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Kernel-based Sensitivity Analysis on (excursion) sets

Introduction

Robust conception of an electrical machine

Robust optimization problem

x∗ = argmin
x∈K

E[f (x ,U)] where K = {x ∈ X , P[g(x ,U) ⩽ 0] ⩾ 0.95}
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Introduction

Optimization problem

Robust optimization problem

x∗ = argmin
x∈K

E[f (x ,U)] where K = {x ∈ X , P[g(x ,U) ⩽ 0] ⩾ 0.95}

▶ f and g expensive =⇒ GP processes

▶ High Dimension for d and p=⇒ Sensitivity analysis to reduce the space.

▶ Design variables => Goal Oriented Sensitivity Analysis Spagnol 2020

▶ Uncertain inputs => How to quantify the impact

Idea : Quantify the impact of U on excursion set

ΓU = {x ∈ X , g(x ,U) ⩽ q},
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Introduction

A toy excursion set

Toy function from [El-Amri et al. 2021]

∀(x , u) ∈ [−5, 5]4, f (x , u) = −x21 + 5x2 − u1 + u22 − 1.

Excursion sets
New output :

ΓU = {x ∈ X , f (x ,U) ⩽ 0}, (1)

which is called a random excursion set.

U1 = -5

U2 = 0

U1 = -2.5

U2 = 0

U1 = 0

U2 = 0

U1 = 2.5

U2 = 0

U1 = 5

U2 = 0

U1 = 0

U2 = -5

U1 = 0

U2 = -2.5

U1 = 0

U2 = 0

U1 = 0

U2 = 2.5

U1 = 0

U2 = 5

How can we do sensitivity analysis on (excursion) sets?
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Kernel-based Sensitivity Analysis on (excursion) sets

Sensitivity Analysis

Sensitivity analysis

Sensitivity analysis (SA)

(U1, ...,Ud )
f7→ Y = f (U1, ...,Ud )

How can the uncertainty of Y be divided and allocated to the uncertainty of the
inputs Ui?

▶ Sobol indices: Si =
Var E(Y |Ui )

Var Y

▶ Dependence measures: Si = ||P(Ui ,Y ) − PUi
⊗ PY ||

▶ Density-based indices (Borgonovo 2007)
▶ Cramer von mises indices (Gamboa, Klein, and Lagnoux 2018)
▶ Hilbert Schmidt Independence Criterion : HSIC (Gretton, Bousquet, et al. 2005)

Screening: U1, ...,Uk are in�uential and Uk+1, ...Ud are not in�uential
Ranking: U1 ≺ ... ≺ Ud

Problem: What if the output Y is set-valued?
Solution : Kernel-based Sensitivity Analysis
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Kernel-based SA on excursion sets

Kernel embedding of Probability distribution for Sensitivity Analysis (HSIC)

Distribution embedding into a RKHS

Dependence measures: Si = ||P(Ui ,Y ) − PUi
⊗ PY ||

Figure: Kernel mean embedding

with k a (positive de�nite) kernel k : (x , x ′) ∈ X 2 7→ k(x , x ′) ∈ R.

Hilbert Schmidt Independence Criterion (HSIC), Gretton, Borgwardt,
et al. 2006
With a kernel K = kUi

⊗ kY , the HSIC is given by:

HSICK (Ui ,Y ) = ||µK (Ui ,Y )− µkUi
(Ui )⊗ µkY (Y )||2HK
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Kernel-based SA on excursion sets

Kernel embedding of Probability distribution for Sensitivity Analysis (HSIC)

HSIC-based indices

▶ When K is characteristic (injectivity of the mean embedding),

HSICK (Ui ,Y ) = 0 iif Ui ⊥ Y → screening.

▶ ANOVA-like decomposition (daVeiga 2021) if the inputs are independent and the
input kernels are ANOVA:

HSIC(U,Y ) =
∑

A⊆{1,...,d}

∑
B⊆A

(−1)|A|−|B| HSIC (UB ,Y )

SHSIC
i := HSIC(Ui ,Y )

HSIC(U,Y )

SHSIC
Ti

:= 1− HSIC(U−i ,Y )

HSIC(U,Y )

→ ranking

▶ Easy to estimate in ANOVA case

HSICK (Ui ,Y ) = E
[
(kUi

(Ui ,Ui
′)− 1)kY (Y ,Y ′)

]
.

