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Inverse problems
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Statistical inverse regression models

Model Consider observations (Xi, Yi) arising from

Yi = Af0(Xi) + εi, i = 1, . . . , n,

• A : L2 (T , µ) 7→ L2 (X , ν) known injective continous linear operator
• X1, . . . , Xn ∼ ν iid
• ε1, . . . , εn ∼ N (0, 1) iid, independent of Xi ’s

Ex: Volterra operator, Radon transform, heat equation, deconvolution...

Goal Estimate f0 in L2(µ)–loss `(f ,g) =
∫
T (f − g)2(t)dµ(t)

Twofold challenge

• InvertingA (inverse problem theory)
• Denoising observations (statistics)
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Ill-posedness

Non-continuous inverse

No naive plug-in estimator

Need for regularization in statistical approaches

e.g. Tikhonov regularization

min
f

∑
i

(Af(Xi)− Yi)
2 + γ ‖f‖2

Other choice: Bayesian procedures

MAP with GP prior

min
f

∑
i

(Af(Xi)− Yi)
2 + σ2 ‖f‖2H
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Bayesian approaches
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Posterior contraction rates

Bayesian setting

Given: data (xi, Yi)
n
i=1 Infer: posteriorΠ[·| X] from prior Π

Frequentist analysis of Bayesian procedures:

• Assume there exists f0 such that X ∼ Pf0
• study the behaviour of Π[·| X] under Pf0 :

• convergence to f0
• rate of convergence

Ef0Π [f : ‖f − f0‖ ≥ Mnεn| X] → 0, Mn → ∞, (1)
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Bayesian linear inverse problems

Growing interest in asymptotics of Bayesian approaches in last decade

• conjugate priors in mildly ill-posed problems [Knapik et al ’14, Agapiou et al ’13,

Florens and Simoni ’12]

• severely ill-posed problems [Knapik et al ’14, Agapiou et al ’14], e.g. initial

condition heat equation

• rate adaptive Bayesian procedure [Knapik ’13 & ’16]

• non-conjugate priors [Ray ’15]

• Uncertainty quantification [Szabó et al ’15]

• General aproach to Bayesian inversion [Knapik and Salomond ’18]
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SVD

AssumingA∗A compact,

A∗Af =
∑
l

κl
2〈f ,el〉el

Second basis fl of L
2 (X ) given byAel = κlfl

• mildly ill-posed: κl � l−p

• severely ill-posed: κl � e−cl p

Diagonalized operator Easier to work in spectral domain
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Gaussian processes

Gaussian processes are popular methods for inverse problems

Given SVD Centered GPW =
∑

l

√
λl Zl el with covariance kernel

K(x, y) = E(WsWt) =
∑
l

λlel(s)el(t)

Covariance operator

Λf(t) =

∫
K(s, t)f(s)dµ(s)

is of trace class
∑

l λl < ∞

Covariance operator ofAW also has discrete spectrum:

AΛA∗fl = λlκ
2
l fl
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Sobolev class

Difficulty of estimation is measured by the minimax risk over some regularity class

H̄β :=
{
f ∈ L2(T;µ) : ‖f‖β < ∞

}
, ‖f‖2β =

∑
j

j2β |〈f ,ej〉|2 ,

Minimax rate r∗n is

• � n−β/(1+2β+2p) if mildly ill-posed

• � log−β/p n if severely
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GP Concentration result for inverse regression

Theorem (Posterior contraction)

For f0 ∈ H̄β and

1. Mildly: λi � i−1−2β , for β large

2. Severely: λi � i−αe−ξip

There exists an event An, P0 (An) → 1, such that

Ef0Π
[
f : ‖f − f0‖L2(T;µ) ≥ Mnr

∗
n| X

]
1An ≤ Ce−cn(Mnr

∗
n )

2

, Mn → ∞.

