Physics-informed Gaussian process priors

lain Henderson, ISAE-Supaéro

Workshop on Gaussian processes and related topics IMT, Toulouse

July 9th, 2025

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- **5** Conclusion and perspectives

"Old" PhD work with...

Figure 1: Pascal Noble (IMT, PDEs)

Figure 2: O. Roustant (IMT, ML/UQ)

What's on the agenda?

Topic for today:

- Discuss/motivate the use of GP models for tackling PDE driven problems.
- Focus on the mathematical aspects of GP modelling w.r.t. certain specificities of (linear) PDEs :
 - \rightarrow comply with the distributional formulation of a linear PDE (\simeq weak formulation)
 - →adapted smoothness/"energy" spaces : Sobolev spaces
- Describe some practical applications.

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

- Unknown function $u: \mathcal{D} \to \mathbb{R}$, obs. $\mathcal{B} = \{u(z_1), ..., u(z_n)\}$
- ullet Bayesian approach : model u as a sample U_ω of a Gaussian process :

$$(U(z))_{z\in\mathcal{D}}\sim GP(m,k)$$
 (prior GP)

• Condition U on obs. \mathcal{B} : " $V(z) = [U(z)|U(z_i) = u(z_i), 1 \le i \le n]$ ".

$$(V(z))_{z\in\mathcal{D}}\sim \mathit{GP}(\tilde{m},\tilde{k})$$
 (posterior GP)

• Estimation : $\forall z \in \mathcal{D}$, we estimate u(z) with $\tilde{m}(z)$:

$$\hat{u}(z) = \tilde{m}(z) \simeq u(z), \quad \text{uncertainty} \quad \tilde{k}(z,z) = \text{Var}(V(z))$$

If m = 0, then $\tilde{m}(z) = k(z, Z)^T K^{-1} Y$ (similar for \tilde{k}).

[1]Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning. The MIT Press.

- Unknown function $u: \mathcal{D} \to \mathbb{R}$, obs. $\mathcal{B} = \{u(z_1), ..., u(z_n)\}$
- ullet Bayesian approach : model u as a sample U_ω of a Gaussian process :

$$(U(z))_{z\in\mathcal{D}}\sim GP(m,k)$$
 (prior GP)

• Condition U on obs. \mathcal{B} : " $V(z) = [U(z)|U(z_i) = u(z_i), 1 \le i \le n]$ ".

$$(V(z))_{z\in\mathcal{D}}\sim GP(\tilde{m},\tilde{k})$$
 (posterior GP)

• Estimation : $\forall z \in \mathcal{D}$, we estimate u(z) with $\tilde{m}(z)$:

$$\hat{u}(z) = \tilde{m}(z) \simeq u(z), \quad ext{uncertainty} \quad ilde{k}(z,z) = ext{Var}(V(z))$$

If m = 0, then $\tilde{m}(z) = k(z, Z)^T K^{-1} Y$ (similar for \tilde{k}).

[1]Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning. The MIT Press.

- Unknown function $u: \mathcal{D} \to \mathbb{R}$, obs. $\mathcal{B} = \{u(z_1), ..., u(z_n)\}$
- ullet Bayesian approach : model u as a sample U_ω of a Gaussian process :

$$(U(z))_{z\in\mathcal{D}}\sim GP(m,k)$$
 (prior GP)

• Condition U on obs. \mathcal{B} : " $V(z) = [U(z)|U(z_i) = u(z_i), 1 \le i \le n]$ ".

$$(V(z))_{z\in\mathcal{D}}\sim GP(\tilde{m},\tilde{k})$$
 (posterior GP)

• Estimation : $\forall z \in \mathcal{D}$, we estimate u(z) with $\tilde{m}(z)$:

$$\hat{u}(z) = \tilde{m}(z) \simeq u(z), \quad ext{uncertainty} \quad ilde{k}(z,z) = ext{Var}(V(z))$$

If m = 0, then $\tilde{m}(z) = k(z, Z)^T K^{-1} Y$ (similar for \tilde{k}).

^[1]Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning. The MIT Press.

- Unknown function $u: \mathcal{D} \to \mathbb{R}$, obs. $\mathcal{B} = \{u(z_1), ..., u(z_n)\}$
- ullet Bayesian approach : model u as a sample U_ω of a Gaussian process :

$$(U(z))_{z\in\mathcal{D}}\sim GP(m,k)$$
 (prior GP)

• Condition U on obs. \mathcal{B} : " $V(z) = [U(z)|U(z_i) = u(z_i), 1 \le i \le n]$ ".

$$(V(z))_{z\in\mathcal{D}} \sim GP(\tilde{m}, \tilde{k})$$
 (posterior GP)

• Estimation : $\forall z \in \mathcal{D}$, we estimate u(z) with $\tilde{m}(z)$:

$$\hat{u}(z) = \tilde{m}(z) \simeq u(z),$$
 uncertainty $\tilde{k}(z,z) = \operatorname{Var}(V(z))$

If m = 0, then $\tilde{m}(z) = k(z, Z)^T K^{-1} Y$ (similar for \tilde{k}).

^[1]Rasmussen, C. E., & Williams, C. (2006). Gaussian processes for machine learning. The MIT Press.

Modelling of the prior GP $U \sim GP(0, k)$ and choice of k

Regularity: if $k \in C^{N,N}(\mathcal{D} \times \mathcal{D})$ with Lipschitz derivatives of order N, then

$$\mathbb{P}(U \in C^N(\mathcal{D})) = 1$$
. In particular $\widetilde{m} \in C^N(\mathcal{D})$.

Linear invariance : if *L* is a linear operator and $\forall z \in \mathcal{D}, \ L(k(z, \cdot)) = 0$ then (under suitable assumptions...)

$$\mathbb{P}(LU=0)=1$$
. In particular, $L\widetilde{m}=0$.

"Proof" of
$$\forall z \in \mathcal{D}, \ L(k(z,\cdot)) = 0 \implies \mathbb{P}(LU = 0) = 1$$

For all z, z',

$$Cov((LU)(z), (LU)(z')) = [(L_zL_{z'})k](z, z') = L_z(L_{z'}(z' \mapsto k(z, z')) = 0.$$

Set
$$z'=z$$
: $Var(LU(z))=0$ hence $LU(z)=\mathbb{E}[U(z)]=0$ a.s. !

I.H. (ISAE-Supaéro)

Modelling of the prior GP $U \sim GP(0, k)$ and choice of k

Regularity: if $k \in C^{N,N}(\mathcal{D} \times \mathcal{D})$ with Lipschitz derivatives of order N, then

$$\mathbb{P}(U \in C^{N}(\mathcal{D})) = 1$$
. In particular $\widetilde{m} \in C^{N}(\mathcal{D})$.

Linear invariance : if L is a linear operator and $\forall z \in \mathcal{D}, \ L(k(z, \cdot)) = 0$ then (under suitable assumptions...)

$$\mathbb{P}(LU=0)=1$$
. In particular, $L\widetilde{m}=0$.

"Proof" of
$$\forall z \in \mathcal{D}, \ L(k(z,\cdot)) = 0 \implies \mathbb{P}(LU = 0) = 1$$
For all z,z' ,
$$\operatorname{Cov}((LU)(z),(LU)(z')) = [(L_zL_{z'})k](z,z') = L_z(L_{z'}(z' \mapsto k(z,z')) = 0.$$
Set $z' = z$: $\operatorname{Var}(LU(z)) = 0$ hence $LU(z) = \mathbb{E}[U(z)] = 0$ a.s.!

Modelling of the prior GP $U \sim GP(0, k)$ and choice of k

Regularity: if $k \in C^{N,N}(\mathcal{D} \times \mathcal{D})$ with Lipschitz derivatives of order N, then

$$\mathbb{P}(U \in C^{N}(\mathcal{D})) = 1$$
. In particular $\widetilde{m} \in C^{N}(\mathcal{D})$.

Linear invariance : if L is a linear operator and $\forall z \in \mathcal{D}, \ L(k(z, \cdot)) = 0$ then (under suitable assumptions...)

$$\mathbb{P}(LU=0)=1$$
. In particular, $L\widetilde{m}=0$.

"Proof" of
$$\forall z \in \mathcal{D}, \ L(k(z,\cdot)) = 0 \implies \mathbb{P}(LU = 0) = 1$$

For all z, z',

$$Cov((LU)(z), (LU)(z')) = [(L_zL_{z'})k](z, z') = L_z(L_{z'}(z' \mapsto k(z, z')) = 0.$$

Set
$$z' = z$$
: $Var(LU(z)) = 0$ hence $LU(z) = \mathbb{E}[U(z)] = 0$ a.s. !

Periodic kernels \implies periodic samples

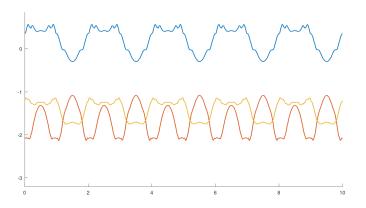


Figure 3: GP samples with a periodic Matérn 3/2 kernel

$$k(x, y) = (1 + |\sin(\pi x) - \sin(\pi y)|) \exp(-|\sin(\pi x) - \sin(\pi y)|)$$

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

GPR and **PDEs**

- GPR can take into account prior info. on u via the choice of the kernel k;
- This choice helps restrain the function space H such that $\mathbb{P}(U \in H) = 1 \to \text{dimension reduction}.$

Questions for today:

- Discuss/describe the use of kernel methods for PDEs.
- General problem: estimate $u: \mathcal{D} \to \mathbb{R}$ and θ , knowing

$$\mathcal{B} = \{u(z_1), ..., u(z_n)\} \text{ and } L_{\theta}(u) = 0.$$
 (1)

 L_{θ} : linear partial differential operator (time-dependent or not).

- \rightarrow Impose PDE constraint on GP prior : $\mathbb{P}(L_{\theta}(U) = 0) = 1$
- \rightarrow Impose relevant energy space $H: \mathbb{P}(U \in H) = 1$

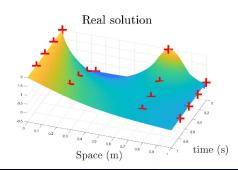
A nice parabolic PDE: the 1D heat equation

Consider the PDE with $L = \partial_t - D\partial_{xx}^2$:

$$\begin{cases}
Lu = \partial_t u - D\partial_{xx}^2 u = 0, & \forall t > 0, \quad \forall x \in \mathbb{R}. \\
u(t = 0, x) = u_0(x).
\end{cases}$$
(2)

We wish to estimate u given space-time measurements :

$$\mathcal{B} = \{u(t_i, x_j), 1 \le i, j \le 4\}, \#\mathcal{B} = 16.$$



Here, z = (t, x), GP model for u:

$$(U(t,x))_{(t,x)\in\mathbb{R}_+\times\mathbb{R}}\sim GP(0,k)$$
$$k(z,z')=k((t,x),(t',x')).$$

We look for k s.t. $Lk((t,x),\cdot) = 0$ for all (t,x).

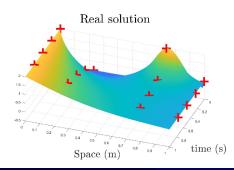
A nice parabolic PDE: the 1D heat equation

Consider the PDE with $L = \partial_t - D\partial_{xx}^2$:

$$\begin{cases}
Lu = \partial_t u - D\partial_{xx}^2 u = 0, & \forall t > 0, \quad \forall x \in \mathbb{R}. \\
u(t = 0, x) = u_0(x).
\end{cases}$$
(2)

We wish to estimate u given space-time measurements :

$$\mathcal{B} = \{u(t_i, x_j), 1 \le i, j \le 4\}, \#\mathcal{B} = 16.$$



Here, z = (t, x), GP model for u:

$$(U(t,x))_{(t,x)\in\mathbb{R}_+\times\mathbb{R}}\sim GP(0,k)$$

$$k(z,z')=k((t,x),(t',x')).$$

We look for k s.t. $Lk((t,x),\cdot) = 0$ for all (t,x).

A nice parabolic PDE: the 1D heat equation

Denote k_t = density of $\mathcal{N}(0, 2Dt)$ = heat kernel. Set also $k^0(x, x') = \sigma^2 \exp(-(x - x')^2/2\ell^2) = k_S(x - x')$.

