left( K_{nn} + \sigma^2 I_n \right)^{-1} K_{nt} \right)$$

- $K_{nn} = E_{\Pi} \mathcal{A}f \mathcal{A}f^T$  is the prior covariance at design points
- $K_{nt} = E_{\Pi} \mathcal{A}f \mathcal{A}f(t)$

**Issue:** matrix inversion scales as  $\mathcal{O}(n^3)$  in time

**Solution:** Low-rank approximation of  $K_{nn}$  [Seeger et al '03, Snelson and Ghahramani '05, Quiñonero Candela and Rasmussen '05, Titsias '09] to scale as  $\mathcal{O}(nq^2)$

# Variational approach of [Titsias '09]

---

Variational posterior. [Titsias '09] proposes to find the minimizer of KL divergence between posterior and

$$\mathcal{GP} \left( K_{\cdot q} K_{qq}^{-1} \mu, K(s, t) - K_{sq} K_{qq}^{-1} (K_{qq} - \Sigma) K_{qq}^{-1} K_{qt} \right)$$

- $q$  inducing variables  $u_1, \dots, u_q$ , i.e. point evaluations of the GP prior or continuous linear functionals of it
- $K_{qq}, K_{\cdot q}$  prior covariance of inducing variables
- $\mu, \Sigma$  variational parameters, as we assume  $\mathbf{u} \sim \mathcal{N}(\mu, \Sigma)$

# Inducing variables

---

At minimum, KL is

$$\frac{1}{2} \left( \mathbf{Y} (\mathbf{Q}^{-1} - \mathbf{K}^{-1}) \mathbf{Y} + \log \frac{|\mathbf{Q}|}{|\mathbf{K}|} + \sigma^{-2} \text{tr}(\mathbf{K} - \mathbf{Q}) \right)$$

where  $\mathbf{Q} = K_{nq} K_{qq}^{-1} K_{qn} + \sigma^2 I_n$  and  $\mathbf{K} = K_{nn} + \sigma^2 I_n$  [rank-q approximation]

# Inducing variables

---

At minimum, KL is

$$\frac{1}{2} \left( \mathbf{Y} (\mathbf{Q}^{-1} - \mathbf{K}^{-1}) \mathbf{Y} + \log \frac{|\mathbf{Q}|}{|\mathbf{K}|} + \sigma^{-2} \text{tr}(\mathbf{K} - \mathbf{Q}) \right)$$

where  $\mathbf{Q} = K_{nq} K_{qq}^{-1} K_{qn} + \sigma^2 I_n$  and  $\mathbf{K} = K_{nn} + \sigma^2 I_n$  [rank-q approximation]

Depends on the choice of  $q$  and  $\mathbf{u}$  !

Question: How large should  $q$  be ?

# Inducing variables

---

This problem is related to the spectrum of  $K_{nn}$ , itself linked to the spectrum of the covariance operator  $\mathcal{A}^* \Lambda \mathcal{A}$

Two choices [Burt et al '19]

- Eigendecomposition of covariance matrix:  $(v_j^1, \dots, v_j^n)$   $j$ th eigenvector of  $K_{nn}$

$$u_j = \sum_{i=1}^n v_j^i \mathcal{A}f(x_i)$$

- Eigendecomposition of covariance operator:

$$u_j = \int_{\mathcal{X}} \mathcal{A}W(x) f_j(x) dG(x)$$

# Variational posterior contraction

---

Posterior results  $E_{f_0} \Pi [f \in \mathcal{F}_n | X] \mathbb{1}_{A_n} \leq C e^{-\delta_n}$  gives

$$E_{f_0} \Psi [f \in \mathcal{F}_n | X] \mathbb{1}_{A_n} \leq \frac{2}{\delta_n} \left[ E_{f_0} KL(\Psi \|\Pi[\cdot | X]) + C e^{-\delta_n/2} \right]$$

Idea: Apply duality formula

$$KL(Q \| P) = \sup_{\phi} \int \phi \, dQ - \log \int e^{\phi} \, dP$$

to  $\phi(f) = \frac{1}{2} \delta_n \mathbb{1}_{\mathcal{F}_n}(f)$

# Expected KL

---

[Nieman et al. '22] For suitable GP prior (with good RKHS approximations), the variational posterior satisfies

$$E_{f_0} KL(\Psi \| \Pi[\cdot | X]) \lesssim nr_n^* E_{f_0} \|K_{nn} - K_{nq} K_{qq}^{-1} K_{qn}\| + E_{f_0} \text{tr} (K_{nn} - K_{nq} K_{qq}^{-1} K_{qn})$$

