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Inverse problems
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Statistical inverse regression models

Model Consider observations (X, ¥;) arising from
Y = ¢4fb( ) + €, i=1,...,n,

® A:L2(T,u) — L% (X,v) known injective continous linear operator
° X]_,...7Xn Nyiid
® c1,...,en ~N(0,1)iid, independent of X;’s

Ex: Volterra operator, Radon transform, heat equation, deconvolution...
Goal Estimate fyin L*(u)-loss ((f,g) = [(f — g)*(t)du(t)

Twofold challenge

® |nverting A (inverse problem theory)
® Denoising observations (statistics)
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lll-posedness

Non-continuous inverse
No naive plug-in estimator

Need for regularization in statistical approaches

e.g. Tikhonov regularization

mln Z (Af(X

)2+ If)?
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lll-posedness

Non-continuous inverse
No naive plug-in estimator
Need for regularization in statistical approaches

e.g. Tikhonov regularization

mlnz (Af(X +’y||fH

Other choice: Bayesian procedures

MAP with GP prior
mfinz (AF(X;) = Vi) + o |||y
]
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Bayesian approaches
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Posterior contraction rates

Bayesian setting
Given: data (x;, ;)7 Infer: posterior II[:| X] from prior IT

Frequentist analysis of Bayesian procedures:

® Assume there exists fy such that X ~ Py,
e study the behaviour of II[-| X] under Py,:

® convergence to fj
® rate of convergence

ErIL[F: ||If — foll > Mpzn] X] = 0, Mpn — o0, (1)
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Bayesian linear inverse problems

Growing interest in asymptotics of Bayesian approaches in last decade

® conjugate priors in mildly ill-posed problems [Knapik et al ‘14, Agapiou et al "13,
Florens and Simoni *12]

e severely ill-posed problems [Knapik et al "14, Agapiou et al '14], e.g. initial
condition heat equation

® rate adaptive Bayesian procedure [Knapik "13 & '16]
® non-conjugate priors [Ray '15]
e Uncertainty quantification [Szab¢ et al '15]

® General aproach to Bayesian inversion [Knapik and Salomond "18]
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SVD

Assuming A*A compact,
A*Af = Z H/2<f, e,)e/
/

Second basis f; of L2 (X) given by Ae; = x/f

e mildlyill-posed: k; < 7P

. —cl P
e severely ill-posed: x; < e~

Diagonalized operator Easier to work in spectral domain
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Gaussian processes

Gaussian processes are popular methods for inverse problems

Given SVD Centered GP W = >, /A Z; e; with covariance kernel

K(x,y) = E(WsW;) = Z)\/e/ e (t
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Gaussian processes

Gaussian processes are popular methods for inverse problems
Given SVD Centered GP W = >, /A Z; e; with covariance kernel

K(x,y) = E(WsW;) = Z)\/e/ e (t

Covariance operator
AF(E) = / K(s, t)f(s)du(s)

is of trace class ) ; \/ < oo
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Gaussian processes

Gaussian processes are popular methods for inverse problems

Given SVD Centered GP W = >, /A Z; e; with covariance kernel
K(x,y) = E(WsW;) = Z)\/e/ e (t
Covariance operator
AF(E) = / K(s, t)f(s)du(s)
is of trace class ) ; \/ < oo
Covariance operator of AW also has discrete spectrum:

AANA* f/ = )\/H/Q f/
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Sobolev class

Difficulty of estimation is measured by the minimax risk over some regularity class

H i {F € (T s Iy < oob I = 3277 (F el
J

Minimax rate r}} is

o — n F/01425+20) if mildly ill-posed

e = log /P nif severely
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GP Concentration result for inverse regression

Theorem (Posterior contraction)

For fy € H® and
1. Mildly: \; = i~'=2P, for § large
2. Severely: \; = i “e "
There exists an event Ap, Py (An) — 1, such that

Ef, 1T [f: 1 = folliary = Maral X] 14, < Ce™o"M)" 1, s oo,

So, the SVD-related GP prior
e attains minimax rate if properly tuned
e works in both mildly and severely ill-posed settings
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Sparse variational GPs
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Time complexity

Computational drawback
Posterior is the GP

gP (K~n (Knn + U2/n)71 Y, K(37 t) — Ksn (Knn + U2ln)71 Knt>

® K., = En AfAf" is the prior covariance at design points
® Kot = En AfAf(t)
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Time complexity

Computational drawback
Posterior is the GP

gP (K~n (Knn + U2/n)71 Y, K(37 t) — Ksn (Knn + <72/n)71 Knt>

® K., = En AfAf" is the prior covariance at design points
® Kot = En AfAf(t)