▶ Only require (characteristic) kernels on the inputs and on the output (whatever
the type of inputs/ouputs you have)
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Kernel-based SA on excursion sets

Kernel embedding of random sets for Sensitivity Analysis of set-valued models

SA on sets: a kernel between sets

With A∆B = A ∪ B − B ∩ A and λ the Lebesgue measure, we de�ne a kernel on the
Lebesgue σ-algebra B(X ) by:

∀Γ1, Γ2 ∈ B(X ), kset(Γ1, Γ2) = exp

(
−
λ(Γ1∆Γ2)

2σ2

)
.

Proposition (A kernel between sets)

kset is a kernel [Balança and Herbin 2012] and is characteristic.

For a given random excursion set ΓU = {x ∈ X , g(x ,U) ⩽ 0}, we can de�ne
HSIC-based indices on sets:

SHset
i :=

HSICkset (Ui , ΓU)

HSICkset (U, ΓU)
,

which quanti�es how much Ui impacts the excursion set Γ.
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Kernel-based SA on excursion sets

Kernel embedding of random sets for Sensitivity Analysis of set-valued models

kset is characteristic, sketch of proof

▶ B(X ) → B = B(X )/ ∼δ where δ is the volume of the symmetric di�erence and
∼δ the equivalent relation A ∼δ B iif δ(A,B) = 0 i.e. A and B are equal except
on a λ-negligible set.

▶ We show that (B, δ) is a Polish space (separable completely metrizable topological
space). (B, δ) is a metric space so we just need separability and completeness.
Separability holds as "it's a subspace of L2(X )" and we show that it's closed.

▶ We use a Proposition from Ziegel, Ginsbourger, and Dümbgen 2022,

Proposition (Ziegel, Ginsbourger, and Dümbgen 2022)

Let B be a Polish space, H a separable Hilbert space, T a measurable and injective
mapping from B to H, and φ ∈ Φ+

∞. Then, the kernel k on B de�ned by

k
(
γ, γ′) := φ

(∥∥T (γ)− T
(
γ′)∥∥2

H

)
, γ, γ′ ∈ B

is integrally strictly positive de�nite with respect to M(B) (which implies that it is
characteristic).

with H = L2(X ), φ = exp(− ·
2σ2

) and T de�ned by T (γ) := x 7→ ⊮γ(x) for any

γ ∈ B so that ∥T (γ)− T (γ′)∥2H = λ(γ∆γ′).
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Kernel-based SA on excursion sets

Estimation

Estimation with set-valued outputs

In HSIC-based indices expressions, we need to estimate quantities of the form ;

SHset
i =

HSIC(Ui , Γ)

HSIC(U, Γ)
=

E
[
(kUi

(Ui ,Ui
′)− 1)kset(Γ, Γ′)

]
E [(kU (U,U ′)− 1)kset(Γ, Γ′)]

Estimation:

ĤSIC (Ui , Γ) =
2

n(n − 1)

n∑
l<j

(
kUi

(
U

(l)
i ,U

(j)
i

)
− 1
)
kset

(
Γ(l), Γ(j)

)
,

With sets, kset(Γ1, Γ2) also require an estimation.

k̂set(Γ
(l), Γ(j)) = exp

(
−
vol(X )

2σ2
1

m

m∑
k=1

1Γ(l)∆Γ(j) (X
(k))

)
.