Theorem 1

The function

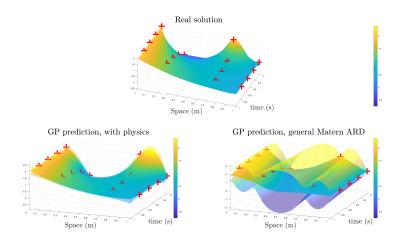
$$k((t,x),(t',x')) = [(k_t \otimes k_{t'}) * k^0](x,x') = (k_t * k_{t'} * k_S)(x-x')$$
(3)
=
$$\frac{\ell \sigma^2}{\sqrt{\alpha(t,t')}} \exp\left(-\frac{(x-x')^2}{2\alpha(t,t')}\right),$$
(4)

where $\alpha(t,t') = 2D(t+t') + \ell^2$, is symmetric, PSD and verifies

$$\forall (t,x) \in \mathbb{R}_+^* \times \mathbb{R}, \quad Lk((t,x),\cdot) = 0, \quad L = \partial_t - D\partial_{xx}^2. \tag{5}$$

The kernel k is obtained by setting a GP prior $GP(0, k^0)$ over u_0 and propagating through the PDE solution map $u_0 \mapsto k_t * u_0$.

Example with 1D heat equation



A not-so-nice hyperbolic PDE: the 1D transport equation

Things were ok with the heat equation. Yet, other PDEs often have to be understood in a weakened sense.

Example 1: transport equation

$$\begin{cases} \partial_t u(t,x) + c \partial_x u(t,x) = 0 & \forall t > 0, \forall x \in \mathbb{R} \\ u(t=0,x) = u_0(x) & \forall x \in \mathbb{R} \end{cases}$$
 (6)

is solved as $u(t,x) = u_0(x - ct)$.

In hindsight, it makes no sense to assume that u is differentiable (e.g. if $u_0 \notin C^1(\mathbb{R})$! What is then the meaning of eq. (6)?

PDEs often reflect "balance laws" which can also be understood in an energetic/integrated sense \rightarrow weak formulation.

Distributional formulation of the transport equation

Instead of the PDE being valid **pointwise**, we require that all the smooth and local averages of the PDE are zero : for all $\varphi \in C_c^{\infty}(\mathbb{R}_+^* \times \mathbb{R})$,

$$0 = \int_{\mathbb{R} \times \mathbb{R}_{+}^{*}} \varphi(t, x) \Big(\partial_{t} u(t, x) + c \partial_{x} u(t, x) \Big) dx dt$$

$$= \int_{\mathbb{R} \times \mathbb{R}_{+}^{*}} \Big(-\partial_{t} \varphi(t, x) - c \partial_{x} \varphi(t, x) \Big) u(t, x) dx dt.$$

$$(0 = \langle \varphi, Lu \rangle_{L^{2}} = \langle L^{*} \varphi, u \rangle_{L^{2} \dots})$$

$$(7)$$

In equation (7), $u \in L^1_{loc}(\mathbb{R})$ is sufficient!

- To deal with non-smooth solutions of Lu=0, we require instead that
- For applications (e.g. finite elements) we may require more, e.g. that

Distributional formulation of the transport equation

Instead of the PDE being valid **pointwise**, we require that all the smooth and local averages of the PDE are zero : for all $\varphi \in C_c^{\infty}(\mathbb{R}_+^* \times \mathbb{R})$,

$$0 = \int_{\mathbb{R} \times \mathbb{R}_{+}^{*}} \varphi(t, x) \Big(\partial_{t} u(t, x) + c \partial_{x} u(t, x) \Big) dx dt$$

$$= \int_{\mathbb{R} \times \mathbb{R}_{+}^{*}} \Big(-\partial_{t} \varphi(t, x) - c \partial_{x} \varphi(t, x) \Big) u(t, x) dx dt.$$

$$(0 = \langle \varphi, Lu \rangle_{L^{2}} = \langle L^{*} \varphi, u \rangle_{L^{2}}...)$$

$$(7)$$

In equation (7), $u \in L^1_{loc}(\mathbb{R})$ is sufficient!

- To deal with non-smooth solutions of Lu=0, we require instead that $\langle L^*\varphi,u\rangle=0$ for all $\varphi\in C_c^\infty$: this is the distributional formulation of Lu=0 (duality...).
- For applications (e.g. finite elements) we may require more, e.g. that
 u lies in the correct energy space → Sobolev spaces.

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

PDE constrained random fields[3]

Given $U = (U(z))_{z \in \mathcal{D}}$ a RF, when does $\mathbb{P}(L(U) = 0) = 1$ hold?

Proposition 1

Let $\mathcal{D} \subset \mathbb{R}^d$ be an open set, and $L := \sum_{|\alpha| \leq n} \mathsf{a}_{\alpha} \partial^{\alpha}$, $\mathsf{a}_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U = (U(z))_{z \in \mathcal{D}}$ be a second order centred measurable random field, with covariance function k; assume that $\sigma : z \longmapsto k(z,z)^{1/2} \in L^1_{loc}(\mathcal{D})$. Then the following statements are equivalent.

- $\P(\{\omega \in \Omega : L(U_{\omega}) = 0 \text{ in the distributional sense}\}) = 1$
- $\forall z \in \mathcal{D}, L(k(z, \cdot)) = 0$ in the distributional sense.

Distributional sense \rightarrow also takes into account non-smooth solutions ! Generalisation of a result from[2]; inherited to conditioned GPs.

[3]H., I., Noble, P., & Roustant, O. (2023b). Characterization of the second order random fields subject to linear distributional pde constraints. *Bernoulli*, 29(4), 3396–3422.

^[2] Ginsbourger, D., Roustant, O., & Durrande, N. (2016). On degeneracy and invariances of random fields paths with applications in GP modelling. J. Stat. Plan. Inference, 170:117-128

PDE constrained random fields[3]

Given $U = (U(z))_{z \in \mathcal{D}}$ a RF, when does $\mathbb{P}(L(U) = 0) = 1$ hold?

Proposition 1

Let $\mathcal{D} \subset \mathbb{R}^d$ be an open set, and $L := \sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha}$, $a_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U = (U(z))_{z \in \mathcal{D}}$ be a second order centred measurable random field, with covariance function k; assume that $\sigma : z \longmapsto k(z,z)^{1/2} \in L^1_{loc}(\mathcal{D})$. Then the following statements are equivalent.

- $\mathbb{P}(\{\omega \in \Omega : L(U_{\omega}) = 0 \text{ in the distributional sense}\}) = 1$
- $\forall z \in \mathcal{D}, L(k(z, \cdot)) = 0$ in the distributional sense.

Distributional sense \rightarrow also takes into account non-smooth solutions! Generalisation of a result from[2]; inherited to conditioned GPs.

I.H. (ISAE-Supaéro)

^[2]Ginsbourger, D., Roustant, O., & Durrande, N. (2016).On degeneracy and invariances of random fields paths with applications in GP modelling. J. Stat. Plan. Inference, 170:117-128

^[3]H., I., Noble, P., & Roustant, O. (2023b). Characterization of the second order random fields subject to linear distributional pde constraints. *Bernoulli*, 29(4), 3396–3422.

PDE constrained random fields[3]

Given $U = (U(z))_{z \in \mathcal{D}}$ a RF, when does $\mathbb{P}(L(U) = 0) = 1$ hold?

Proposition 1

Let $\mathcal{D} \subset \mathbb{R}^d$ be an open set, and $L := \sum_{|\alpha| \leq n} a_{\alpha} \partial^{\alpha}$, $a_{\alpha} \in \mathcal{C}^{|\alpha|}(\mathcal{D})$. Let $U = (U(z))_{z \in \mathcal{D}}$ be a second order centred measurable random field, with covariance function k; assume that $\sigma : z \longmapsto k(z,z)^{1/2} \in L^1_{loc}(\mathcal{D})$. Then the following statements are equivalent.

- $\mathbb{P}(\{\omega \in \Omega : L(U_{\omega}) = 0 \text{ in the distributional sense}\}) = 1$
- $\forall z \in \mathcal{D}, L(k(z, \cdot)) = 0$ in the distributional sense.

Distributional sense \rightarrow also takes into account non-smooth solutions! Generalisation of a result from[2]; inherited to conditioned GPs.

[2] Ginsbourger, D., Roustant, O., & Durrande, N. (2016). On degeneracy and invariances of random fields paths with applications in GP modelling. *J. Stat. Plan. Inference*, 170:117-128. [3] H., I., Noble, P., & Roustant, O. (2023b). Characterization of the second order random

fields subject to linear distributional pde constraints. *Bernoulli*, 29(4), 3396–3422.

Sketch of proof 1/2

Assume that $\forall z \in \mathcal{D}, L(k(z, \cdot)) = 0$ in the distrib. sense. Show that

a.s.,
$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \langle L^*\varphi, U \rangle = 0.$$

Let $\varphi \in C_c^{\infty}(\mathcal{D})$. Then

$$\mathbb{E}[\langle L^*\varphi, U \rangle^2] = \mathbb{E}\left[\left(\int_{\mathcal{D}} L^*\varphi(z)U(z)dz\right)^2\right]$$

$$= \int_{\mathcal{D}} \int_{\mathcal{D}} L^*\varphi(z)L^*\varphi(z')\mathbb{E}[U(z)U(z')]dz'dz$$

$$= \int_{\mathcal{D}} L^*\varphi(z)\int_{\mathcal{D}} L^*\varphi(z')k(z,z')dz'dz = 0.$$

Hence $\langle L^*\varphi, U \rangle^2 = 0$ a.s., and

$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \text{ a.s., } \langle L^*\varphi, U \rangle = 0.$$

Sketch of proof 1/2

Assume that $\forall z \in \mathcal{D}, L(k(z, \cdot)) = 0$ in the distrib. sense. Show that

a.s.,
$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \langle L^*\varphi, U \rangle = 0.$$

Let $\varphi \in C_c^{\infty}(\mathcal{D})$. Then

$$\mathbb{E}[\langle L^*\varphi, U \rangle^2] = \mathbb{E}\left[\left(\int_{\mathcal{D}} L^*\varphi(z)U(z)dz\right)^2\right]$$

$$= \int_{\mathcal{D}} \int_{\mathcal{D}} L^*\varphi(z)L^*\varphi(z')\mathbb{E}[U(z)U(z')]dz'dz$$

$$= \int_{\mathcal{D}} L^*\varphi(z)\int_{\mathcal{D}} L^*\varphi(z')k(z,z')dz'dz = 0.$$

Hence $\langle L^*\varphi, U\rangle^2 = 0$ a.s., and

$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \text{ a.s., } \langle L^*\varphi, U \rangle = 0.$$

Sketch of proof 2/2

But "a.s." and " $\forall \varphi$ " do not commute! Expect if the " $\forall \varphi$ " statement is countable... For this we use that

- $C_c^{\infty}(\mathcal{D})$ is (sequentially) separable endowed with its standard topology (i.e. there exists a countable dense subset $F \subset C_c^{\infty}(\mathcal{D})$).
- ② The assumptions that $x \mapsto \sigma(x) \in L^1_{loc}(\mathcal{D})$ and $a_{\alpha} \in C^{|\alpha|}(\mathcal{D})$ imply that for almost every $\omega \in \Omega$,

$$\varphi\mapsto \langle L^*\varphi,U_\omega
angle \quad (U_\omega={\sf sample\ path\ at\ }\omega\in\Omega)$$

is a continuous linear form over $C_c^{\infty}(\mathcal{D})$ for its topology!

Thus (...), one can commute "a.s." and " $\forall \varphi$ " so that

a.s.,
$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \langle L^*\varphi, U \rangle = 0.$$

Sketch of proof 2/2

But "a.s." and " $\forall \varphi$ " do not commute! Expect if the " $\forall \varphi$ " statement is countable... For this we use that

- $C_c^{\infty}(\mathcal{D})$ is (sequentially) separable endowed with its standard topology (i.e. there exists a countable dense subset $F \subset C_c^{\infty}(\mathcal{D})$).
- ② The assumptions that $x \mapsto \sigma(x) \in L^1_{loc}(\mathcal{D})$ and $a_{\alpha} \in C^{|\alpha|}(\mathcal{D})$ imply that for almost every $\omega \in \Omega$,

$$\varphi \mapsto \langle L^* \varphi, U_\omega \rangle \quad (U_\omega = {\sf sample path at} \ \omega \in \Omega)$$

is a continuous linear form over $C_c^{\infty}(\mathcal{D})$ for its topology!

Thus (...), one can commute "a.s." and " $\forall \varphi$ " so that

a.s.,
$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \langle L^*\varphi, U \rangle = 0.$$

Sketch of proof 2/2

But "a.s." and " $\forall \varphi$ " do not commute! Expect if the " $\forall \varphi$ " statement is countable... For this we use that

- $C_c^{\infty}(\mathcal{D})$ is (sequentially) separable endowed with its standard topology (i.e. there exists a countable dense subset $F \subset C_c^{\infty}(\mathcal{D})$).
- ② The assumptions that $x \mapsto \sigma(x) \in L^1_{loc}(\mathcal{D})$ and $a_{\alpha} \in C^{|\alpha|}(\mathcal{D})$ imply that for almost every $\omega \in \Omega$,

$$\varphi \mapsto \langle L^* \varphi, U_\omega \rangle \quad (U_\omega = \mathsf{sample path at} \ \omega \in \Omega)$$

is a continuous linear form over $C_c^{\infty}(\mathcal{D})$ for its topology!

