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What is Active

Learning?

Bayesian search for learning
functions
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Sequential data collection

Let's make use of uncertainty estimates to make better models
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Sequential data collection

Let's make use of uncertainty estimates to make better models

Collect initial data
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Let's make use of uncertainty estimates to make better models

Collect initial data —>
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Sequential data collection

Let's make use of uncertainty estimates to make better models

Collect initial data —>

Collect more data




Sequential data collection

Let's make use of uncertainty estimates to make better models

Collect initial data
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Collect more data

N feedback loops
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Sequential data collection

Let's make use of uncertainty estimates to make better models

Collect initial data
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N feedback loops

L ZEE 2N 2 JEE JNE JEE JEE JEE JEE 2NN JEE 2R JEE 2R 0K JNE JNE 2R JNR JEE JEE 2R N JEE JEE N JEE 2R 2ER 2ER JEE BE 2 R 4
L 2K 2R 2NE N JEE JER 2R JEE JEK JER JEE 2B JEE JEE 2N 2R JEE 2R JNE JNE JEE JEE 2NN JEE JEE JEE JEE JEE JEE JEE N JEE JEE JEE R 4
L B . 2R NN JEE JEE NN JEE NN JEE JEE 2R JEE JEE N R JEE 2R JNE NN K JEE 2NN JEE JEE 2R JEE JEE JEE JEE N K JEE 2R R 4

* o
* o
¢ o



L 2R 2R 2N 2R 2 JNE 2R SR 2R NN JEE JEE 2R JNE JEE JNE JNE JNE JNE JEE JEE JEE JEE JEE JEE JEE 2R R 2R 2ER JNR 2R R 2R 2R IR R 4
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE JEE JEE JNE 2R JEE NN JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L B R JEE JHE JNE NN SN JEE JNE R JEE R JEE JEE SN R JEE R JEE 2NN 2R JEE R R JEE JEE R 2NN JEE JEE JEE JEE JNE 2N JEE R N 2

Sequential data collection

Let's make use of uncertainty estimates to make better models

Collect initial data —> —>

—— True function

' ' ' ' ' ' ' . '
-1.00 -0.75 —-0.50 -0.25 0.00 0.25 0.50 0.75 1.00

N feedback loops

Collect more data
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Active learning

Sequentially collecting more data to improve your model for the task at hand
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy

e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)

e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

e | care about predicting a threshold -> choose data close to threshold (level-set design)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

e | care about predicting a threshold -> choose data close to threshold (level-set design)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

e | care about predicting a threshold -> choose data close to threshold (level-set design)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

e | care about predicting a threshold -> choose data close to threshold (level-set design)
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So, Bayesian
Optimisation?

i.e. Active learning for optimisation
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A molecular design pipeline

Efficiently explore molecule space
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A molecular design pipeline
Efficiently explore molecule space OH i
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e Large library of candidates CH3 b
e Expensive experiments (<10)
e High degree of parallelism HO
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e Want molecules with high affinity o) z
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A molecular design pipeline
Efficiently explore molecule space OH i

OH
| _ HO
e Large library of candidates CH3 b
e Expensive experiments (<10)
e High degree of parallelism HO
OH

e Want molecules with high affinity o) z

o Also easy to make HO
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A Simpler Example (grouped)

Can evaluate at most 4
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Can evaluate at most 4
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An Aside: GPs for Molcules

Structured Input Spaces
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Dy = {(%i,v:)};
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Structured Input Spaces
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An Aside: GPs for Molecules

Structured Input Spaces

v = f(%) + &  Dy={, )}

What do we require to
define a GP?

Performance
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An Aside: GPs for Molecules

Fingerprint Kernels

k(“g’ﬁi,f}?:j — klinear(q) X 7(1)(%]' )

_ O O =
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An Aside: GPs for Molcules

String kernels between SMILES strings

k(xi,% ) = k(str(x;), str(¥;))

o
E;/r —— O = cl|nH]ccccl
=
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Automatically choosmg next molecules

Using GP posteriors and utility functions
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Automatically choosig next molecules

Using GP posteriors and utility functions

e U f (%) : what is the utility of evaluating {x (if it will return f)
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Automatically choosmg next molecules

Using GP posteriors and utility functions

e U f (@3,:) : what is the utility of evaluating % (if it will return f)

° f* Is best so far
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Automatically choosing next molecules

Using GP posteriors and utility functions

e U f ({x) : what is the utility of evaluating gq; (if it will return f )

° f* Is best so far

e Has there been an improvement? Uf (ﬁ: ) — ]].(]c> f*)