Also, [Shawe-Taylor & Williams, '02]

$$E_x \underbrace{\sum_{j=j_0}^n \mu_j}_{\text{spectrum of } K_{nn}} \leq n \underbrace{\sum_{j=j_0}^{\infty} \tilde{\lambda}_j}_{\text{spectrum of } \mathcal{A}^* \Lambda \mathcal{A}}$$

# Inducing points

---

## Theorem (Posterior contraction)

For  $f_0 \in \bar{H}^\beta$  and

1. *Mildly*:  $\lambda_i \asymp i^{-1-2\beta}$  and  $q \geq n^{1/(1+2\beta+2p)}$ , for  $\beta$  large
2. *Severely*:  $\lambda_i \asymp i^{-\alpha} e^{-\xi i^p}$  and  $q^p \geq (c + 2\xi)^{-1} \log n$

The variational posterior contracts at the minimax  $L^2$ -rate  $r_n^*$ .

Because of slow rates, small number of inducing variables needed (smaller for bigger degrees of ill-posedness)

## Simulations

# Heat equation

---

Recovery of the initial condition

$$\frac{\partial}{\partial t}u(x, t) = \frac{\partial^2}{\partial x^2}u(x, t), \quad u(x, 0) = f_0(x), \quad u(0, t) = u(1, t) = 0$$

from observations of  $\mathcal{A}f_0(x) = u(x, T)$ .

- $\mathcal{A}: L^2[0, 1] \mapsto L^2[0, 1]$
- $\mathcal{A}f(x) = \sqrt{2} \sum_{i=1}^{\infty} f_i e^{-i^2 \pi^2 t} \sin(i\pi x)$  for  $f_i = \sqrt{2} \int_0^1 f(s) \sin(i\pi s) ds$

# Heat equation

---

GP prior

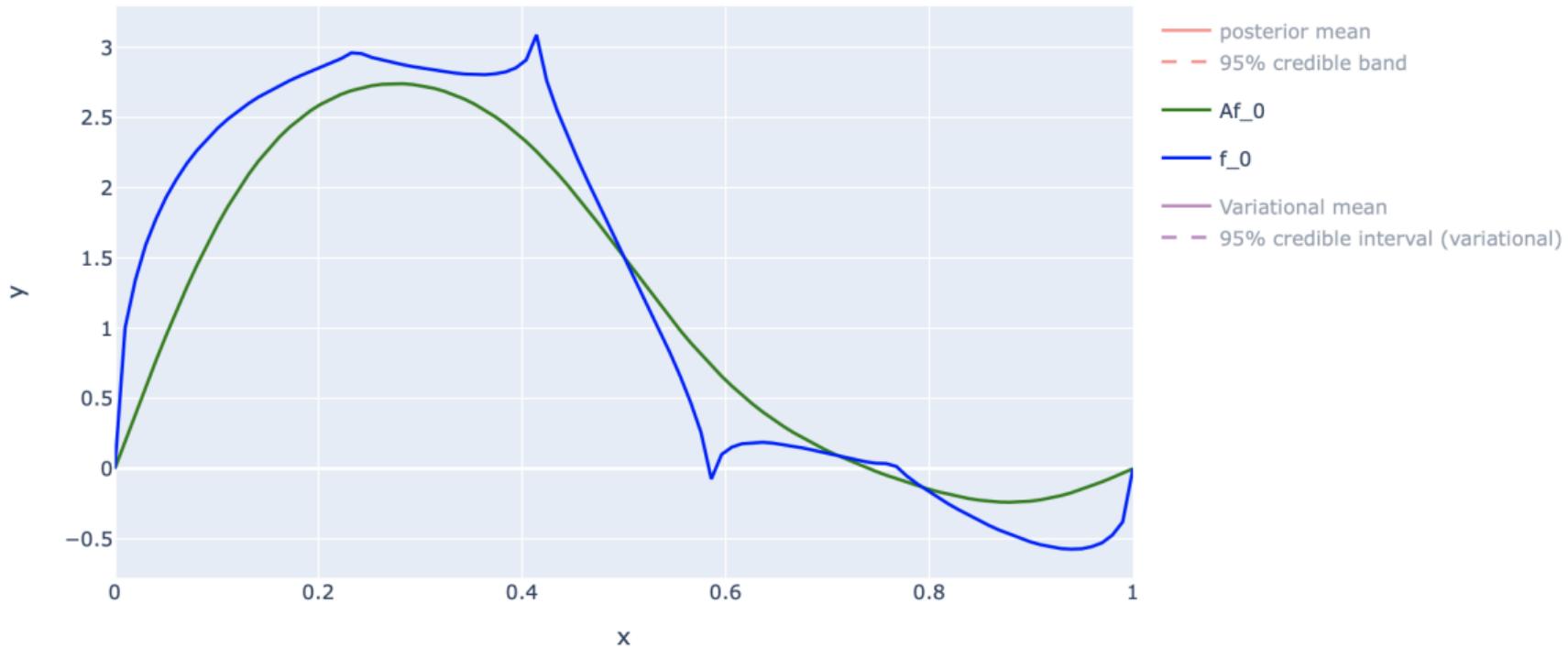
$$W = \sqrt{2} \sum_{i=1}^{\infty} e^{-\xi i^2/2} Z_i \sin(i\pi x)$$