Thus (...), one can commute "a.s." and " $\forall \varphi$ " so that

a.s.,
$$\forall \varphi \in C_c^{\infty}(\mathcal{D}), \langle L^*\varphi, U \rangle = 0.$$

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

Some examples of kernels such that $L(k(z,\cdot)) = 0 \ \forall z$

• Heat equation in \mathbb{R} : $Lu = \partial_t u - D\partial_{xx}^2 u = 0$. Let $k_t(x) =$ density of $\mathcal{N}(0, 2Dt)$ and k_0 a kernel over \mathbb{R} .

$$k((t,x),(t',x'))=[(k_t\otimes k_{t'})*k_0](x,x')$$
 (general form.)

If
$$k_0(x, x') = \sigma^2 e^{-\|x - x'\|^2 / 2\ell^2}$$
, and $\alpha_D(t, t') = 2D(t + t') + \ell^2$:

$$k((t,x),(t',x')) = \frac{\ell\sigma^2}{\sqrt{\alpha_{D}(t,t')}} \exp\left(-\frac{\|x-x\|^2}{2\alpha_{D}(t,t')}\right).$$

• Transport equation : $Lu = \partial_t u + c \partial_x u = 0$, k_0 a kernel over \mathbb{R} .

$$k((t,x),(t',x')) = [\delta_{ct} \otimes \delta_{ct'}] * k_0](x,x') = k_0(x-ct,x'-ct').$$

They both verify $L(k(t,x),\cdot)=0$ for all (t,x) and for their respective differential operators, and depend on their physical parameters.

Some examples of kernels such that $L(k(z,\cdot))=0 \ \forall z$

• Heat equation in \mathbb{R} : $Lu = \partial_t u - D\partial_{xx}^2 u = 0$. Let $k_t(x) =$ density of $\mathcal{N}(0, 2Dt)$ and k_0 a kernel over \mathbb{R} .

$$k((t,x),(t',x'))=[(k_t\otimes k_{t'})*k_0](x,x')$$
 (general form.)

If
$$k_0(x,x') = \sigma^2 e^{-\|x-x'\|^2/2\ell^2}$$
, and $\alpha_D(t,t') = 2D(t+t') + \ell^2$:

$$k((t,x),(t',x')) = \frac{\ell\sigma^2}{\sqrt{\alpha_{D}(t,t')}} \exp\left(-\frac{\|x-x\|)^2}{2\alpha_{D}(t,t')}\right).$$

• Transport equation : $Lu = \partial_t u + c \partial_x u = 0$, k_0 a kernel over \mathbb{R} .

$$k((t,x),(t',x')) = [\delta_{ct} \otimes \delta_{ct'}] * k_0](x,x') = k_0(x-ct,x'-ct').$$

They both verify $L(k(t,x),\cdot)=0$ for all (t,x) and for their respective differential operators, and depend on their physical parameters.

Some examples of kernels such that $L(k(z,\cdot))=0 \ \forall z$

• Heat equation in \mathbb{R} : $Lu = \partial_t u - D\partial_{xx}^2 u = 0$. Let $k_t(x) =$ density of $\mathcal{N}(0, 2Dt)$ and k_0 a kernel over \mathbb{R} .

$$k((t,x),(t',x'))=[(k_t\otimes k_{t'})*k_0](x,x')$$
 (general form.)

If
$$k_0(x,x') = \sigma^2 e^{-\|x-x'\|^2/2\ell^2}$$
, and $\alpha_D(t,t') = 2D(t+t') + \ell^2$:

$$k((t,x),(t',x')) = \frac{\ell\sigma^2}{\sqrt{\alpha_{\mathbf{D}}(t,t')}} \exp\left(-\frac{\|x-x\|)^2}{2\alpha_{\mathbf{D}}(t,t')}\right).$$

• Transport equation : $Lu = \partial_t u + c \partial_x u = 0$, k_0 a kernel over \mathbb{R} .

$$k((t,x),(t',x')) = [\delta_{ct} \otimes \delta_{ct'}] * k_0](x,x') = k_0(x - \mathbf{c}t,x' - \mathbf{c}t').$$

They both verify $L(k(t,x),\cdot)=0$ for all (t,x) and for their respective differential operators, and depend on their physical parameters.

More examples of kernels verifying $L(k(z,\cdot)) = 0 \ \forall z$

Given L, find
$$k_L$$
 such that $L(k_L(\cdot,z))=0 \ \forall z$; $\Delta=\sum_{i=1}^d \partial^2_{x_ix_i}$

- Laplace: $\Delta u = 0$ (Mendes and da Costa Júnior, 2012), (Ginsbourger et al., 2016): use harmonic basis functions.
- Heat: $\partial_t D\Delta u = 0$ (Albert and Rath, 2020)
- Div/Curl free: $\nabla \cdot u = 0$, $\nabla \times u = 0$ (Scheuerer and Schlather, 2012),(Owhadi, 2023)
- Linear continuum mechanics: (Jidling et al., 2018)
- Helmholtz: $-\Delta u = \lambda u$ (Albert and Rath, 2020)
- (non)stationary Maxwell: (Wahlstrom et al., 2013), (Jidling et al., 2017),(Lange-Hegermann, 2018)
- 3D wave equation, transport: (H. et al., 2023b)
- See also "latent forces": (Álvarez et al., 2009),(López-Lopera et al., 2021)

Often based on representations of solutions of $Lu=0\ (+\mathsf{BC})$ of the form

$$u = Gf$$
.

More examples of kernels verifying $L(k(z,\cdot)) = 0 \ \forall z$

Given L, find k_L such that $L(k_L(\cdot,z))=0 \ \forall z$; $\Delta=\sum_{i=1}^d \partial^2_{x_ix_i}$

- Laplace: $\Delta u = 0$ (Mendes and da Costa Júnior, 2012), (Ginsbourger et al., 2016): use harmonic basis functions.
- Heat: $\partial_t D\Delta u = 0$ (Albert and Rath, 2020)
- Div/Curl free: $\nabla \cdot u = 0$, $\nabla \times u = 0$ (Scheuerer and Schlather, 2012),(Owhadi, 2023)
- Linear continuum mechanics: (Jidling et al., 2018)
- Helmholtz: $-\Delta u = \lambda u$ (Albert and Rath, 2020)
- (non)stationary Maxwell: (Wahlstrom et al., 2013), (Jidling et al., 2017),(Lange-Hegermann, 2018)
- 3D wave equation, transport: (H. et al., 2023b)
- See also "latent forces": (Álvarez et al., 2009),(López-Lopera et al., 2021)

Often based on representations of solutions of $Lu=0\ (+\mathsf{BC})$ of the form

$$u = Gf$$
.

More examples of kernels verifying $L(k(z,\cdot)) = 0 \ \forall z$

Given L, find k_L such that $L(k_L(\cdot,z))=0 \ \forall z$; $\Delta=\sum_{i=1}^d \partial^2_{x_ix_i}$.

- Laplace: $\Delta u = 0$ (Mendes and da Costa Júnior, 2012), (Ginsbourger et al., 2016): use harmonic basis functions.
- Heat: $\partial_t D\Delta u = 0$ (Albert and Rath, 2020)
- Div/Curl free: $\nabla \cdot u = 0$, $\nabla \times u = 0$ (Scheuerer and Schlather, 2012),(Owhadi, 2023)
- Linear continuum mechanics: (Jidling et al., 2018)
- Helmholtz: $-\Delta u = \lambda u$ (Albert and Rath, 2020)
- (non)stationary Maxwell: (Wahlstrom et al., 2013), (Jidling et al., 2017),(Lange-Hegermann, 2018)
- 3D wave equation, transport: (H. et al., 2023b)
- See also "latent forces": (Álvarez et al., 2009),(López-Lopera et al., 2021)

Often based on representations of solutions of $Lu=0\ (+BC)$ of the form

$$u = Gf$$
.

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- **5** Conclusion and perspectives

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- **5** Conclusion and perspectives

Let us construct some relevant energy functionals for given PDEs :

• Heat : $T(x,t), (x,t) \in \mathbb{R}^d \times \mathbb{R}_+, \ \partial_t T - \Delta T = 0.$

$$\frac{1}{2}\partial_t \|T(\cdot,t)\|_{L^2}^2 = -\|\nabla T(\cdot,t)\|_{L^2}^2 < 0 \text{ (diffusion)}.$$
 (8)

• Wave : $\partial_{tt}^2 u - \Delta u = 0$.

$$\partial_t \Big(\|\partial_t u(\cdot, t)\|_{L^2}^2 + \|\nabla u(\cdot, t)\|_{L^2}^2 \Big) = 0 \quad \text{(conservation)}. \tag{9}$$

Transport : if $\partial_t u + \partial_{\times} u = 0$, then $\partial_t \|u(\cdot,t)\|_{L^p} = 0$.

Let us construct some relevant energy functionals for given PDEs :

• Heat : $T(x,t), (x,t) \in \mathbb{R}^d \times \mathbb{R}_+, \ \partial_t T - \Delta T = 0.$

$$\frac{1}{2}\partial_t \|T(\cdot,t)\|_{L^2}^2 = -\|\nabla T(\cdot,t)\|_{L^2}^2 < 0 \quad \text{(diffusion)}. \tag{8}$$

• Wave : $\partial_{tt}^2 u - \Delta u = 0$.

$$\partial_t \Big(\|\partial_t u(\cdot, t)\|_{L^2}^2 + \|\nabla u(\cdot, t)\|_{L^2}^2 \Big) = 0 \quad \text{(conservation)}. \tag{9}$$

Transport : if $\partial_t u + \partial_x u = 0$, then $\partial_t ||u(\cdot, t)||_{L^p} = 0$.

Let us construct some relevant energy functionals for given PDEs :

• Heat : $T(x,t), (x,t) \in \mathbb{R}^d \times \mathbb{R}_+, \ \partial_t T - \Delta T = 0.$

$$\frac{1}{2}\partial_t \|T(\cdot,t)\|_{L^2}^2 = -\|\nabla T(\cdot,t)\|_{L^2}^2 < 0 \quad \text{(diffusion)}. \tag{8}$$

• Wave : $\partial_{tt}^2 u - \Delta u = 0$.

$$\partial_t \Big(\|\partial_t u(\cdot, t)\|_{L^2}^2 + \|\nabla u(\cdot, t)\|_{L^2}^2 \Big) = 0 \quad \text{(conservation)}. \tag{9}$$

Transport : if $\partial_t u + \partial_x u = 0$, then $\partial_t ||u(\cdot, t)||_{L^p} = 0$.

Let us construct some relevant energy functionals for given PDEs :

• Heat : $T(x,t), (x,t) \in \mathbb{R}^d \times \mathbb{R}_+$, $\partial_t T - \Delta T = 0$.

$$\frac{1}{2}\partial_t \|T(\cdot,t)\|_{L^2}^2 = -\|\nabla T(\cdot,t)\|_{L^2}^2 < 0 \quad \text{(diffusion)}. \tag{8}$$

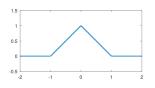
• Wave : $\partial_{tt}^2 u - \Delta u = 0$.

$$\partial_t \Big(\|\partial_t u(\cdot, t)\|_{L^2}^2 + \|\nabla u(\cdot, t)\|_{L^2}^2 \Big) = 0 \quad \text{(conservation)}. \tag{9}$$

Transport : if $\partial_t u + \partial_x u = 0$, then $\partial_t ||u(\cdot, t)||_{L^p} = 0$.

Finite energy derivatives and Sobolev spaces

Some functions are "almost" differentiable: $h(x) = \max(0, 1 - |x|)$.



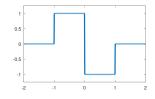


Figure 4: Left: h(x). Right: h'(x) (hopefully).

Unfortunately, $h' \notin C^0$... but $h' \in L^2$ (finite energy)!

A function g is the weak derivative of h if for all $\varphi \in C_c^{\infty}(\mathbb{R})$,

$$\int_{\mathbb{R}} h(x)\varphi'(x)dx = -\int_{\mathbb{R}} g(x)\varphi(x)dx.$$

 $H^{1}(\mathbb{R}) := \{ u \in L^{2}(\mathbb{R}) : u' \text{ exists in the weak sense and } u' \in L^{2}(\mathbb{R}) \},$ $H^{m}(\mathcal{D}) := \{ u \in L^{2}(\mathcal{D}) : \forall |\alpha| \leq m, \partial^{\alpha} u \text{ exists ITWS and } \partial^{\alpha} u \in L^{2}(\mathcal{D}) \}$

Caveat : $H^m(\mathbb{R}^d)\subset C^0(\mathbb{R}^d)\iff m>d/2$!onot a RKHS if $m\leq d/2$

Finite energy derivatives and Sobolev spaces

Some functions are "almost" differentiable: $h(x) = \max(0, 1 - |x|)$.

