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Robust optimization problem

x* = argmin E[f(x, U)] where K = {x € X, P[g(x,U) <0] > 0.95}
xek
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Introduction

Optimization problem
Robust optimization problem

x* = argmin E[f(x, U)] where K = {x € X, P[g(x,U) <0] > 0.95}
xek

P> f and g expensive = GP processes
»> High Dimension for d and p=—> Sensitivity analysis to reduce the space.

> Design variables => Goal Oriented Sensitivity Analysis Spagnol 2020
» Uncertain inputs => How to quantify the impact
Idea : Quantify the impact of U on excursion set

] :{XE X,g(X, U) < q}:
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Introduction

A toy excursion set

Toy function from [EI-Amri et al. 2021]
V(x,u) € [=5,5]*, f(x,u) = —x® + 5xp — g 4+ 3 — 1.

Excursion sets

New output :
I—U:{Xer f(X7 U)<0}7 (1)

which is called a random excursion set.

Uy =-5 Uy =-25
U =0 U =0
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Sensitivity analysis (SA)

(Ut Ug) 55 Y = F(Us, ..., U)

How can the uncertainty of Y be divided and allocated to the uncertainty of the
inputs U;?

> Sobol indices: S; = Y2 E(Y1U)

> Dependence measures: S; = [|Py. y) — Py; ® Py||
P Density-based indices (Borgonovo 2007)
P Cramer von mises indices (Gamboa, Klein, and Lagnoux 2018)
> Hilbert Schmidt Independence Criterion : HSIC (Gretton, Bousquet, et al. 2005)
Screening: Us, ..., Ug are influential and U1, ...Uy are not influential
Ranking: U < ... < Uy

Problem: What if the output Y is set-valued?
Solution : Kernel-based Sensitivity Analysis
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Kernel embedding of Probability distribution for Sensitivity Analysis (HSIC)

Distribution embedding into a RKHS

Dependence measures: S; = ||P(y, y) — Py, ® Py||

e(P) = Ex[k(:, X)]

@
h‘ 12 (P) = 1x(Q)| 14,

Figure: Kernel mean embedding

with k a (positive definite) kernel k : (x,x’) € X2 — k(x,x") € R.
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L Kernel embedding of Probability distribution for Sensitivity Analysis (HSIC)

Distribution embedding into a RKHS

Dependence measures: S; = ||P(y; vy — Py, @ Py |

1 (P) = Ex[k(-, X)]

X ~ PI
1 (Q) = Ev[k(, V)]

Y ~Q o—m
“ HNk(P) - l"k(Q)H k

Figure: Kernel mean embedding

with k a (positive definite) kernel k : (x,x’) € &% > k(x,x') € R.

Hilbert Schmidt Independence Criterion (HSIC), Gretton, Borgwardt,
et al. 2006
With a kernel K = ki, ® ky, the HSIC is given by:

HSICk (Us, ¥) = [k (Ui, Y) = pig,, (Un) @ gy (V)
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> When K is characteristic (injectivity of the mean embedding),
HSICk(U;, Y) = 0iif U; L Y — screening.

»> ANOVA-like decomposition (daVeiga 2021) if the inputs are independent and the
input kernels are ANOVA:
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> Easy to estimate in ANOVA case

HSICK (U, Y) = E [(ku, (Ui, Uf') — Dky (Y, Y)] .
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L Kernel embedding of Probability distribution for Sensitivity Analysis (HSIC)

HSIC-based indices

> When K is characteristic (injectivity of the mean embedding),
HSICk(U;, Y) = 0iif U; L Y — screening.

»> ANOVA-like decomposition (daVeiga 2021) if the inputs are independent and the
input kernels are ANOVA:

HSIC(U, V)= > > (1) A=IBIHSIC (Ug, V)
AC{1,...,d} BCA

GHsIC ._ HSIC(U;,Y)
i *= HSIC(U,Y) .
HSIC(WU_;,Y) ( ranking

HSIC .
ST,- =1- HSIC(U,Y)
> Easy to estimate in ANOVA case

HSICK (U, Y) = E [(ky, (U, UF') = 1)ky (Y, Y')] .

> Only require (characteristic) kernels on the inputs and on the output (whatever
the type of inputs/ouputs you have)
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Kernel embedding of random sets for Sensitivity Analysis of set-valued models

SA on sets: a kernel between sets
With AAB = AU B — BN A and X the Lebesgue measure, we define a kernel on the
Lebesgue o-algebra B(X) by:

ML Al
V1, Mo € B(X), kset(T1,T2) = exp (—M) .

202
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L Kernel embedding of random sets for Sensitivity Analysis of set-valued models

SA on sets: a kernel between sets

With AAB = AU B — BN A and X the Lebesgue measure, we define a kernel on the
Lebesgue o-algebra B(X) by:

)\(I'lArz)) .

Vrl, [ e B(X), kset(l'l, rz) =exp | —
202
Proposition (A kernel between sets)

kset is a kernel [Balanc¢a and Herbin 2012] and is characteristic.

For a given random excursion set 'y = {x € X, g(x, U) < 0}, we can define
HSIC-based indices on sets:

st . HSICk (Ui )
I . HSICkset(U7 rU) ’

which quantifies how much U; impacts the excursion set I'.
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L Kernel embedding of random sets for Sensitivity Analysis of set-valued models

kset 15 characteristic, sketch of proof

> B(X) — B = B(X)/ ~s where ¢ is the volume of the symmetric difference and
~s the equivalent relation A ~5 B iif §(A, B) = 0 i.e. A and B are equal except
on a A-negligible set.

> We show that (B, ¢) is a Polish space (separable completely metrizable topological
space). (B, d) is a metric space so we just need separability and completeness.
Separability holds as "it's a subspace of L>(X)" and we show that it's closed.