L 2K 2R JER JEE JEE 2R 2R JEK JER R 2ER JEE JEE JER 2R JEE R JEE JEE JEE JEE JEE JER JEE JEE IR JEE JEE JEE JEE JER JEE JEE JER 2R 2R 2NN 2
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE JEE JEE JNE 2R JEE NN JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R R R JEE SR JEE R JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K JEE JEE R NN 4

Automatically choosig next molecules

Using GP posteriors and utility functions

e U f (@3.;) : what is the utility of evaluating g,: (if it will return f)

° f* Is best so far

e Has there been an improvement? Uf( D ) f>f*)

e How big was the improvement? Uf (“3.; ) (f f O)
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Automatically choosmg next molecules

Using GP posteriors and utility functions

o a(%) — ﬂf [U_f(%) ]: what utility is predicted by my model of f
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Automatically choosig next molecules

Using GP posteriors and utility functions

o a(ﬁ:) — ﬂf [Uf(%) ]: what utility is predicted by my model of f

~

e What the probability of improvement?  (Q(Pp] (%) — ‘Lf []]'(f> f*)]




L 2K 2R JER JEE JEE 2R 2R JEK JER R 2ER JEE JEE JER 2R JEE R JEE JEE JEE JEE JEE JER JEE JEE IR JEE JEE JEE JEE JER JEE JEE JER 2R 2R 2NN 2
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE JEE JEE JNE 2R JEE NN JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R R R JEE SR JEE R JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K JEE JEE R NN 4

Automatically choosing next molecules

Using GP posteriors and utility functions

° a(gl;) — ﬂf [Uf(g.;) ]: what utility is predicted by my model of f

e What the probability of improvement?  (Q(Pp] (g,: )

2 (L 1]
o flmax(f — f,0)]

e How much improvement do we expect? QE] (“3.;)




Automatically choosmg next molecules

Using GP posteriors and utility functions
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° a(g.;) — ”f [Uf(f‘;l‘)] what utility is predicted by my model of f

e What the probability of improvement?  (Q(Pp] ((‘3!;)

e How much improvement do we expect? QE] (“3.5)

f NN(M? 02)

2 (L 1]

Lrlmax(f — f*,0)]
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Automatically choosig next molecules

CH
Using GP posteriors F N > OH
HN OH
\o
3 HO
( O
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Automatically choosing next molecules

CH
Using GP posteriors F N > OH
HN OH
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Performance
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Full Bayesian optimisation loop
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Automatically choosing next molecules

Full Bayesian optimisation loop
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Full Bayesian optimisation loop
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BO Demo

Let's find the maximum of a 1D function:
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BO Demo

Let's find the maximum of a 1D function:
Using as few function evaluations as possible!
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BO Demo

Let's find the maximum of a 1D function:
Using as few function evaluations as possible!
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BO Demo
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Using as few function evaluations as possible!
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BO Demo

Let's find the maximum of a 1D function:
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Using as few function evaluations as possible!
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BO Demo
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Suppose we make 5 evaluations
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step 1

How to automate BO

Use a statistical model like a Gaussian process
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How to automate BO: step 2

Automated decision making via an acquisition function like expected improvement
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BO Demo 2

Let minimize the 6 Hump Camel function
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Looks like we can use a local optimizer!



BO Demo 2

Zoom in: Perhaps not quite as easy?
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BO Demo 2

Bayesian optimization is a global optimizer

Bayesian optimization (global) Gradient descent (local)
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BO Demo 3

Efficient coverage of the search space
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So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)
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So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)

e BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)
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So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)
e BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)

o Simulating performance of a car engine (mins)
o Training a large ML model (hours) .
Increasing cost

o Synthesising a new molecule (weeks)

o Testing performance of a wind turbine in real world (months
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So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)
e BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)

o Simulating performance of a car engine (mins)
o Training a large ML model (hours) .
Increasing cost

o Synthesising a new molecule (weeks)

o Testing performance of a wind turbine in real world (months

e We do not need gradients or noiseless observations (i.e. black-box optimization)
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So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)
e BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)

o Simulating performance of a car engine (mins)
o Training a large ML model (hours) .
Increasing cost

o Synthesising a new molecule (weeks)

o Testing performance of a wind turbine in real world (months

e We do not need gradients or noiseless observations (i.e. black-box optimization)

BO: clever modelling rather than brute force!
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Cool things that you can do with BO

e Fine-tune the performance of AlphaGO (https://arxiv.org/abs/1812.06855)

e Allow Amazon Alexa learn how to speak with new voices (https://arxiv.org/abs/2002.01953)
e Efficiently find new molecules / genes (https://arxiv.org/abs/2010.00979)

e Fine-tune electric car engines

e Optimize large climate models

A great new reference for BO: https://bayesoptbook.com/
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