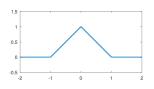




Figure 4: Left: h(x). Right: h'(x) (hopefully).

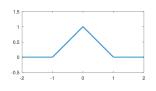
Unfortunately, $h' \notin C^0$... but $h' \in L^2$ (finite energy)! A function g is the weak derivative of h if for all $\varphi \in C_c^{\infty}(\mathbb{R})$,

$$\int_{\mathbb{R}} h(x)\varphi'(x)dx = -\int_{\mathbb{R}} g(x)\varphi(x)dx.$$

 $H^1(\mathbb{R}) := \{ u \in L^2(\mathbb{R}) : u' \text{ exists in the weak sense and } u' \in L^2(\mathbb{R}) \},$ $H^m(\mathcal{D}) := \{ u \in L^2(\mathcal{D}) : \forall |\alpha| \le m, \partial^{\alpha} u \text{ exists ITWS and } \partial^{\alpha} u \in L^2(\mathcal{D}) \}.$ Covert : $H^m(\mathbb{R}^d) \subset C^0(\mathbb{R}^d) \iff m > d/2 \implies \text{not a RKHS if } m \le d/2 \implies \text{not a RKHS if } m \ge$

Finite energy derivatives and Sobolev spaces

Some functions are "almost" differentiable: $h(x) = \max(0, 1 - |x|)$.



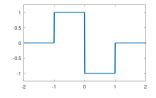


Figure 4: Left: h(x). Right: h'(x) (hopefully).

Unfortunately, $h' \notin C^0$... but $h' \in L^2$ (finite energy)! A function g is the weak derivative of h if for all $\varphi \in C_c^{\infty}(\mathbb{R})$,

$$\int_{\mathbb{R}} h(x)\varphi'(x)dx = -\int_{\mathbb{R}} g(x)\varphi(x)dx.$$

 $H^{1}(\mathbb{R}) := \{ u \in L^{2}(\mathbb{R}) : u' \text{ exists in the weak sense and } u' \in L^{2}(\mathbb{R}) \},$ $H^{m}(\mathcal{D}) := \{ u \in L^{2}(\mathcal{D}) : \forall |\alpha| \leq m, \partial^{\alpha} u \text{ exists ITWS and } \partial^{\alpha} u \in L^{2}(\mathcal{D}) \}.$

Caveat : $H^m(\mathbb{R}^d) \subset C^0(\mathbb{R}^d) \iff m > d/2! \to not$ a RKHS if $m \leq d/2$.

Sobolev regularity of GPs

Modelling question:

Under what conditions can we ensure that

$$\mathbb{P}(U \in H^m(\mathcal{D})) = 1$$
 ????

- We assume that \mathcal{D} is any open set of $\mathbb{R}^d \to$ no smoothness assumptions on $\partial \mathcal{D}$, hence no extension operators, no Fourier analysis, no series representations for weak derivatives...
- We also wish to replace $H^m(\mathcal{D})$ with $W^{m,p}(\mathcal{D})$ where $p \in (1, +\infty) \to$ even less Fourier analysis.

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

Gaussian measures 1/3

Change the point of view : Gaussian process/vector \leftrightarrow Gaussian measure.

- A Gaussian measure μ over \mathbb{R}^d is the distribution of some Gaussian random vector U with values in \mathbb{R}^d ($\mu = \mathcal{N}(m, \Sigma)$).
- If μ is abs. continuous, density $\propto \exp(-(x-m)^{\top} \Sigma^{-1}(x-m))$.
- Defining property for U: for any $(a_1, \ldots, a_d) \in \mathbb{R}^d$, $\sum_{i=1}^d a_i U_i$ is a 1D Gaussian random variable.
- ullet Equivalent in terms of μ : the pushforward of μ through the map

$$\ell_a: \begin{cases} (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \mu) & \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \\ u & \mapsto \langle a, u \rangle = \sum_{i=1}^d a_i u_i \end{cases}$$

is a 1D Gaussian distribution

Gaussian measures 1/3

Change the point of view : Gaussian process/vector \leftrightarrow Gaussian measure.

- A Gaussian measure μ over \mathbb{R}^d is the distribution of some Gaussian random vector U with values in \mathbb{R}^d ($\mu = \mathcal{N}(m, \Sigma)$).
- If μ is abs. continuous, density $\propto \exp(-(x-m)^{\top} \Sigma^{-1}(x-m))$.
- Defining property for U: for any $(a_1, \ldots, a_d) \in \mathbb{R}^d$, $\sum_{i=1}^d a_i U_i$ is a 1D Gaussian random variable.
- Equivalent in terms of μ : the pushforward of μ through the map

$$\ell_a: \begin{cases} (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \mu) & \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \\ u & \mapsto \langle a, u \rangle = \sum_{i=1}^d a_i u_i \end{cases}$$

is a 1D Gaussian distribution.

Gaussian measures 2/3

Let $(H, \|\cdot\|)$ be a Hilbert space and $\mathcal{B}(H)$ be its Borel σ -algebra.

Definition 2 (Gaussian measures)

A measure μ over $(H, \mathcal{B}(H))$ is Gaussian if for all $h \in H$, the pushforward of μ via the continuous linear form ℓ_x

$$\ell_{x}: \begin{cases} (H, \mathcal{B}(H), \mu) & \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \\ y & \mapsto \langle x, y \rangle_{H} \end{cases}$$

is s a 1D Gaussian distribution (i.e. $\ell_{x\#}\mu = \text{some } \mathcal{N}(m_x, \sigma_x^2)$).

Gaussian measures have a mean vector $a_{\mu} \in H$ and cov. op. $K_{\mu}: H o H$

$$a_{\mu} = \int_{H} x \mu(dx) \in H \quad \text{(Bochner integral)}$$

$$\langle u, K_{\mu} v \rangle = \int_{H} \langle u, x - a_{\mu} \rangle \langle v, x - a_{\mu} \rangle \mu(dx) = \int_{H} \langle u, x \rangle \langle v, x \rangle \mu(dx) \text{ if } a_{\mu} = 0.$$

Gaussian measures 2/3

Let $(H, \|\cdot\|)$ be a Hilbert space and $\mathcal{B}(H)$ be its Borel σ -algebra.

Definition 2 (Gaussian measures)

A measure μ over $(H, \mathcal{B}(H))$ is Gaussian if for all $h \in H$, the pushforward of μ via the continuous linear form ℓ_x

$$\ell_{x}: \begin{cases} (H,\mathcal{B}(H),\mu) & \to (\mathbb{R},\mathcal{B}(\mathbb{R})) \\ y & \mapsto \langle x,y \rangle_{H} \end{cases}$$

is s a 1D Gaussian distribution (i.e. $\ell_{x\#}\mu = \text{some } \mathcal{N}(m_x, \sigma_x^2)$).

Gaussian measures have a mean vector $a_{\mu} \in H$ and cov. op. $K_{\mu} : H \to H$,

$$a_{\mu} = \int_{H} x \mu(dx) \in H$$
 (Bochner integral)

$$\langle u, K_{\mu} v \rangle = \int_{H} \langle u, x - a_{\mu} \rangle \langle v, x - a_{\mu} \rangle \mu(dx) = \int_{H} \langle u, x \rangle \langle v, x \rangle \mu(dx) \text{ if } a_{\mu} = 0.$$

Gaussian measures 3/3

Proposition 2 (Gaussian covariance operators)

 $K: H \to H$ is the covariance operator of a centred Gaussian measure μ over $(H, \|\cdot\|) \iff K = K^*, \ K \ge 0$ and K is trace class, i.e. for any orthonormal basis (ONB) $(e_n)_{n \in \mathbb{N}}$ of H,

$$Tr(K) := \sum_{n=0}^{+\infty} \langle e_n, Ke_n \rangle < +\infty.$$

• Trace class operators are compact : there exists an ONB of H of eigenvectors, eigenvalues $\lambda_n \geq 0$ leading to

$$\operatorname{Tr}(K) = \sum_{n=0}^{+\infty} \langle e_n, Ke_n \rangle = \sum_{n=0}^{+\infty} \lambda_n = \int_H \|x\|^2 \mu(dx) < +\infty.$$

• Can be generalised to Banach spaces $(X, \|\cdot\|_X) : K : X^* \to X$, other characterisations of Gaussian cov. ops. depending on X.

Gaussian measures 3/3

Proposition 2 (Gaussian covariance operators)

 $K: H \to H$ is the covariance operator of a centred Gaussian measure μ over $(H, \|\cdot\|) \iff K = K^*, \ K \ge 0$ and K is trace class, i.e. for any orthonormal basis (ONB) $(e_n)_{n \in \mathbb{N}}$ of H,

$$Tr(K) := \sum_{n=0}^{+\infty} \langle e_n, Ke_n \rangle < +\infty.$$

• Trace class operators are compact : there exists an ONB of H of eigenvectors, eigenvalues $\lambda_n \geq 0$ leading to

$$\operatorname{Tr}(K) = \sum_{n=0}^{+\infty} \langle e_n, Ke_n \rangle = \sum_{n=0}^{+\infty} \lambda_n = \int_H \|x\|^2 \mu(\mathrm{d}x) < +\infty.$$

• Can be generalised to Banach spaces $(X, \|\cdot\|_X) : K : X^* \to X$, other characterisations of Gaussian cov. ops. depending on X.

Gaussian measures 3/3

Proposition 2 (Gaussian covariance operators)

 $K: H \to H$ is the covariance operator of a centred Gaussian measure μ over $(H, \|\cdot\|) \iff K = K^*, \ K \ge 0$ and K is trace class, i.e. for any orthonormal basis (ONB) $(e_n)_{n \in \mathbb{N}}$ of H,

$$Tr(K) := \sum_{n=0}^{+\infty} \langle e_n, Ke_n \rangle < +\infty.$$

• Trace class operators are compact : there exists an ONB of H of eigenvectors, eigenvalues $\lambda_n \geq 0$ leading to

$$\operatorname{Tr}(K) = \sum_{n=0}^{+\infty} \langle e_n, Ke_n \rangle = \sum_{n=0}^{+\infty} \lambda_n = \int_H \|x\|^2 \mu(\mathrm{d}x) < +\infty.$$

• Can be generalised to Banach spaces $(X, \|\cdot\|_X) : K : X^* \to X$, other characterisations of Gaussian cov. ops. depending on X.

Gaussian processes and Gaussian measures 1/2

What is the link between Gaussian measures and Gaussian processes?

Let $U = (U(x))_{x \in \mathcal{D}} \sim GP(0, k)$ be measurable, i.e. the map below is measurable :

$$\begin{cases} (\mathcal{D} \times \Omega, \mathcal{B}(\mathcal{D}) \otimes \mathcal{F}) & \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \\ (x, \omega) & \mapsto U(x)(\omega) \end{cases}.$$

Assume also that $\mathbb{P}(\|U\|_{L^2(\mathcal{D})} < +\infty) = 1$. Then the random function map

$$\widetilde{U}: egin{cases} (\Omega, \mathcal{F}, \mathbb{P}) &
ightarrow (L^2(\mathcal{D}), \mathcal{B}(L^2(\mathcal{D}))) \\ \omega &
ightarrow U_\omega \end{cases}$$

where $U_{\omega}: x \mapsto U(x)(\omega)$, is well-defined and measurable.

Moreover, $\mathbb{P}_{\widetilde{U}}$, the pushforward of \mathbb{P} through \widetilde{U} is a Gaussian measure!

Gaussian processes and Gaussian measures 1/2

What is the link between Gaussian measures and Gaussian processes?

Let $U = (U(x))_{x \in \mathcal{D}} \sim GP(0, k)$ be measurable, i.e. the map below is measurable :

$$\begin{cases} (\mathcal{D} \times \Omega, \mathcal{B}(\mathcal{D}) \otimes \mathcal{F}) & \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \\ (x, \omega) & \mapsto U(x)(\omega) \end{cases}.$$

Assume also that $\mathbb{P}(\|U\|_{L^2(\mathcal{D})} < +\infty) = 1$. Then the random function map

$$\widetilde{U}: egin{cases} (\Omega, \mathcal{F}, \mathbb{P}) &
ightarrow (\mathit{L}^2(\mathcal{D}), \mathcal{B}(\mathit{L}^2(\mathcal{D}))) \ \omega &
ightarrow \mathit{U}_\omega \end{cases}$$

where $U_{\omega}: x \mapsto U(x)(\omega)$, is well-defined and measurable.

Moreover, $\mathbb{P}_{\widetilde{U}}$, the pushforward of \mathbb{P} through \widetilde{U} is a Gaussian measure!