- $n = 8000, T = 5 \cdot 10^{-3}, \xi = 10^{-1}$
- $q \asymp (\xi + 2 * (\pi^2) T)^{-1} \log(n))^{1/2} = 7$
- For  $f_0$ , we choose  $\beta = 0.5$  and

$$f_{0,i} = \begin{cases} (1 + 0.4 * \sin(\sqrt{5}\pi i)) i^{-(\beta+1)} & \text{if } i \text{ even} \\ (2.5 + 2 * \sin(\sqrt{2}\pi i)) i^{-(\beta+1)} & \text{if } i \text{ odd} \end{cases}$$

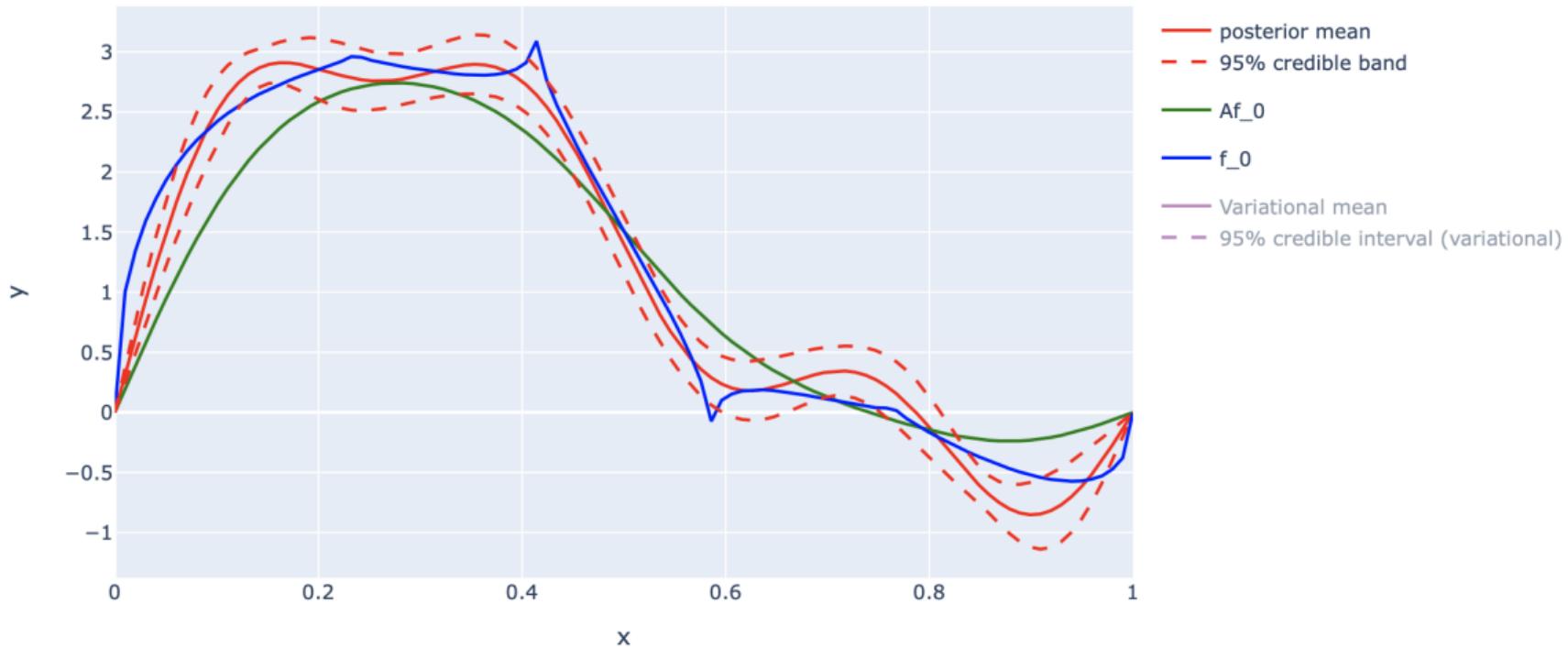
# Heat equation

---



