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What is Active 
Learning?
Bayesian search for learning 
functions
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But can we do better than random???
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Active learning
Sequentially collecting more data to improve your model for the task at hand

● I care about regression —> collect data to improve global model accuracy 

● I care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)

● I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

● I care about predicting a threshold -> choose data close to threshold (level-set design)

Malaria incidence 
in Nigeria

Model on Random 
data

Model from data 
chosen by Active 
learning



So, Bayesian 
Optimisation?
i.e. Active learning for optimisation 
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A molecular design pipeline
Efficiently explore molecule space

● Large library of candidates

● Expensive experiments (<10)

● High degree of parallelism

● Want molecules with high affinity

○ Also easy to make

○ Don’t stick to themselves

○ Stable

○ In a new area of “patent space”

????

     Any ideas? 
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Can evaluate at most 4

1 2 3

Explore v.s. exploit?
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An Aside: GPs for Molecules
String kernels between SMILES strings
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0.0 0.1  0.2   2.2   8.1   2.2   2.1   4.1  4.2   2.2

1.2     3.1   2.2  2.5   5.1  2.2    2.3   4.1 2.1 7.2

1.1   2.3  4.3  0.3   0.2   0.3   0.1 0.01 0.2 0.0

2.3 3    2.1    0.3   0.2   0.5 0.1    0.2    3.1   2.2

 3.1    0.3   0.6    0.7   2.0  2.3  2.2  1.2  1.1 0.7
4.1   2.0  2.1 2.1   3.4   0.2   0.4   3.1  4.2   1.3

0.01   0.2   1.4    1.4  1.3  1.6   1.7  2.3  2.2 3.1

0.0 0.1  0.2   2.2   3.1   2.2   2.1   4.1  4.2   2.2

1.2     3.1   2.2  2.5   5.1  2.2    2.3   4.1 2.1 7.2

1.1   2.3  4.3  0.3   0.2   0.3   0.1 0.01 0.2 0.0

2.3 3    2.1    0.3   0.2   0.5 0.1    0.2    3.1   2.2

 3.1    0.3   0.6    0.7   2.0  2.3  2.2  1.2  1.1 0.7
4.1   2.0  2.1 2.1   3.4   0.2   0.4   3.1  4.2   1.3

0.01   0.2   1.4    1.4  1.3  1.6   1.7  2.3  2.2 3.1

0.0 0.1  0.2   2.2   3.1   2.2   2.1   4.1  4.2   2.2

1.2     3.1   2.2  2.5   5.1  2.2    2.3   4.1 2.1 7.2

1.1   2.3  4.3  0.3   0.2   0.3   0.1 0.01 0.2 0.0

2.3 3    2.1    0.3   0.2   0.5 0.1    0.2    3.1   2.2

 3.1    0.3   0.6    0.7   2.0  2.3  2.2  1.2  1.1 0.7
4.1   2.0  2.1 2.1   3.4   0.2   0.4   3.1  4.2   1.3

0.01   0.2   1.4    1.4  1.3  1.6   1.7  2.3  2.2 3.1

0.0 0.1  0.2   2.2   3.1   2.2   2.1   4.1  4.2   2.2

1.2     3.1   2.2  2.5   5.1  2.2    2.3   4.1 2.1 7.2
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Automatically choosing next molecules
Full Bayesian optimisation loop

https://www.horizons-mag.ch/2018/09/06/the-universe-of-molecules/

1. Evaluate 2 random molecules

2. Fit GP model to measurements

3. Calc new acquisition function

4. Choose new molecule

5. Go to step 2.

And so on ………



What about 
standard 
optimisation 
problems?
i.e. infinite candidates 
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BO Demo
Let's find the maximum of a 1D function:

Pretty goodThe best!

Rubbish

Using as few function evaluations as possible!

Rubbish



BO Demo
Suppose we make 5 evaluations

Where should we next evaluate? Explore/Exploit?



How to automate BO: step 1
Use a statistical model like a Gaussian process



Automated decision making via an acquisition function like expected improvement
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Current best 
solution

How to automate BO: step 2
Automated decision making via an acquisition function like expected improvement

Chosen point
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BO Demo 2
Let minimize the 6 Hump Camel function

Looks like we can use a local optimizer! 



BO Demo 2
Zoom in: Perhaps not quite as easy?

Looks like we cannot use a local optimizer! 



BO Demo 2
Bayesian optimization is a global optimizer

Bayesian optimization (global) Gradient descent (local)



BO Demo 3
Efficient coverage of the search space
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So why do we care about Bayesian Optimization?

● BO performs global optimization  (good for multi-modal functions)

● BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)

○ Simulating performance of a car engine (mins)

○ Training a large ML model (hours)

○ Synthesising a new molecule (weeks)

○ Testing performance of a wind turbine in real world (months

● We do not need gradients or noiseless observations (i.e. black-box optimization)

BO: clever modelling rather than brute force!

Increasing cost



Cool things that you can do with BO

● Fine-tune the performance of AlphaGO (https://arxiv.org/abs/1812.06855)

● Allow Amazon Alexa learn how to speak with new voices (https://arxiv.org/abs/2002.01953)

● Efficiently find new molecules / genes (https://arxiv.org/abs/2010.00979) 

● Fine-tune electric car engines

● Optimize large climate models 

A great new reference for BO: https://bayesoptbook.com/