Gaussian processes and Gaussian measures 1/2

What is the link between Gaussian measures and Gaussian processes?

Let $U = (U(x))_{x \in \mathcal{D}} \sim GP(0, k)$ be measurable, i.e. the map below is measurable :

$$\begin{cases} (\mathcal{D} \times \Omega, \mathcal{B}(\mathcal{D}) \otimes \mathcal{F}) & \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) \\ (x, \omega) & \mapsto U(x)(\omega) \end{cases}.$$

Assume also that $\mathbb{P}(\|U\|_{L^2(\mathcal{D})} < +\infty) = 1$. Then the random function map

$$\widetilde{U}: egin{cases} (\Omega, \mathcal{F}, \mathbb{P}) &
ightarrow (\mathit{L}^2(\mathcal{D}), \mathcal{B}(\mathit{L}^2(\mathcal{D}))) \ \omega &
ightarrow \mathit{U}_\omega \end{cases}$$

where $U_{\omega}: x \mapsto U(x)(\omega)$, is well-defined and measurable.

Moreover, $\mathbb{P}_{\widetilde{U}}$, the pushforward of \mathbb{P} through \widetilde{U} is a Gaussian measure!

Gaussian processes and Gaussian measures 2/2

Computation : the covariance operator of $\mathbb{P}_{\widetilde{U}}$ is $\mathcal{E}_k : L^2(\mathcal{D}) \to L^2(\mathcal{D})$,

$$(\mathcal{E}_k f)(x) := \int_{\mathcal{D}} k(x, y) f(y) dy.$$

Hence \mathcal{E}_k is necessarily trace class, with

$$Tr(\mathcal{E}_k) = \int_{\mathcal{D}} k(x,x) dx \stackrel{Fubini}{=} \mathbb{E} \left[\int_{\mathcal{D}} U(x)^2 dx \right] = \mathbb{E}[\|U\|_2^2] < +\infty.$$

In fact, in $L^2(\mathcal{D})$ we have the following equivalence.

Proposition 3 (GPs vs GMs over $L^2(\mathcal{D})$)

Let μ be a Gaussian measure over $(L^2(\mathcal{D}), \mathcal{B}(L^2(\mathcal{D}))$.

- Then there exists a measurable Gaussian process $U \sim GP(0,k)$ such that $\mathbb{P}(\widetilde{U} \in L^2(\mathcal{D})) = 1$ and $\mu = \mathbb{P}_{\widetilde{U}}$.
- Its covariance operator K_{μ} is of the form $K_{\mu} = \mathcal{E}_k$ and k can be chosen as the cov. function of the GP U, with $\int_{\mathbb{T}} k(x,x) dx < +\infty$.

Gaussian processes and Gaussian measures 2/2

Computation : the covariance operator of $\mathbb{P}_{\widetilde{U}}$ is $\mathcal{E}_k : L^2(\mathcal{D}) \to L^2(\mathcal{D})$,

$$(\mathcal{E}_k f)(x) := \int_{\mathcal{D}} k(x, y) f(y) dy.$$

Hence \mathcal{E}_k is necessarily trace class, with

$$Tr(\mathcal{E}_k) = \int_{\mathcal{D}} k(x,x) dx \stackrel{Fubini}{=} \mathbb{E} \left[\int_{\mathcal{D}} U(x)^2 dx \right] = \mathbb{E}[\|U\|_2^2] < +\infty.$$

In fact, in $L^2(\mathcal{D})$ we have the following equivalence.

Proposition 3 (GPs vs GMs over $L^2(\mathcal{D})$)

Let μ be a Gaussian measure over $(L^2(\mathcal{D}), \mathcal{B}(L^2(\mathcal{D}))$.

- Then there exists a measurable Gaussian process $U \sim GP(0,k)$ such that $\mathbb{P}(\widetilde{U} \in L^2(\mathcal{D})) = 1$ and $\mu = \mathbb{P}_{\widetilde{U}}$.
- Its covariance operator K_{μ} is of the form $K_{\mu} = \mathcal{E}_k$ and k can be chosen as the cov. function of the GP U, with $\int_{\mathcal{D}} k(x,x) dx < +\infty$.

L^2 regularity of a Gaussian process[4]

To summarise again, let $(U(x))_{x\in\mathcal{D}}\sim GP(0,k)$ be a measurable GP, then

 \rightarrow Integral criterion:

$$\mathbb{P}(U \in L^2(\mathcal{D})) = 1 \iff \int_{\mathcal{D}} k(x, x) dx < +\infty.$$
 (10)

ightarrow Spectral/Mercer-type criterion: let $\mathcal{E}_k: L^2(\mathcal{D})
ightarrow L^2(\mathcal{D})$ be

$$(\mathcal{E}_k f)(x) := \int k(x, y) f(y) dy. \tag{11}$$

26 / 42

If $\int k(x,x)dx < +\infty$, then we have an ONB (ψ_n) of eigenvectors of \mathcal{E}_k , with eigenvalue $\lambda_n \geq 0$. This yields the Mercer decomposition

$$k(x,y) = \sum_{n=0}^{+\infty} \lambda_n \psi_n(x) \psi_n(y) \quad \text{in} \quad L^2(\mathcal{D} \times \mathcal{D}).$$
 (12)

[4] Bogachev, V. I. (1998). Gaussian measures. American Mathematical Soc.

I.H. (ISAE-Supaéro) Physics-informed GP priors July 9th, 2025

L² regularity of a Gaussian process[4]

To summarise again, let $(U(x))_{x\in\mathcal{D}}\sim GP(0,k)$ be a measurable GP, then

→ Integral criterion:

$$\mathbb{P}(U \in L^{2}(\mathcal{D})) = 1 \iff \int_{\mathcal{D}} k(x, x) dx < +\infty.$$
 (10)

 \rightarrow Spectral/Mercer-type criterion: let $\mathcal{E}_k : L^2(\mathcal{D}) \rightarrow L^2(\mathcal{D})$ be

$$(\mathcal{E}_k f)(x) := \int k(x, y) f(y) dy. \tag{11}$$

If $\int k(x,x)dx < +\infty$, then we have an ONB (ψ_n) of eigenvectors of \mathcal{E}_k , with eigenvalue $\lambda_n \geq 0$. This yields the Mercer decomposition

$$k(x,y) = \sum_{n=0}^{+\infty} \lambda_n \psi_n(x) \psi_n(y) \quad \text{in} \quad L^2(\mathcal{D} \times \mathcal{D}).$$
 (12)

[4] Bogachev, V. I. (1998). Gaussian measures. American Mathematical Soc.

I.H. (ISAE-Supaéro) Physics-informed GP priors

L^2 regularity of a Gaussian process[6]

Moreover, this Mercer decomposition verifies

$$\int_{\mathcal{D}} k(x, x) dx = \int_{\mathcal{D}} \sum_{n=0}^{+\infty} \lambda_n \psi_n(x)^2 dx = \sum_{n=0}^{+\infty} \lambda_n \int_{\mathcal{D}} \psi_n(x)^2 dx$$
 (13)

$$=\sum_{n=0}^{+\infty} \lambda_n = \operatorname{Tr}(\mathcal{E}_k) < +\infty \quad \text{(trace class)}. \tag{14}$$

27 / 42

 \rightarrow Imbedding of the RKHS (other criterion) : if $\int k(x,x)dx < +\infty$, then $RKHS(k) \subset L^2(\mathcal{D})$, and denoting \mathcal{I} the associated imbedding, $\mathcal{II}^*(=\mathcal{E}_k)$ is trace class (" \sim Driscoll's theorem but for L^2 "[5]).

[6]Bogachev, V. I. (1998). Gaussian measures. American Mathematical Soc.

I.H. (ISAE-Supaéro) Physics-informed GP priors July 9th, 2025

^[5] Driscoll, M. F. (1973). The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 26, 309–316.

L^2 regularity of a Gaussian process[6]

Moreover, this Mercer decomposition verifies

$$\int_{\mathcal{D}} k(x, x) dx = \int_{\mathcal{D}} \sum_{n=0}^{+\infty} \lambda_n \psi_n(x)^2 dx = \sum_{n=0}^{+\infty} \lambda_n \int_{\mathcal{D}} \psi_n(x)^2 dx$$
 (13)

$$= \sum_{n=0}^{+\infty} \lambda_n = \operatorname{Tr}(\mathcal{E}_k) < +\infty \quad \text{(trace class)}. \tag{14}$$

27 / 42

 \rightarrow Imbedding of the RKHS (other criterion) : if $\int k(x,x)dx < +\infty$, then $RKHS(k) \subset L^2(\mathcal{D})$, and denoting \mathcal{I} the associated imbedding, $\mathcal{II}^*(=\mathcal{E}_k)$ is trace class (" \sim Driscoll's theorem but for L^2 "[5]).

I.H. (ISAE-Supaéro) Physics-informed GP priors July 9th, 2025

^[5]Driscoll, M. F. (1973). The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete*, *26*, 309–316. [6]Bogachev, V. I. (1998). *Gaussian measures*. American Mathematical Soc.

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

Tool: Sobolev norm as a countable supremum

Recall that, from the Cauchy-Schwarz inequality,

$$||f||_2 = \sup_{g \in B_{L^2}(0,1)} |\langle f, g \rangle_{L^2}|.$$

• Likewise, $f \in L^1_{loc}(\mathcal{D})$ admits a weak derivative f' s.t. $f' \in L^2(\mathcal{D})$ iff

$$S := \sup_{\substack{\varphi \in C_c^{\infty}(\mathcal{D}) \\ \|\varphi\|_2 = 1}} |\langle f, \varphi' \rangle_{L^2}| < +\infty, \quad \text{with} \quad \|f'\|_2 = S.$$

Proof : extension of C^0 linear forms via the density of $C_c^\infty(\mathcal{D})$ in $L^2(\mathcal{D})+$ Riesz lemma (see e.g. Brézis book). Utility : $\langle f, \varphi' \rangle_{L^2}$ is well-defined if $f \in L^1_{loc}(\mathcal{D})$.

• The sup can be made countable : there exists $F_2 := (\varphi_n)_{n \in \mathbb{N}}$, $\varphi_n \in C_c^{\infty}(\mathcal{D}), \ \|\varphi_n\|_2 = 1$, such that $f' \in L^2(\mathcal{D})$ iff

$$S := \sup_{\varphi \in F_2} |\langle f, \varphi'_n \rangle_{L^2}| < +\infty, \quad \text{with} \quad ||f'||_2 = S.$$

Tool: Sobolev norm as a countable supremum

Recall that, from the Cauchy-Schwarz inequality,

$$||f||_2 = \sup_{g \in B_{L^2}(0,1)} |\langle f, g \rangle_{L^2}|.$$

• Likewise, $f \in L^1_{loc}(\mathcal{D})$ admits a weak derivative f' s.t. $f' \in L^2(\mathcal{D})$ iff

$$S \coloneqq \sup_{\substack{\varphi \in C_c^{\infty}(\mathcal{D}) \\ \|\varphi\|_2 = 1}} |\langle f, \varphi' \rangle_{L^2}| < +\infty, \quad \text{with} \quad \|f'\|_2 = S.$$

Proof : extension of C^0 linear forms via the density of $C_c^{\infty}(\mathcal{D})$ in $L^2(\mathcal{D})$ + Riesz lemma (see e.g. Brézis book). Utility : $\langle f, \varphi' \rangle_{L^2}$ is well-defined if $f \in L^1_{loc}(\mathcal{D})$.

• The sup can be made countable : there exists $F_2 := (\varphi_n)_{n \in \mathbb{N}}$, $\varphi_n \in C_c^{\infty}(\mathcal{D}), \ \|\varphi_n\|_2 = 1$, such that $f' \in L^2(\mathcal{D})$ iff

$$S := \sup_{\varphi \in F_2} |\langle f, \varphi'_n \rangle_{L^2}| < +\infty, \quad \text{with} \quad ||f'||_2 = S.$$

Tool: Sobolev norm as a countable supremum

Recall that, from the Cauchy-Schwarz inequality,

$$||f||_2 = \sup_{g \in B_{L^2}(0,1)} |\langle f, g \rangle_{L^2}|.$$

• Likewise, $f \in L^1_{loc}(\mathcal{D})$ admits a weak derivative f' s.t. $f' \in L^2(\mathcal{D})$ iff

$$S \coloneqq \sup_{\substack{\varphi \in C_c^{\infty}(\mathcal{D}) \\ \|\varphi\|_2 = 1}} |\langle f, \varphi' \rangle_{L^2}| < +\infty, \quad \text{with} \quad \|f'\|_2 = S.$$

Proof : extension of C^0 linear forms via the density of $C_c^{\infty}(\mathcal{D})$ in $L^2(\mathcal{D})$ + Riesz lemma (see e.g. Brézis book). Utility : $\langle f, \varphi' \rangle_{L^2}$ is well-defined if $f \in L^1_{loc}(\mathcal{D})$.