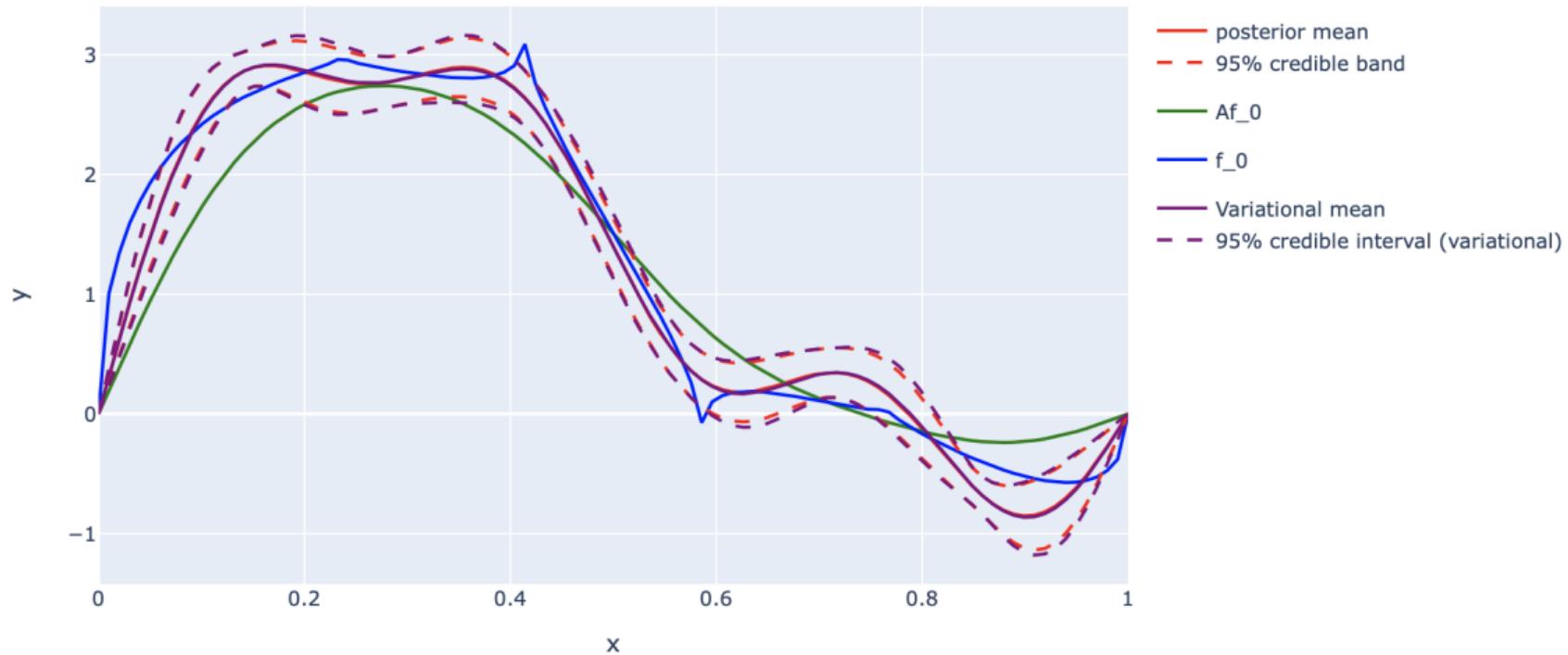
# Heat equation

---



# Heat equation

---



# Conclusion

---

- We do not need vanishing KL for good variational posterior results in inverse problems
- Depending on degree of ill-posedness, need for logarithmic to sublinear number of inducing variables
- **Next:** What if eigenbases of  $\mathcal{A}$  and  $\Lambda$  do not match ? Deconvolution ?

# Thanks !