So, the SVD-related GP prior

• attains minimax rate if properly tuned
• works in both mildly and severely ill-posed settings
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Sparse variational GPs

12/27



Time complexity

Computational drawback

Posterior is the GP

GP
(
K·n

(
Knn + σ2In

)−1
Y, K(s, t)− Ksn

(
Knn + σ2In

)−1
Knt

)
• Knn = EΠAfAfT is the prior covariance at design points
• Knt = EΠAfAf(t)

Issue: matrix inversion scales asO
(
n3
)
in time

Solution: Low-rank approximation of Knn [Seeger et al ’03, Snelson and Ghahramani

’05, Quiñonero Candela and Rasmussen ’05, Titsias ’09] to scale asO
(
nq2

)
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Variational approach of [Titsias ’09]

Variational posterior. [Titsias ’09] proposes to find the minimizer of KL divergence

between posterior and

GP
(
K·qK

−1
qq µ, K(s, t)− KsqK

−1
qq (Kqq − Σ) K−1

qq Kqt
)

• q inducing variables u1, . . . , uq, i.e. point evaluations of the GP prior or

continuous linear functionals of it

• Kqq, K·q prior covariance of inducing variables

• µ,Σ variational parameters, as we assume u ∼ N (µ,Σ)
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Inducing variables

At minimum, KL is

1

2

(
Y
(
Q−1 − K−1

)
Y + log |Q|

|K|
+ σ−2tr (K − Q)

)
where Q = KnqK

−1
qq Kqn + σ2In and K = Knn + σ2In [rank-q approximation]

Depends on the choice of q and u !

Question: How large should q be ?
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Inducing variables

This problem is related to the spectrum of Knn, itself linked to the spectrum of the

covariance operatorA∗ΛA

Two choices [Burt et al ’19]

• Eigendecomposition of covariance matrix: (v1j , . . . , v
n
j ) jth eigenvector of Knn

uj =

n∑
i=1

vijAf(xi)

• Eigendecomposition of covariance operator:

uj =

∫
X
AW(x)fj(x)dG(x)
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Variational posterior contraction

Posterior results Ef0Π [f ∈ Fn| X]1An ≤ Ce−δn gives

Ef0Ψ [f ∈ Fn| X]1An ≤
2

δn

[
Ef0KL(Ψ||Π[· |X]) + Ce−δn/2

]
Idea: Apply duality formula

KL(Q||P) = sup
φ

∫
φ dQ− log

∫
eφ dP

to φ(f) = 1
2δn1Fn(f)
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Expected KL

[Nieman et al. ’22] For suitable GP prior (with good RKHS approximations), the

variational posterior satisfies

Ef0KL(Ψ||Π[· |X]) . nr∗nEf0
∥∥Knn − KnqK

−1
qq Kqn

∥∥+ Ef0tr
(
Knn − KnqK

−1
qq Kqn

)

Also, [Shawe-Taylor & Williams, ’02]

Ex

n∑
j=j0

µj︸ ︷︷ ︸
spectrum of Knn

≤ n

∞∑
j=j0

λ̃j︸ ︷︷ ︸
spectrum ofA∗ΛA
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Inducing points

Theorem (Posterior contraction)

For f0 ∈ H̄β and

1. Mildly: λi � i−1−2β and q ≥ n1/(1+2β+2p), for β large

2. Severely: λi � i−αe−ξip and q p ≥ (c+ 2ξ)−1 log n
The variational posterior contracts at the minimax L2–rate r∗n .

Because of slow rates, small number of inducing variables needed (smaller for bigger

degrees of ill-posedness)
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Simulations
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Heat equation

Recovery of the initial condition

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(x, 0) = f0(x), u(0, t) = u(1, t) = 0

from observations ofAf0(x) = u(x, T).

• A : L2[0, 1] 7→ L2[0, 1]

• Af(x) =
√
2
∑∞

i=1 fie
−i2π2t sin(iπx) for fi =

√
2
∫ 1
0 f(s) sin(iπs)ds
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Heat equation

GP prior

W =
√
2

∞∑
i=1

e−ξi2/2Zi sin(iπx)

• n = 8000, T = 5.10−3, ξ = 10−1

• q �
(
ξ + 2 ∗ (π2)T)−1 log(n))1/2

)
= 7

• For f0, we choose β = 0.5 and

f0,i =

{(
1 + 0.4 ∗ sin(

√
5πi)

)
i−(β+1) if i even(

2.5 + 2 ∗ sin(
√
2πi)

)
i−(β+1) if i odd
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Heat equation
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Heat equation
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Heat equation
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Conclusion

• We do not need vanishing KL for good variational posterior results in inverse

problems

• Depending on degree of ill-posedness, need for logarithmic to sublinear number

of inducing variables

• Next: What if eigenbases ofA and Λ do no match ? Deconvolution ?
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Thanks !
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