• The sup can be made countable : there exists $F_2 := (\varphi_n)_{n \in \mathbb{N}}$, $\varphi_n \in C_c^{\infty}(\mathcal{D}), \ \|\varphi_n\|_2 = 1$, such that $f' \in L^2(\mathcal{D})$ iff

$$S := \sup_{\varphi \in F_2} |\langle f, \varphi'_n \rangle_{L^2}| < +\infty, \quad \text{with} \quad ||f'||_2 = S.$$

H^m regularity of a Gaussian process, $m \in \mathbb{N}[7]$

Proposition 4

Let $(U(z))_{z\in\mathcal{D}}\sim GP(0,k)$ be a measurable GP, there is an equiv. between (i) (Sobolev) $\mathbb{P}(U\in H^m(\mathcal{D}))=1$

(ii) (Spectral) For all $|lpha|\le m$, $\partial^{lpha,lpha}k\in L^2(\mathcal D imes\mathcal D)$ and the integral operator $\mathcal E_k^lpha$

$$\mathcal{E}_k^{\alpha}: L^2(\mathcal{D}) \to L^2(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,y) f(y) dy,$$

is trace class, with $Tr(\mathcal{E}_k^{\alpha}) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty$.

- (iii) (Mercer) There exists $(\phi_n) \subset H^m(\mathcal{D})$ s.t. $k(x,y) = \sum_n \phi_n(x)\phi_n(y)$ in L^2 . If $|\alpha| \leq m$, then $Tr(\mathcal{E}_k^{\alpha}) = \sum_{n=0}^{+\infty} \|\partial^{\alpha}\phi_n\|_2^2 < +\infty$.
- (iv) (Driscoll) RKHS(k) \subset H^m(\mathcal{D}), and denoting \mathcal{I} the associated imbedding, we have $Tr(\mathcal{II}^*) = \sum_{|\alpha| \leq m} Tr(\mathcal{E}_k^{\alpha}) < +\infty$.

[7]H., I. (2024). Sobolev regularity of Gaussian random fields. J. Func. Anal., 286(3), Paper No. 110241.

H^m regularity of a Gaussian process, $m \in \mathbb{N}[7]$

Proposition 4

Let $(U(z))_{z\in\mathcal{D}}\sim GP(0,k)$ be a measurable GP, there is an equiv. between (i) (Sobolev) $\mathbb{P}(U\in H^m(\mathcal{D}))=1$

(ii) (Spectral) For all $|\alpha| \leq m$, $\partial^{\alpha,\alpha} k \in L^2(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_k^{α}

$$\mathcal{E}_k^{\alpha}: L^2(\mathcal{D}) \to L^2(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,y) f(y) dy,$$

is trace class, with $Tr(\mathcal{E}_k^{\alpha}) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty$.

- (iii) (Mercer) There exists $(\phi_n) \subset H^m(\mathcal{D})$ s.t. $k(x,y) = \sum_n \phi_n(x)\phi_n(y)$ in L^2 . If $|\alpha| \leq m$, then $Tr(\mathcal{E}_k^{\alpha}) = \sum_{n=0}^{+\infty} \|\partial^{\alpha}\phi_n\|_2^2 < +\infty$.
- (iv) (Driscoll) RKHS(k) \subset H^m(\mathcal{D}), and denoting \mathcal{I} the associated imbedding, we have $Tr(\mathcal{II}^*) = \sum_{|\alpha| < m} Tr(\mathcal{E}_k^{\alpha}) < +\infty$.

[7]H., I. (2024). Sobolev regularity of Gaussian random fields. J. Func. Anal., 286(3), Paper No. 110241.

H^m regularity of a Gaussian process, $m \in \mathbb{N}[7]$

Proposition 4

Let $(U(z))_{z\in\mathcal{D}}\sim GP(0,k)$ be a measurable GP, there is an equiv. between (i) (Sobolev) $\mathbb{P}(U\in H^m(\mathcal{D}))=1$

(ii) (Spectral) For all $|\alpha| \leq m$, $\partial^{\alpha,\alpha} k \in L^2(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_k^{α}

$$\mathcal{E}_k^{\alpha}: L^2(\mathcal{D}) \to L^2(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,y) f(y) dy,$$

is trace class, with $Tr(\mathcal{E}_k^{\alpha}) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty$.

(iii) (Mercer) There exists $(\phi_n) \subset H^m(\mathcal{D})$ s.t. $k(x,y) = \sum_n \phi_n(x)\phi_n(y)$ in L^2 . If $|\alpha| \leq m$, then $Tr(\mathcal{E}_k^{\alpha}) = \sum_{n=0}^{+\infty} \|\partial^{\alpha}\phi_n\|_2^2 < +\infty$.

(iv) (Driscoll) RKHS(k) $\subset H^m(\mathcal{D})$, and denoting \mathcal{I} the associated imbedding, we have $Tr(\mathcal{II}^*) = \sum_{|\alpha| \le m} Tr(\mathcal{E}_k^{\alpha}) < +\infty$.

[7]H., I. (2024). Sobolev regularity of Gaussian random fields. J. Func. Anal., 286(3), Paper No. 110241.

H^m regularity of a Gaussian process, $m \in \mathbb{N}[7]$

Proposition 4

Let $(U(z))_{z\in\mathcal{D}}\sim GP(0,k)$ be a measurable GP, there is an equiv. between (i) (Sobolev) $\mathbb{P}(U\in H^m(\mathcal{D}))=1$

(ii) (Spectral) For all $|\alpha| \leq m$, $\partial^{\alpha,\alpha} k \in L^2(\mathcal{D} \times \mathcal{D})$ and the integral operator \mathcal{E}_k^{α}

$$\mathcal{E}_k^{\alpha}: L^2(\mathcal{D}) \to L^2(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,y) f(y) dy,$$

is trace class, with $Tr(\mathcal{E}_k^{\alpha}) = \int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty$.

(iii) (Mercer) There exists $(\phi_n) \subset H^m(\mathcal{D})$ s.t. $k(x,y) = \sum_n \phi_n(x)\phi_n(y)$ in L^2 . If $|\alpha| \leq m$, then $Tr(\mathcal{E}_k^{\alpha}) = \sum_{n=0}^{+\infty} \|\partial^{\alpha}\phi_n\|_2^2 < +\infty$.

(iv) (Driscoll) RKHS(k) \subset H^m(\mathcal{D}), and denoting \mathcal{I} the associated imbedding, we have $Tr(\mathcal{II}^*) = \sum_{|\alpha| < m} Tr(\mathcal{E}_k^{\alpha}) < +\infty$.

[7]H., I. (2024). Sobolev regularity of Gaussian random fields. J. Func. Anal., 286(3), Paper No. 110241.

Prove the case m=1 (one weak derivative), d=1 ($\mathcal{D}\subset\mathbb{R}$). We only prove (i) \iff (ii).

- (i) : Sobolev \implies (ii) : Spectral : assume (i) that $\mathbb{P}(U \in H^1(\mathcal{D})) = 1$.
 - Then (...) the map $\omega \mapsto U'_{\omega}$ induces a Gaussian measure μ_D over $L^2(\mathcal{D})$. Let k_D be the covariance function of a GP s.t. $K_{\mu_D} = \mathcal{E}_{k_D}$
 - Direct computation of its covariance operator (...): we show that $\partial_x \partial_y k \in L^2(\mathcal{D} \times \mathcal{D})$ (weak partial derivatives) and that

$$k_D = \partial_x \partial_y k$$
 in $L^2(\mathcal{D} \times \mathcal{D})$.

Prove the case m=1 (one weak derivative), d=1 ($\mathcal{D}\subset\mathbb{R}$). We only prove (i) \iff (ii).

- (i) : Sobolev \implies (ii) : Spectral : assume (i) that $\mathbb{P}(U \in H^1(\mathcal{D})) = 1$.
 - Then (...) the map $\omega \mapsto U'_{\omega}$ induces a Gaussian measure μ_D over $L^2(\mathcal{D})$. Let k_D be the covariance function of a GP s.t. $K_{\mu_D} = \mathcal{E}_{k_D}$.
 - Direct computation of its covariance operator (...): we show that $\partial_x \partial_y k \in L^2(\mathcal{D} \times \mathcal{D})$ (weak partial derivatives) and that

$$k_D = \partial_x \partial_y k$$
 in $L^2(\mathcal{D} \times \mathcal{D})$.

Prove the case m=1 (one weak derivative), d=1 ($\mathcal{D}\subset\mathbb{R}$). We only prove (i) \iff (ii).

- (i) : Sobolev \implies (ii) : Spectral : assume (i) that $\mathbb{P}(U \in H^1(\mathcal{D})) = 1$.
 - Then (...) the map $\omega \mapsto U'_{\omega}$ induces a Gaussian measure μ_D over $L^2(\mathcal{D})$. Let k_D be the covariance function of a GP s.t. $K_{\mu_D} = \mathcal{E}_{k_D}$.
 - Direct computation of its covariance operator (...): we show that $\partial_x \partial_y k \in L^2(\mathcal{D} \times \mathcal{D})$ (weak partial derivatives) and that

$$k_D = \partial_x \partial_y k$$
 in $L^2(\mathcal{D} \times \mathcal{D})$.

Prove the case m=1 (one weak derivative), d=1 ($\mathcal{D}\subset\mathbb{R}$). We only prove (i) \iff (ii).

- (i) : Sobolev \implies (ii) : Spectral : assume (i) that $\mathbb{P}(U \in H^1(\mathcal{D})) = 1$.
 - Then (...) the map $\omega \mapsto U'_{\omega}$ induces a Gaussian measure μ_D over $L^2(\mathcal{D})$. Let k_D be the covariance function of a GP s.t. $K_{\mu_D} = \mathcal{E}_{k_D}$.
 - Direct computation of its covariance operator (...): we show that $\partial_x \partial_y k \in L^2(\mathcal{D} \times \mathcal{D})$ (weak partial derivatives) and that

$$k_D = \partial_x \partial_y k$$
 in $L^2(\mathcal{D} \times \mathcal{D})$.

(ii): Spectral \implies (i): Sobolev: assume that the weak derivative $\partial_x \partial_y k$ exists and lies in $L^2(\mathcal{D} \times \mathcal{D})$, and that the operator $\mathcal{E}_{\partial_x \partial_y k}$ is trace class.

- $\mathcal{E}_{\partial_x \partial_y k}$ is the cov. op. of some GM μ_D . Let V be a GP representing the GM μ_D , in particular $\mathbb{P}(\|V\|_2 < +\infty) = 1$.
- For $\varphi \in C_c^{\infty}(\mathcal{D})$, let

$$V_{\varphi} \coloneqq \langle \varphi, V \rangle_{L^2}, \quad U_{\varphi}' \coloneqq -\langle \varphi', U \rangle_{L^2}, \quad \mathsf{two \ 1D \ Gaussian \ r.v.s}$$

$$\begin{split} \mathbb{E}[V_{\varphi}V_{\psi}] &\stackrel{\textit{Fubini}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi(x)\psi(y)\partial_{x}\partial_{y}k(x,y)dxdy \\ &\stackrel{\textit{IBP}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi'(x)\psi'(y)k(x,y)dxdy, \\ \mathbb{E}[U_{\varphi}'U_{\psi}'] &\stackrel{\textit{Fubini}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi'(x)\psi'(y)k(x,y)dxdy = \mathbb{E}[V_{\varphi}V_{\psi}]! \end{split}$$

(ii): Spectral \implies (i): Sobolev: assume that the weak derivative $\partial_x \partial_y k$ exists and lies in $L^2(\mathcal{D} \times \mathcal{D})$, and that the operator $\mathcal{E}_{\partial_x \partial_y k}$ is trace class.

- $\mathcal{E}_{\partial_x \partial_y k}$ is the cov. op. of some GM μ_D . Let V be a GP representing the GM μ_D , in particular $\mathbb{P}(\|V\|_2 < +\infty) = 1$.
- For $\varphi \in C_c^{\infty}(\mathcal{D})$, let

$$V_{\varphi} \coloneqq \langle \varphi, V \rangle_{L^2}, \quad U'_{\varphi} \coloneqq -\langle \varphi', U \rangle_{L^2}, \quad \mathsf{two \ 1D \ Gaussian \ r.v.s}$$

$$\mathbb{E}[V_{\varphi}V_{\psi}] \stackrel{Fubini}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi(x)\psi(y)\partial_{x}\partial_{y}k(x,y)dxdy$$

$$\stackrel{IBP}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi'(x)\psi'(y)k(x,y)dxdy,$$

$$\mathbb{E}[U'_{\varphi}U'_{\psi}] \stackrel{Fubini}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi'(x)\psi'(y)k(x,y)dxdy = \mathbb{E}[V_{\varphi}V_{\psi}]!$$

(ii): Spectral \implies (i): Sobolev: assume that the weak derivative $\partial_x \partial_y k$ exists and lies in $L^2(\mathcal{D} \times \mathcal{D})$, and that the operator $\mathcal{E}_{\partial_x \partial_y k}$ is trace class.