To reduce the computational cost we use the same samples of X .
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Kernel-based SA on excursion sets

Estimation

Asymptotic behaviour of the indices on sets

Then we inject it in the indices estimators.
̂̂
HSIC (Ui , Γ) : nested Monte Carlo

estimator

Proposition (Quadratic risk)

E
(
̂̂
HSIC (UA, Γ)− HSIC(UA, Γ)

)2

= O
(
1

n
+

1

m

)

In the case of the classic NMC estimator, corresponding here to not reusing the same

samples of X , the rate is O
(
1
n
+ 1

m2

)
.
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Numerical tests

Toy excursion set

Toy function 1

From El-Amri et al. 2021,

∀x , u ∈ [−5, 5]2 × [−5, 5]3 g(x1, x2, u1, u2, u3) = −x21 + 5x2 − u1 + u22 − 1

p-value SHset
i SHset

Ti

U1 U2 U3 U1 U2 U3 U1 U2 U3

0.00

0.25

0.50

0.75

1.00

ksob

kgauss

kexp

k3/2

k5/2

Figure: Estimation of the p-values, ˆ̂SHset
i and ˆ̂S

Hset
Ti

for the excursion set de�ned by the

constraint g ⩽ 0 computed for 5 Anova input kernels with n = 100, m = 100 and repeated 20
times13/21
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Numerical tests

Toy excursion set

Convergence Results

Figure: Evolution of R(
̂̂
HSIC(U1, Γg )) and of the associated upper bounds for the excursion set

Γg

The "true" value of HSIC, used to compute the quadratic risk, and the constants in
the bound are computed for n = m = 3000.
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Numerical tests

Robust conception of an electrical machine

Application : excursion sets on the optimisation of the electric machine
Meta-models form [Reyes Reyes et al. 2024]

x1, . . . , x12

U13, U14

U1, . . . ,U12

Torque ripple

Torque

min fripp(x ,U)

gtorq(x ,U) ⩾ 420

x∗ = argminx∈K E[fripp(x ,U)] où K = {x ∈ X , P[420− gtorq(x ,U) ⩽ 0] ⩾ 0.95}.

U1, ...,U14 7−→ Γ = {x ∈ X , fripp(x ,U) ⩽ 7, gtorq(x ,U) ⩾ 420}
What i sthe impact of the input variables Ui on Γ?

15/21
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Numerical tests

Robust conception of an electrical machine

Robust conception of an electrical machine

Optimization problem

▶ f and g are de�ned on X ⊂ R12 and U ⊂ R14.

▶ 12 of the 14 uncertain inputs are manufacturing tolerances on each x ,

▶ U13 and U14, describe the magnetic material properties, describe the magnetic
material properties and follow uniform distributions on [−1, 1].

Input Lower bound Upper bound Manufacturing
parameters xmin xmax Tolerance U

Slot angle 2.47◦ 3.27◦ ±0.1◦

βL1P1 27.03◦ 29.66◦ ±0.33◦

βL1P2 37.03◦ 39.66◦ ±0.33◦

βL2P1 31.03◦ 33.66◦ ±0.33◦

βL2P2 47.03◦ 49.66◦ ±0.33◦

βL3P1 33.7◦ 37◦ ±0.33◦

βL3P2 59.7◦ 63◦ ±0.33◦

Airgap 0.55 mm 0.65 mm ±0.03 mm
BridgeL1 2.6 mm 2.98 mm ±0.05 mm
BridgeL2 0.9 mm 1.18 mm ±0.05 mm
BridgeL3 0.5 mm 0.62 mm ±0.03 mm
Bridgetang 0.4 mm 0.6 mm ±0.05 mm

Table: Geometrical variables (see Reyes Reyes et al. (2024) for more details)16/21
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Numerical tests

Robust conception of an electrical machine

Application : sensibility analysis of some excursion sets on the optimisation
of the electric machine

Figure: Estimation des HSIC-ANOVA (n = m = 100)

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14

0.3 0.6 0.45 0.85 0.65 1 0.9 0.2 0.85 0.8 0.95 0.85 0 0

Table: Acceptance rates (%) over 20 independence tests with a risk of 5% for the excursion

17/21
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Conclusion

Conclusion

Kernel-based SA on set-valued outputs

▶ A way to do SA on set-valued outputs

▶ On excursion sets: An answer to "Which variables is the most in�uent" => apply
on concentration maps of polluant.

▶ On robust optimization : Use it inside an Bayesian optimization (BO) to reduce
the dimension
▶ before the BO to reduce the dimension of the meta-model
▶ inside the BO to reduce the dimension of acquision function

18/21
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Conclusion

Thanks for your attention !
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