Issue: matrix inversion scales as O (n*) in time
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Time complexity

Computational drawback
Posterior is the GP

gP (K~n (Knn + U2/n)71 Y, K(37 t) — Ksn (Knn + U2ln)71 Knt>

® K., = En AfAf" is the prior covariance at design points
® Kot = En AfAf(t)

Issue: matrix inversion scales as O (n*) in time

Solution: Low-rank approximation of K,,, [Seeger et al ‘03, Snelson and Ghahramani
05, Quifionero Candela and Rasmussen '05, Titsias '09] to scale as O (ng?)
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Variational approach of [Titsias '09]

Variational posterior. [Titsias '09] proposes to find the minimizer of KL divergence
between posterior and

GP (K.qKaq 1, K(5, 1) — KsqKoy (Kag — £) Ko Kqt)

® ginducing variables uy, ..., ug, i.e. point evaluations of the GP prior or
continuous linear functionals of it

® Kyq,K.g prior covariance of inducing variables

® ., Y variational parameters, as we assume u ~ N (u, X)

14/27



Inducing variables

At minimum, KL is

% (Y (@ '—-Kky+ logm + o %tr (K — o))

where Q = anK;qqun + 02, and K = K, + %I, [rank-q approximation]
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Inducing variables

At minimum, KL is

1
3 <Y (@'—K )Y +log m + o072 tr (K — o))
where Q = anK;qqun + 02, and K = K, + %I, [rank-q approximation]

Depends on the choice of gand u!

Question: How large should g be ?
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Inducing variables

This problem is related to the spectrum of K, itself linked to the spectrum of the
covariance operator A*AA

Two choices [Burt et al "19]
® Eigendecomposition of covariance matrix: (vjl, ey v/f’)jth eigenvector of K,

n
u=> VIAf(x)
i=1
¢ Eigendecomposition of covariance operator:
y= | AWf()d60)
X
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Variational posterior contraction

Posterior results £7,I1 [f € F,| X] 14, < Ce~% gives
U [f € Fp| X] g, < ;n [E,:OKL(\I!HH[- IX]) + Ce~0n/2
Idea: Apply duality formula
KL(Q|P) = sip/qsdo - 1og/e¢ dp

to ¢(f) = 50n1,(f)

17/27



Expected KL

[Nieman et al. *22] For suitable GP prior (with good RKHS approximations), the
variational posterior satisfies

Er, KL(U|TI[- |X]) < nriEsy ||Knn — KngKag Kanl| + Efytr (Knn — KngK g Kan)

Also, [Shawe-Taylor & Williams, "02]

Ex Zuj <n ZA

J=Jo J=Jo
—— ——
spectrum of Knn spectrum of A*AA
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Inducing points

Theorem (Posterior contraction)

For fy € H? and
1. Mildly: \; < i—1=28 and q > n'/(1+2842P) for 3 large
2. Severely: \j < i—®e~¢" and qP > (c +2¢)"tlogn

The variational posterior contracts at the minimax L?-rate r}.

Because of slow rates, small number of inducing variables needed (smaller for bigger
degrees of ill-posedness)
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Simulations
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Heat equation

Recovery of the initial condition

0 0?

—u(x,t) = 2 u(x,t), u(x,0)="f(x), u(0,t)=u(l,t)=0

from observations of Afy(x) = u(x, T).

® A:L%[0,1] — L2[0,1]

° Af(x) =232, fie "™t sin(inx) for f; = ffo ) sin(ims)ds
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Heat equation

GP prior
oo
W =2 e *"/2zsin(irx)

i=1

® n=28000,T=5.10"3,¢6=10""!
¢ = (£+2x (n2)T) Mog(n)'/?) =7
® For fy, we choose 8 = 0.5 and

14 0.4 xsin(+/5mi)) i—B+)  if jeven
f L
) (2.5 + 2 * sin(V2mi)) i™ if io
0,i ( (\/’ )) (B+1) f dd
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Heat equation

posterior mean
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Heat equation

posterior mean
= = 95% credible band

— Af_0
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Variational mean
= = 95% credible interval (variational)
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Heat equation

posterior mean
= = 95% credible band

— Af_0

—f0

Variational mean
= = 95% credible interval (variational)
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Conclusion

¢ We do not need vanishing KL for good variational posterior results in inverse
problems

® Depending on degree of ill-posedness, need for logarithmic to sublinear number
of inducing variables

® Next: What if eigenbases of A and A do no match ? Deconvolution ?
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Thanks!
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