- $\mathcal{E}_{\partial_x \partial_y k}$ is the cov. op. of some GM μ_D . Let V be a GP representing the GM μ_D , in particular $\mathbb{P}(\|V\|_2 < +\infty) = 1$.
- For $\varphi \in C_c^{\infty}(\mathcal{D})$, let

$$V_{\varphi} \coloneqq \langle \varphi, V \rangle_{L^2}, \quad U'_{\varphi} \coloneqq -\langle \varphi', U \rangle_{L^2}, \quad \mathsf{two \ 1D \ Gaussian \ r.v.s \ !}$$

$$\begin{split} \mathbb{E}[V_{\varphi}V_{\psi}] &\stackrel{\textit{Fubini}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi(x)\psi(y)\partial_{x}\partial_{y}k(x,y)dxdy \\ &\stackrel{\textit{IBP}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi'(x)\psi'(y)k(x,y)dxdy, \\ \mathbb{E}[U_{\varphi}'U_{\psi}'] &\stackrel{\textit{Fubini}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi'(x)\psi'(y)k(x,y)dxdy = \mathbb{E}[V_{\varphi}V_{\psi}]! \end{split}$$

(ii): Spectral \implies (i): Sobolev: assume that the weak derivative $\partial_x \partial_y k$ exists and lies in $L^2(\mathcal{D} \times \mathcal{D})$, and that the operator $\mathcal{E}_{\partial_x \partial_y k}$ is trace class.

- $\mathcal{E}_{\partial_x \partial_y k}$ is the cov. op. of some GM μ_D . Let V be a GP representing the GM μ_D , in particular $\mathbb{P}(\|V\|_2 < +\infty) = 1$.
- For $\varphi \in C_c^{\infty}(\mathcal{D})$, let

$$V_{\varphi} \coloneqq \langle \varphi, V \rangle_{L^2}, \quad U'_{\varphi} \coloneqq -\langle \varphi', U \rangle_{L^2}, \quad \mathsf{two 1D Gaussian r.v.s !}$$

$$\begin{split} \mathbb{E}[V_{\varphi}V_{\psi}] &\stackrel{\textit{Fubini}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi(x)\psi(y)\partial_{x}\partial_{y}k(x,y)dxdy \\ &\stackrel{\textit{IBP}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi'(x)\psi'(y)k(x,y)dxdy, \\ \mathbb{E}[U_{\varphi}'U_{\psi}'] &\stackrel{\textit{Fubini}}{=} \int_{\mathcal{D}} \int_{\mathcal{D}} \varphi'(x)\psi'(y)k(x,y)dxdy = \mathbb{E}[V_{\varphi}V_{\psi}]! \end{split}$$

Hence the GPs $(V_{\varphi})_{\varphi \in C_c^{\infty}(\mathcal{D})}$ and $(U'_{\varphi})_{\varphi \in C_c^{\infty}(\mathcal{D})}$ have the same finite dimension marginals. In particular, because F_2 is countable,

$$(\|V\|_2 =) \quad \sup_{\varphi \in F_2} |V_{\varphi}| \stackrel{distribution}{=} \sup_{\varphi \in F_2} |U_{\varphi}'|.$$

Thus

$$1 = \mathbb{P}(\|V\|_2 < +\infty) = \mathbb{P}(\sup_{\varphi \in F_2} |\langle \varphi, V \rangle_{L^2}| < +\infty)$$
$$= \mathbb{P}(\sup_{\varphi \in F_2} |\langle \varphi', U \rangle_{L^2}| < +\infty).$$

Hence, ω -a.s., $U_{\omega} \in H^1(\mathcal{D})$, i.e. (i)!

Other equivalences $(ii) \iff (iii) \iff (iv)$: analysis (... Spectral theory, Sobolev space theory.)

Hence the GPs $(V_{\varphi})_{\varphi \in C_c^{\infty}(\mathcal{D})}$ and $(U'_{\varphi})_{\varphi \in C_c^{\infty}(\mathcal{D})}$ have the same finite dimension marginals. In particular, because F_2 is countable,

$$(\|V\|_2 =) \quad \sup_{\varphi \in F_2} |V_{\varphi}| \stackrel{distribution}{=} \sup_{\varphi \in F_2} |U_{\varphi}'|.$$

Thus

$$\begin{split} 1 &= \mathbb{P}(\|V\|_2 < +\infty) = \mathbb{P}(\sup_{\varphi \in F_2} |\langle \varphi, V \rangle_{L^2}| < +\infty) \\ &= \mathbb{P}(\sup_{\varphi \in F_2} |\langle \varphi', U \rangle_{L^2}| < +\infty). \end{split}$$

Hence, ω -a.s., $U_{\omega} \in H^1(\mathcal{D})$, i.e. (i)!

Other equivalences $(ii) \iff (iii) \iff (iv)$: analysis (... Spectral theory, Sobolev space theory.)

Hence the GPs $(V_{\varphi})_{\varphi \in C_c^{\infty}(\mathcal{D})}$ and $(U'_{\varphi})_{\varphi \in C_c^{\infty}(\mathcal{D})}$ have the same finite dimension marginals. In particular, because F_2 is countable,

$$(\|V\|_2 =) \quad \sup_{\varphi \in F_2} |V_{\varphi}| \stackrel{distribution}{=} \sup_{\varphi \in F_2} |U_{\varphi}'|.$$

Thus

$$\begin{split} 1 &= \mathbb{P}(\|V\|_2 < +\infty) = \mathbb{P}(\sup_{\varphi \in F_2} |\langle \varphi, V \rangle_{L^2}| < +\infty) \\ &= \mathbb{P}(\sup_{\varphi \in F_2} |\langle \varphi', U \rangle_{L^2}| < +\infty). \end{split}$$

Hence, ω -a.s., $U_{\omega} \in H^1(\mathcal{D})$, i.e. (i)!

Other equivalences (ii) \iff (iii) \iff (iv): analysis (... Spectral theory, Sobolev space theory.)

Sobolev spaces of non Hilbert type

The spaces $W^{m,p}(\mathcal{D})$ are also useful for the analysis of PDEs :

$$\begin{split} W^{1,p}(\mathbb{R}) &:= \{u \in L^p(\mathbb{R}) : u' \text{ exists in the weak sense and } u' \in L^p(\mathbb{R})\}, \\ W^{m,p}(\mathcal{D}) &:= \{u \in L^p(\mathcal{D}) : \forall \ |\alpha| \leq m, \partial^\alpha u \text{ exists ITWS and } \partial^\alpha u \in L^p(\mathcal{D})\}. \end{split}$$

 L^p regularity of GPs: if $X \sim \mathcal{N}(0, \sigma^2)$, then $\mathbb{E}[|X|^p] = C_p \sigma^p$ for some C_p .

$$\mathbb{E}\left[\int |U(x)|^p dx\right] = \int \mathbb{E}\left[|U(x)|^p\right] dx = C_p \int k(x,x)^{p/2} dx = C_p \|\sigma\|_p^p.$$

Moreover if $\sigma \in L^p$ then there exists $(\psi_n) \subset L^p(\mathcal{D})$ s.t. $\sum_n \|\psi_n\|_p^2 < +\infty$

$$k(x,y) = \sum_{n=0}^{+\infty} \psi_n(x)\psi_n(y)$$
 in $L^p(\mathcal{D} \times \mathcal{D})$ (nuclear operator).

Sobolev spaces of non Hilbert type

The spaces $W^{m,p}(\mathcal{D})$ are also useful for the analysis of PDEs :

$$\begin{split} W^{1,p}(\mathbb{R}) &:= \{u \in L^p(\mathbb{R}) : u' \text{ exists in the weak sense and } u' \in L^p(\mathbb{R})\}, \\ W^{m,p}(\mathcal{D}) &:= \{u \in L^p(\mathcal{D}) : \forall \ |\alpha| \leq m, \partial^\alpha u \text{ exists ITWS and } \partial^\alpha u \in L^p(\mathcal{D})\}. \end{split}$$

 L^p regularity of GPs : if $X \sim \mathcal{N}(0, \sigma^2)$, then $\mathbb{E}[|X|^p] = C_p \sigma^p$ for some C_p .

$$\mathbb{E}\left[\int |U(x)|^p dx\right] = \int \mathbb{E}\left[|U(x)|^p\right] dx = C_p \int k(x,x)^{p/2} dx = C_p \|\sigma\|_p^p.$$

Moreover if $\sigma \in L^p$ then there exists $(\psi_n) \subset L^p(\mathcal{D})$ s.t. $\sum_n \|\psi_n\|_p^2 < +\infty$,

$$k(x,y) = \sum_{n=0}^{+\infty} \psi_n(x)\psi_n(y)$$
 in $L^p(\mathcal{D} \times \mathcal{D})$ (nuclear operator).

Sobolev spaces of non Hilbert type

The spaces $W^{m,p}(\mathcal{D})$ are also useful for the analysis of PDEs :

$$\begin{split} W^{1,p}(\mathbb{R}) &:= \{u \in L^p(\mathbb{R}) : u' \text{ exists in the weak sense and } u' \in L^p(\mathbb{R})\}, \\ W^{m,p}(\mathcal{D}) &:= \{u \in L^p(\mathcal{D}) : \forall \ |\alpha| \leq m, \partial^\alpha u \text{ exists ITWS and } \partial^\alpha u \in L^p(\mathcal{D})\}. \end{split}$$

 L^p regularity of GPs : if $X \sim \mathcal{N}(0, \sigma^2)$, then $\mathbb{E}[|X|^p] = C_p \sigma^p$ for some C_p .

$$\mathbb{E}\left[\int |U(x)|^p dx\right] = \int \mathbb{E}\left[|U(x)|^p\right] dx = C_p \int k(x,x)^{p/2} dx = C_p \|\sigma\|_p^p.$$

Moreover if $\sigma \in L^p$ then there exists $(\psi_n) \subset L^p(\mathcal{D})$ s.t. $\sum_n \|\psi_n\|_p^2 < +\infty$,

$$k(x,y) = \sum_{n=0}^{+\infty} \psi_n(x)\psi_n(y)$$
 in $L^p(\mathcal{D} \times \mathcal{D})$ (nuclear operator).

$W^{m,p}$ regularity of a GP, $m \in \mathbb{N}, p \in (1, +\infty)[8]$

Proposition 5

Let $(U(z))_{z\in\mathcal{D}} \sim GP(0,k)$ be a measurable GP, there is an equiv. between (i) $\mathbb{P}(U\in W^{m,p}(\mathcal{D}))=1$

(ii) For all $|\alpha| \leq m$, $\partial^{\alpha,\alpha} k \in L^p(\mathcal{D} \times \mathcal{D})$ and the operator \mathcal{E}_k^{α}

$$\mathcal{E}_k^{\alpha}: L^{\mathbf{q}}(\mathcal{D}) \to L^{\mathbf{p}}(\mathcal{D}), \quad \mathcal{E}_k^{\alpha} f(x) = \int_{\mathcal{D}} \partial^{\alpha, \alpha} k(x, y) f(y) dy$$

is symmetric, nonnegative and nuclear: there exists $(\phi_n^{\alpha}) \subset L^p(\mathcal{D})$ s.t. $\partial^{\alpha,\alpha} k(x,y) = \sum_n \psi_n^{\alpha}(x) \psi_n^{\alpha}(y)$ in $L^p(\mathcal{D} \times \mathcal{D})$ with

$$\sum_{n=0}^{+\infty} \|\psi_n^{\alpha}\|_p^2 < +\infty \quad \text{(+refinement if } 1 \leq p \leq 2\text{)}$$

(iii) For all
$$|\alpha| \leq m$$
, $\partial^{\alpha,\alpha} k \in L^p(\mathcal{D} \times \mathcal{D})$, $\int_{\mathcal{D}} [\partial^{\alpha,\alpha} k(x,x)]^{p/2} dx < +\infty$.

[8]H., I. (2024). Sobolev regularity of Gaussian random fields. J. Func. Anal., 286(3), Paper No. 110241.