> \We use a Proposition from Ziegel, Ginsbourger, and Diimbgen 2022,

Proposition (Ziegel, Ginsbourger, and Diimbgen 2022)

Let B be a Polish space, H a separable Hilbert space, T a measurable and injective
mapping from B to H, and p € L. Then, the kernel k on B defined by

k) =e(ITMN =T W)IY), v eB

is integrally strictly positive definite with respect to M(B) (which implies that it is
characteristic).

with H = L2(X), ¢ = exp(—52z) and T defined by T(v) := x = W+ (x) for any
v € Bsothat [|T(y) — T ()} = A(vAy").
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Estimation

Estimation with set-valued outputs

In HSIC-based indices expressions, we need to estimate quantities of the form ;

GHaee _ HSIC(U;,T)  E [(ku; (Ui, Ui') — 1) kser (T, T)]
T HSICUT) T E[(ke(U, U') — D)kser (T, )]
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L Estimation

Estimation with set-valued outputs

In HSIC-based indices expressions, we need to estimate quantities of the form ;

HSIC(U;,T)  E[(k(Uj, Ui') = 1)kset(T, )]

Hset J—
TOUHSICULT) T E[(ku(U, U) = D)kset(T,T)]
Estimation:
HSIC (U;,T) = n(n_l)z(ku ( Um) _1> Keot (ro rm)

1<j

With sets, kset(1,2) also require an estimation.

— : vol(X) 1
ket (TN, FU)) = exp < 5o eru yare) (X ))

To reduce the computational cost we use the same samples of X.
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Asymptotic behaviour of the indices on sets
Then we inject it in the indices estimators. I-TSI\C(U,-, ) : nested Monte Carlo
estimator

Proposition (Quadratic risk)

== 2 1 1
E (HSIC(UA, M) — HSIC(Ua, r)) -0 (— + —)
n m

In the case of the classic NMC estimator, corresponding here to not reusing the same

samples of X, the rate is O (% + # .
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Toy excursion set

Toy function 1

From El-Amri et al. 2021,

Vx,u € [-5,5]% x [-5,5]® g(x1, X2, u1, ta, u3) = —xZ +5xa —u1 4+ 3 — 1

p-value i g
1.00-
0.75-
=™
0.50 - == [
B
== A
0.25- ==
! ! ! ! ! ! ! ! !
Uy Uz Us Uy Ua Us Uy Uz Us

Figure: Estimation of the p-values, Sst“-'f and §¢f€t for the excursion set defined by the
i

constraint g < 0 computed for 5 Anova input kernels with n = 100, m = 100 and repeated 20
13/21 times
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Toy excursion set

Convergence Results

— bound
~— bound_nested

— eror

relative quadratic risk
i

Figure: Evolution of R(H/SFZ(M7 ['z)) and of the associated upper bounds for the excursion set
Mg

The "true" value of HSIC, used to compute the quadratic risk, and the constants in
the bound are computed for n = m = 3000.
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of an el ical hi

Robust

Application : excursion sets on the optimisation of the electric machine
Meta-models form [Reyes Reyes et al. 2024]

U3, U1a ¢

Torque ripple
————————> minfpp(x, U)

e gtorq(X7 U) > 420
Torque

x* = arg min L ion (X, ol K = {x € X, P[420 — gtorg(x, U) < 0] > 0.95}.
* inex Elfipp(x, U)] ot K X, P[420 — grorg(x, U) < 0] > 0.9

U, ..., Ua — T = {x € X, fipp(x, U) < 7, gtorg(x, U) > 420}
What i sthe impact of the input variables U; on I'?

15/21
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Robust conception of an electrical machine

Optimization problem

> f and g are defined on X C R12 and U/ C R4,
> 12 of the 14 uncertain inputs are manufacturing tolerances on each x,

» Uiz and U4, describe the magnetic material properties, describe the magnetic
material properties and follow uniform distributions on [—1,1].

Input Lower bound Upper bound Manufacturing
parameters Xmin Xmax Tolerance U
Slot angle 2.47° 3.27° +0.1°
Br1p1 27.03° 29.66° +0.33°
Brip2 37.03° 39.66° +0.33°
Brap1 31.03° 33.66° +0.33°
Brap2 47.03° 49.66° +0.33°
Bizr1 33.7° 37° +0.33°
Bi3p2 59.7° 63° +0.33°
Airgap 0.55 mm 0.65 mm +0.03 mm
Bridge;1 2.6 mm 2.98 mm +0.05 mm
Bridge;2 0.9 mm 1.18 mm +0.05 mm
Bridge;3 0.5 mm 0.62 mm +0.03 mm
Bridgetang 0.4 mm 0.6 mm +0.05 mm

16/21 Table: Geometrical variables (see Reves Reves et al. (2024) for more details)
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Application : sensibility analysis of some excursion sets on the optimisation
of the electric machine

M**“+-*¢ C .

U G U U U U U U Uy U Uy Up Uy Us

Figure: Estimation des HSIC-ANOVA (n = m = 100)

Ui U Uz Us U U U U U U Ua Uz Uz Un
03 06 045 085 0.65 1 09 02 0385 0.8 095 0.85 0 0

Table: Acceptance rates (%) over 20 independence tests with a risk of 5% for the excursion
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Conclusion

Kernel-based SA on set-valued outputs

> A way to do SA on set-valued outputs
» On excursion sets: An answer to "Which variables is the most influent" => apply
on concentration maps of polluant.

»> On robust optimization : Use it inside an Bayesian optimization (BO) to reduce
the dimension

P before the BO to reduce the dimension of the meta-model
» inside the BO to reduce the dimension of acquision function

18/21
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Thanks for your attention !
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