Some comments

- Matérn of order ν , $RKHS(k_{\nu}) = H^{\nu+d/2}$, target Sobolev space H^m : \mathcal{II}^* is trace class $\iff \nu > m \iff \mathbb{P}(U_{\nu} \in H^m(\mathcal{D})) = 1$.
- Integral criterion for stationary kernels becomes trivial! For $L^2(\mathcal{D})$,

$$\int_{\mathcal{D}} k(x,x)dx < +\infty \iff \lambda(\mathcal{D}) < +\infty...$$

For $H^m(\mathcal{D})$,

$$\int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty \iff \partial^{2\alpha} k_{s}(0) \text{ exists and } \lambda(\mathcal{D}) < +\infty...$$

Conclusion: do not use stationary GPs for modelling Sobolev functions! E.g. choose k of the form

$$k(x, x') = \sigma(x)\sigma(x')k_S(x - x')...$$

• More interesting for Mercer decompositions.

Some comments

- Matérn of order ν , $RKHS(k_{\nu}) = H^{\nu+d/2}$, target Sobolev space H^m : \mathcal{II}^* is trace class $\iff \nu > m \iff \mathbb{P}(U_{\nu} \in H^m(\mathcal{D})) = 1$.
- Integral criterion for stationary kernels becomes trivial! For $L^2(\mathcal{D})$,

$$\int_{\mathcal{D}} k(x,x) dx < +\infty \iff \lambda(\mathcal{D}) < +\infty...$$

For $H^m(\mathcal{D})$,

$$\int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty \iff \partial^{2\alpha} k_{s}(0) \text{ exists and } \lambda(\mathcal{D}) < +\infty...$$

Conclusion: do not use stationary GPs for modelling Sobolev functions! E.g. choose k of the form

$$k(x, x') = \sigma(x)\sigma(x')k_S(x - x')...$$

• More interesting for Mercer decompositions.

Some comments

- Matérn of order ν , $RKHS(k_{\nu}) = H^{\nu+d/2}$, target Sobolev space H^m : \mathcal{II}^* is trace class $\iff \nu > m \iff \mathbb{P}(U_{\nu} \in H^m(\mathcal{D})) = 1$.
- Integral criterion for stationary kernels becomes trivial! For $L^2(\mathcal{D})$,

$$\int_{\mathcal{D}} k(x,x)dx < +\infty \iff \lambda(\mathcal{D}) < +\infty...$$

For $H^m(\mathcal{D})$,

$$\int_{\mathcal{D}} \partial^{\alpha,\alpha} k(x,x) dx < +\infty \iff \partial^{2\alpha} k_{s}(0) \text{ exists and } \lambda(\mathcal{D}) < +\infty...$$

Conclusion : do not use stationary GPs for modelling Sobolev functions ! E.g. choose k of the form

$$k(x, x') = \sigma(x)\sigma(x')k_S(x - x')...$$

• More interesting for Mercer decompositions.

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

GPR and the wave equation[9]

3D homogeneous wave equation : $\Delta := \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2$

$$\begin{cases} Lu &= \partial_{tt}^2 u - c^2 \Delta u = \square u = 0, \quad (x, t) \in \mathbb{R}^3 \times \mathbb{R}^+ \\ u(x, 0) &= u_0(x), \quad \partial_t u(x, 0) = v_0(x). \end{cases}$$
(15)

Representation of u (Krichhoff) : $F_t = \sigma_{ct}/4\pi c^2 t$ et $\dot{F}_t = \partial_t F_t$

$$u(x,t) = (F_t * v_0)(x) + (\dot{F}_t * u_0)(x). \tag{16}$$

Assume that u_0, v_0 are unknown $\to u_0 \sim GP(0, k_u)$ and $v_0 \sim GP(0, k_v)$, independant. u given by (16) is a centered GP, its kernel is

$$k((x,t),(x',t')) = [(F_t \otimes F_{t'}) * k_v](x,x') + [(\dot{F}_t \otimes \dot{F}_{t'}) * k_u](x,x'). \quad (17)$$

The kernel k verifies $\square k((x,t),\cdot) = 0$ for all $(x,t) \in \mathbb{R}^3 \times \mathbb{R}_+$.

[9]H., I., Noble, P., & Roustant, O. (2023a). Covariance models and gaussian process regression for the wave equation. application to related inverse problems. *Journal of Computational Physics*, 494, Paper No. 112519.

GPR and the wave equation[9]

3D homogeneous wave equation : $\Delta := \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2$

$$\begin{cases} Lu &= \partial_{tt}^2 u - c^2 \Delta u = \square u = 0, \quad (x, t) \in \mathbb{R}^3 \times \mathbb{R}^+ \\ u(x, 0) &= u_0(x), \quad \partial_t u(x, 0) = v_0(x). \end{cases}$$
(15)

Representation of u (Krichhoff) : $F_t = \sigma_{ct}/4\pi c^2 t$ et $\dot{F}_t = \partial_t F_t$

$$u(x,t) = (F_t * v_0)(x) + (\dot{F}_t * u_0)(x). \tag{16}$$

Assume that u_0, v_0 are unknown $\to u_0 \sim GP(0, k_u)$ and $v_0 \sim GP(0, k_v)$, independant. u given by (16) is a centered GP, its kernel is

$$k((x,t),(x',t')) = [(F_t \otimes F_{t'}) * k_v](x,x') + [(\dot{F}_t \otimes \dot{F}_{t'}) * k_u](x,x'). \quad (17)$$

The kernel k verifies $\square k((x,t),\cdot) = 0$ for all $(x,t) \in \mathbb{R}^3 \times \mathbb{R}_+$.

[9]H., I., Noble, P., & Roustant, O. (2023a).Covariance models and gaussian process regression for the wave equation. application to related inverse problems. *Journal of Computational Physics*, 494, Paper No. 112519.

GPR and the wave equation[9]

3D homogeneous wave equation : $\Delta := \partial_{xx}^2 + \partial_{yy}^2 + \partial_{zz}^2$

$$\begin{cases} Lu &= \partial_{tt}^2 u - c^2 \Delta u = \square u = 0, \quad (x, t) \in \mathbb{R}^3 \times \mathbb{R}^+ \\ u(x, 0) &= u_0(x), \quad \partial_t u(x, 0) = v_0(x). \end{cases}$$
(15)

Representation of u (Krichhoff) : $F_t = \sigma_{ct}/4\pi c^2 t$ et $\dot{F}_t = \partial_t F_t$

$$u(x,t) = (F_t * v_0)(x) + (\dot{F}_t * u_0)(x). \tag{16}$$

Assume that u_0, v_0 are unknown $\to u_0 \sim GP(0, k_u)$ and $v_0 \sim GP(0, k_v)$, independant. u given by (16) is a centered GP, its kernel is

$$k((x,t),(x',t')) = [(F_t \otimes F_{t'}) * k_v](x,x') + [(\dot{F}_t \otimes \dot{F}_{t'}) * k_u](x,x'). \quad (17)$$

The kernel k verifies $\Box k((x,t),\cdot) = 0$ for all $(x,t) \in \mathbb{R}^3 \times \mathbb{R}_+$.

[9]H., I., Noble, P., & Roustant, O. (2023a). Covariance models and gaussian process regression for the wave equation. application to related inverse problems. *Journal of Computational Physics*, 494, Paper No. 112519.

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- Conclusion and perspectives

Estimation of physical parameters and initial conditions

ullet Initial condition reconstruction: the GPR mean verifies $\Box ilde{m} = 0$. Hence

$$\tilde{m}(\cdot, t = 0) \simeq u_0, \quad \partial_t \tilde{m}(\cdot, t = 0) \simeq v_0$$

Recover u_0 : photoacoustic tomography.

- Parameters of the PDE may also be estimated with GPR : celerity *c*, source position, source size...
 - \rightarrow can be estimated using marginal likelihood (standard in GPR).

Estimation of physical parameters and initial conditions

ullet Initial condition reconstruction: the GPR mean verifies $\Box ilde{m} = 0$. Hence

$$\tilde{m}(\cdot, t=0) \simeq u_0, \quad \partial_t \tilde{m}(\cdot, t=0) \simeq v_0$$

Recover u_0 : photoacoustic tomography.

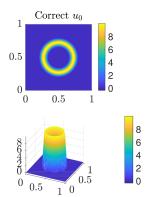
- Parameters of the PDE may also be estimated with GPR : celerity *c*, source position, source size...
 - \rightarrow can be estimated using marginal likelihood (standard in GPR).

Numerical application

Restrictive framework

Expensive convolutions (4D) \rightarrow radial symmetry framework (explicit convolutions).

• Numerical solution of the wave equation in $[0,1]^3$, $v_0=0$ and



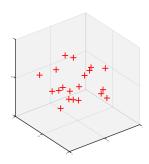


Figure 5: Sensor positions

Data visulatization

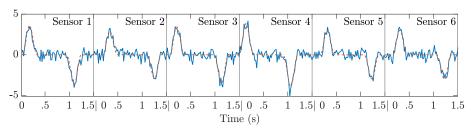


Figure 6: Examples of captured signals. Red: noiseless signal. Blue: noisy signal.

Reconstruction of initial conditions and position parameters

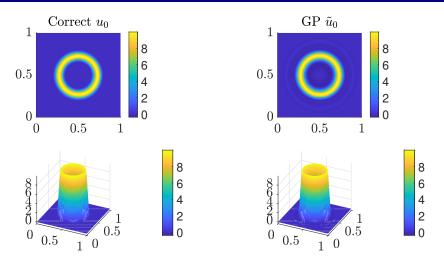


Figure 7: True u_0 (left column) vs GPR u_0 (right column). 15 sensors are used. Images correspond to 3D slices at z=0.5.

Plan

- Introduction
 - Generalities on GP modelling
 - Two simple examples of PDEs
- 2 PDE constrained random fields
 - Theorem
 - Examples
- 3 Sobolev regularity of the samples of a GP
 - Motivation : Sobolev spaces and PDEs
 - Gaussian measures and processes on L^2
 - Sobolev regularity of the samples of a GP
- 4 Application to the 3D wave equation
 - Covariance kernels for the wave equation
 - Estimation of initial data and physical parameters
- 5 Conclusion and perspectives

Retrospective

GPR, GPs constrained by physical laws :

- Linear distributional PDE constraints[10]
- Energy constraints: H^m , $W^{m,p}[11]$
- ightarrow Theorems with necessary and sufficient conditions without continuity assumptions.

Practical application: Wave equation and related inverse problems[12]

^[10]H., I., Noble, P., & Roustant, O. (2023b). Characterization of the second order random fields subject to linear distributional pde constraints. *Bernoulli*, 29(4), 3396–3422.

^[11]H., I. (2024). Sobolev regularity of Gaussian random fields. J. Func. Anal., 286(3), Paper No. 110241.

^[12]H., I., Noble, P., & Roustant, O. (2023a). Covariance models and gaussian process regression for the wave equation. application to related inverse problems. *Journal of Computational Physics*, 494, Paper No. 112519.

Perspectives

Short term:

- PDE kernels for bathymetry inversion in data assimilation, with INSA Toulouse.
- ANR SHORECAST lead by Déborah Idier (BRGM), : large scale surrogate models with functional inputs-outputs to emulate complex physical models for the evolution of sandy shores,

PhD position available for Autumn 2026!

Student processes: like GPs, but more general!

Less short term:

- Error analysis of GPR using Sobolev norms[13].
- 3D wave equation : computational issues (convolutions)[14].

[13]Batlle, P., Chen, Y., Hosseini, B., Owhadi, H., & Stuart, A. M. (2023). Error analysis of kernel/gp methods for nonlinear and parametric pdes.
[14]Tick, J., Pulkkinen, A., Lucka, F., Ellwood, R., Cox, B. T., Kaipio, J. P., Arridge, S. R., & Tarvainen, T. (2018). Three dimensional photoacoustic tomography in bayesian framework. *The Journal of the Acoustical Society of America*, 144(4), 2061–2071.

Thank you for your attention!

GPR: Bayesian inference of functions

Bayesian inference : to estimate $\eta \in H$ given partial data \mathcal{B} ,

- **1** introduce a **prior** probability distribution π over H,
- **2** condition it on $\mathcal B$ to obtain the posterior distribution $\pi_{\mathcal B}$
- $oldsymbol{0}$ construct $\widehat{\theta}$ and perform UQ on it with

$$\widehat{\eta} = \int_{H} s \; \pi_{\mathcal{B}}(ds) = \mathbb{E}_{S \sim \pi_{\mathcal{B}}}[S] = \text{posterior expectation}$$
 (18)

$$v(\widehat{\eta}) = \int_{H} (s - \widehat{\eta})^2 \pi_{\mathcal{B}}(ds) = \operatorname{Var}_{S \sim \pi_{\mathcal{B}}}(S) = \operatorname{posterior variance} \quad (19)$$

For us,

- $\eta = u$ (function), H = space of functions $\mathcal{B} = \{u(z_1), \dots, u(z_n)\}.$
- prior $\pi = GP(m, k)$, posterior $\pi_{\mathcal{B}} = GP(\widetilde{m}, \widetilde{k})$.